1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "VelocityTracker"
18 //#define LOG_NDEBUG 0
19 
20 // Log debug messages about velocity tracking.
21 #define DEBUG_VELOCITY 0
22 
23 // Log debug messages about the progress of the algorithm itself.
24 #define DEBUG_STRATEGY 0
25 
26 #include <inttypes.h>
27 #include <limits.h>
28 #include <math.h>
29 
30 #include <android-base/stringprintf.h>
31 #include <cutils/properties.h>
32 #include <input/VelocityTracker.h>
33 #include <utils/BitSet.h>
34 #include <utils/Timers.h>
35 
36 namespace android {
37 
38 // Nanoseconds per milliseconds.
39 static const nsecs_t NANOS_PER_MS = 1000000;
40 
41 // Threshold for determining that a pointer has stopped moving.
42 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
43 // stopped.  We need to detect this case so that we can accurately predict the
44 // velocity after the pointer starts moving again.
45 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
46 
47 
vectorDot(const float * a,const float * b,uint32_t m)48 static float vectorDot(const float* a, const float* b, uint32_t m) {
49     float r = 0;
50     for (size_t i = 0; i < m; i++) {
51         r += *(a++) * *(b++);
52     }
53     return r;
54 }
55 
vectorNorm(const float * a,uint32_t m)56 static float vectorNorm(const float* a, uint32_t m) {
57     float r = 0;
58     for (size_t i = 0; i < m; i++) {
59         float t = *(a++);
60         r += t * t;
61     }
62     return sqrtf(r);
63 }
64 
65 #if DEBUG_STRATEGY || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)66 static std::string vectorToString(const float* a, uint32_t m) {
67     std::string str;
68     str += "[";
69     for (size_t i = 0; i < m; i++) {
70         if (i) {
71             str += ",";
72         }
73         str += android::base::StringPrintf(" %f", *(a++));
74     }
75     str += " ]";
76     return str;
77 }
78 #endif
79 
80 #if DEBUG_STRATEGY
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)81 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
82     std::string str;
83     str = "[";
84     for (size_t i = 0; i < m; i++) {
85         if (i) {
86             str += ",";
87         }
88         str += " [";
89         for (size_t j = 0; j < n; j++) {
90             if (j) {
91                 str += ",";
92             }
93             str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
94         }
95         str += " ]";
96     }
97     str += " ]";
98     return str;
99 }
100 #endif
101 
102 
103 // --- VelocityTracker ---
104 
105 // The default velocity tracker strategy.
106 // Although other strategies are available for testing and comparison purposes,
107 // this is the strategy that applications will actually use.  Be very careful
108 // when adjusting the default strategy because it can dramatically affect
109 // (often in a bad way) the user experience.
110 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
111 
VelocityTracker(const char * strategy)112 VelocityTracker::VelocityTracker(const char* strategy) :
113         mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
114     char value[PROPERTY_VALUE_MAX];
115 
116     // Allow the default strategy to be overridden using a system property for debugging.
117     if (!strategy) {
118         int length = property_get("debug.velocitytracker.strategy", value, NULL);
119         if (length > 0) {
120             strategy = value;
121         } else {
122             strategy = DEFAULT_STRATEGY;
123         }
124     }
125 
126     // Configure the strategy.
127     if (!configureStrategy(strategy)) {
128         ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
129         if (!configureStrategy(DEFAULT_STRATEGY)) {
130             LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
131                     strategy);
132         }
133     }
134 }
135 
~VelocityTracker()136 VelocityTracker::~VelocityTracker() {
137     delete mStrategy;
138 }
139 
configureStrategy(const char * strategy)140 bool VelocityTracker::configureStrategy(const char* strategy) {
141     mStrategy = createStrategy(strategy);
142     return mStrategy != NULL;
143 }
144 
createStrategy(const char * strategy)145 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
146     if (!strcmp("impulse", strategy)) {
147         // Physical model of pushing an object.  Quality: VERY GOOD.
148         // Works with duplicate coordinates, unclean finger liftoff.
149         return new ImpulseVelocityTrackerStrategy();
150     }
151     if (!strcmp("lsq1", strategy)) {
152         // 1st order least squares.  Quality: POOR.
153         // Frequently underfits the touch data especially when the finger accelerates
154         // or changes direction.  Often underestimates velocity.  The direction
155         // is overly influenced by historical touch points.
156         return new LeastSquaresVelocityTrackerStrategy(1);
157     }
158     if (!strcmp("lsq2", strategy)) {
159         // 2nd order least squares.  Quality: VERY GOOD.
160         // Pretty much ideal, but can be confused by certain kinds of touch data,
161         // particularly if the panel has a tendency to generate delayed,
162         // duplicate or jittery touch coordinates when the finger is released.
163         return new LeastSquaresVelocityTrackerStrategy(2);
164     }
165     if (!strcmp("lsq3", strategy)) {
166         // 3rd order least squares.  Quality: UNUSABLE.
167         // Frequently overfits the touch data yielding wildly divergent estimates
168         // of the velocity when the finger is released.
169         return new LeastSquaresVelocityTrackerStrategy(3);
170     }
171     if (!strcmp("wlsq2-delta", strategy)) {
172         // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
173         return new LeastSquaresVelocityTrackerStrategy(2,
174                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
175     }
176     if (!strcmp("wlsq2-central", strategy)) {
177         // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
178         return new LeastSquaresVelocityTrackerStrategy(2,
179                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
180     }
181     if (!strcmp("wlsq2-recent", strategy)) {
182         // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
183         return new LeastSquaresVelocityTrackerStrategy(2,
184                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
185     }
186     if (!strcmp("int1", strategy)) {
187         // 1st order integrating filter.  Quality: GOOD.
188         // Not as good as 'lsq2' because it cannot estimate acceleration but it is
189         // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
190         // the velocity of a fling but this strategy tends to respond to changes in
191         // direction more quickly and accurately.
192         return new IntegratingVelocityTrackerStrategy(1);
193     }
194     if (!strcmp("int2", strategy)) {
195         // 2nd order integrating filter.  Quality: EXPERIMENTAL.
196         // For comparison purposes only.  Unlike 'int1' this strategy can compensate
197         // for acceleration but it typically overestimates the effect.
198         return new IntegratingVelocityTrackerStrategy(2);
199     }
200     if (!strcmp("legacy", strategy)) {
201         // Legacy velocity tracker algorithm.  Quality: POOR.
202         // For comparison purposes only.  This algorithm is strongly influenced by
203         // old data points, consistently underestimates velocity and takes a very long
204         // time to adjust to changes in direction.
205         return new LegacyVelocityTrackerStrategy();
206     }
207     return NULL;
208 }
209 
clear()210 void VelocityTracker::clear() {
211     mCurrentPointerIdBits.clear();
212     mActivePointerId = -1;
213 
214     mStrategy->clear();
215 }
216 
clearPointers(BitSet32 idBits)217 void VelocityTracker::clearPointers(BitSet32 idBits) {
218     BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
219     mCurrentPointerIdBits = remainingIdBits;
220 
221     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
222         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
223     }
224 
225     mStrategy->clearPointers(idBits);
226 }
227 
addMovement(nsecs_t eventTime,BitSet32 idBits,const Position * positions)228 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
229     while (idBits.count() > MAX_POINTERS) {
230         idBits.clearLastMarkedBit();
231     }
232 
233     if ((mCurrentPointerIdBits.value & idBits.value)
234             && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
235 #if DEBUG_VELOCITY
236         ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
237                 (eventTime - mLastEventTime) * 0.000001f);
238 #endif
239         // We have not received any movements for too long.  Assume that all pointers
240         // have stopped.
241         mStrategy->clear();
242     }
243     mLastEventTime = eventTime;
244 
245     mCurrentPointerIdBits = idBits;
246     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
247         mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
248     }
249 
250     mStrategy->addMovement(eventTime, idBits, positions);
251 
252 #if DEBUG_VELOCITY
253     ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
254             eventTime, idBits.value, mActivePointerId);
255     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
256         uint32_t id = iterBits.firstMarkedBit();
257         uint32_t index = idBits.getIndexOfBit(id);
258         iterBits.clearBit(id);
259         Estimator estimator;
260         getEstimator(id, &estimator);
261         ALOGD("  %d: position (%0.3f, %0.3f), "
262                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
263                 id, positions[index].x, positions[index].y,
264                 int(estimator.degree),
265                 vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
266                 vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
267                 estimator.confidence);
268     }
269 #endif
270 }
271 
addMovement(const MotionEvent * event)272 void VelocityTracker::addMovement(const MotionEvent* event) {
273     int32_t actionMasked = event->getActionMasked();
274 
275     switch (actionMasked) {
276     case AMOTION_EVENT_ACTION_DOWN:
277     case AMOTION_EVENT_ACTION_HOVER_ENTER:
278         // Clear all pointers on down before adding the new movement.
279         clear();
280         break;
281     case AMOTION_EVENT_ACTION_POINTER_DOWN: {
282         // Start a new movement trace for a pointer that just went down.
283         // We do this on down instead of on up because the client may want to query the
284         // final velocity for a pointer that just went up.
285         BitSet32 downIdBits;
286         downIdBits.markBit(event->getPointerId(event->getActionIndex()));
287         clearPointers(downIdBits);
288         break;
289     }
290     case AMOTION_EVENT_ACTION_MOVE:
291     case AMOTION_EVENT_ACTION_HOVER_MOVE:
292         break;
293     default:
294         // Ignore all other actions because they do not convey any new information about
295         // pointer movement.  We also want to preserve the last known velocity of the pointers.
296         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
297         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
298         // pointers that remained down but we will also receive an ACTION_MOVE with this
299         // information if any of them actually moved.  Since we don't know how many pointers
300         // will be going up at once it makes sense to just wait for the following ACTION_MOVE
301         // before adding the movement.
302         return;
303     }
304 
305     size_t pointerCount = event->getPointerCount();
306     if (pointerCount > MAX_POINTERS) {
307         pointerCount = MAX_POINTERS;
308     }
309 
310     BitSet32 idBits;
311     for (size_t i = 0; i < pointerCount; i++) {
312         idBits.markBit(event->getPointerId(i));
313     }
314 
315     uint32_t pointerIndex[MAX_POINTERS];
316     for (size_t i = 0; i < pointerCount; i++) {
317         pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
318     }
319 
320     nsecs_t eventTime;
321     Position positions[pointerCount];
322 
323     size_t historySize = event->getHistorySize();
324     for (size_t h = 0; h < historySize; h++) {
325         eventTime = event->getHistoricalEventTime(h);
326         for (size_t i = 0; i < pointerCount; i++) {
327             uint32_t index = pointerIndex[i];
328             positions[index].x = event->getHistoricalRawX(i, h);
329             positions[index].y = event->getHistoricalRawY(i, h);
330         }
331         addMovement(eventTime, idBits, positions);
332     }
333 
334     eventTime = event->getEventTime();
335     for (size_t i = 0; i < pointerCount; i++) {
336         uint32_t index = pointerIndex[i];
337         positions[index].x = event->getRawX(i);
338         positions[index].y = event->getRawY(i);
339     }
340     addMovement(eventTime, idBits, positions);
341 }
342 
getVelocity(uint32_t id,float * outVx,float * outVy) const343 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
344     Estimator estimator;
345     if (getEstimator(id, &estimator) && estimator.degree >= 1) {
346         *outVx = estimator.xCoeff[1];
347         *outVy = estimator.yCoeff[1];
348         return true;
349     }
350     *outVx = 0;
351     *outVy = 0;
352     return false;
353 }
354 
getEstimator(uint32_t id,Estimator * outEstimator) const355 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
356     return mStrategy->getEstimator(id, outEstimator);
357 }
358 
359 
360 // --- LeastSquaresVelocityTrackerStrategy ---
361 
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)362 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
363         uint32_t degree, Weighting weighting) :
364         mDegree(degree), mWeighting(weighting) {
365     clear();
366 }
367 
~LeastSquaresVelocityTrackerStrategy()368 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
369 }
370 
clear()371 void LeastSquaresVelocityTrackerStrategy::clear() {
372     mIndex = 0;
373     mMovements[0].idBits.clear();
374 }
375 
clearPointers(BitSet32 idBits)376 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
377     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
378     mMovements[mIndex].idBits = remainingIdBits;
379 }
380 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)381 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
382         const VelocityTracker::Position* positions) {
383     if (++mIndex == HISTORY_SIZE) {
384         mIndex = 0;
385     }
386 
387     Movement& movement = mMovements[mIndex];
388     movement.eventTime = eventTime;
389     movement.idBits = idBits;
390     uint32_t count = idBits.count();
391     for (uint32_t i = 0; i < count; i++) {
392         movement.positions[i] = positions[i];
393     }
394 }
395 
396 /**
397  * Solves a linear least squares problem to obtain a N degree polynomial that fits
398  * the specified input data as nearly as possible.
399  *
400  * Returns true if a solution is found, false otherwise.
401  *
402  * The input consists of two vectors of data points X and Y with indices 0..m-1
403  * along with a weight vector W of the same size.
404  *
405  * The output is a vector B with indices 0..n that describes a polynomial
406  * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
407  * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
408  *
409  * Accordingly, the weight vector W should be initialized by the caller with the
410  * reciprocal square root of the variance of the error in each input data point.
411  * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
412  * The weights express the relative importance of each data point.  If the weights are
413  * all 1, then the data points are considered to be of equal importance when fitting
414  * the polynomial.  It is a good idea to choose weights that diminish the importance
415  * of data points that may have higher than usual error margins.
416  *
417  * Errors among data points are assumed to be independent.  W is represented here
418  * as a vector although in the literature it is typically taken to be a diagonal matrix.
419  *
420  * That is to say, the function that generated the input data can be approximated
421  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
422  *
423  * The coefficient of determination (R^2) is also returned to describe the goodness
424  * of fit of the model for the given data.  It is a value between 0 and 1, where 1
425  * indicates perfect correspondence.
426  *
427  * This function first expands the X vector to a m by n matrix A such that
428  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
429  * multiplies it by w[i]./
430  *
431  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
432  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
433  * part is all zeroes), we can simplify the decomposition into an m by n matrix
434  * Q1 and a n by n matrix R1 such that A = Q1 R1.
435  *
436  * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
437  * to find B.
438  *
439  * For efficiency, we lay out A and Q column-wise in memory because we frequently
440  * operate on the column vectors.  Conversely, we lay out R row-wise.
441  *
442  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
443  * http://en.wikipedia.org/wiki/Gram-Schmidt
444  */
solveLeastSquares(const float * x,const float * y,const float * w,uint32_t m,uint32_t n,float * outB,float * outDet)445 static bool solveLeastSquares(const float* x, const float* y,
446         const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
447 #if DEBUG_STRATEGY
448     ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
449             vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
450             vectorToString(w, m).c_str());
451 #endif
452 
453     // Expand the X vector to a matrix A, pre-multiplied by the weights.
454     float a[n][m]; // column-major order
455     for (uint32_t h = 0; h < m; h++) {
456         a[0][h] = w[h];
457         for (uint32_t i = 1; i < n; i++) {
458             a[i][h] = a[i - 1][h] * x[h];
459         }
460     }
461 #if DEBUG_STRATEGY
462     ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
463 #endif
464 
465     // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
466     float q[n][m]; // orthonormal basis, column-major order
467     float r[n][n]; // upper triangular matrix, row-major order
468     for (uint32_t j = 0; j < n; j++) {
469         for (uint32_t h = 0; h < m; h++) {
470             q[j][h] = a[j][h];
471         }
472         for (uint32_t i = 0; i < j; i++) {
473             float dot = vectorDot(&q[j][0], &q[i][0], m);
474             for (uint32_t h = 0; h < m; h++) {
475                 q[j][h] -= dot * q[i][h];
476             }
477         }
478 
479         float norm = vectorNorm(&q[j][0], m);
480         if (norm < 0.000001f) {
481             // vectors are linearly dependent or zero so no solution
482 #if DEBUG_STRATEGY
483             ALOGD("  - no solution, norm=%f", norm);
484 #endif
485             return false;
486         }
487 
488         float invNorm = 1.0f / norm;
489         for (uint32_t h = 0; h < m; h++) {
490             q[j][h] *= invNorm;
491         }
492         for (uint32_t i = 0; i < n; i++) {
493             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
494         }
495     }
496 #if DEBUG_STRATEGY
497     ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
498     ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
499 
500     // calculate QR, if we factored A correctly then QR should equal A
501     float qr[n][m];
502     for (uint32_t h = 0; h < m; h++) {
503         for (uint32_t i = 0; i < n; i++) {
504             qr[i][h] = 0;
505             for (uint32_t j = 0; j < n; j++) {
506                 qr[i][h] += q[j][h] * r[j][i];
507             }
508         }
509     }
510     ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
511 #endif
512 
513     // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
514     // We just work from bottom-right to top-left calculating B's coefficients.
515     float wy[m];
516     for (uint32_t h = 0; h < m; h++) {
517         wy[h] = y[h] * w[h];
518     }
519     for (uint32_t i = n; i != 0; ) {
520         i--;
521         outB[i] = vectorDot(&q[i][0], wy, m);
522         for (uint32_t j = n - 1; j > i; j--) {
523             outB[i] -= r[i][j] * outB[j];
524         }
525         outB[i] /= r[i][i];
526     }
527 #if DEBUG_STRATEGY
528     ALOGD("  - b=%s", vectorToString(outB, n).c_str());
529 #endif
530 
531     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
532     // SSerr is the residual sum of squares (variance of the error),
533     // and SStot is the total sum of squares (variance of the data) where each
534     // has been weighted.
535     float ymean = 0;
536     for (uint32_t h = 0; h < m; h++) {
537         ymean += y[h];
538     }
539     ymean /= m;
540 
541     float sserr = 0;
542     float sstot = 0;
543     for (uint32_t h = 0; h < m; h++) {
544         float err = y[h] - outB[0];
545         float term = 1;
546         for (uint32_t i = 1; i < n; i++) {
547             term *= x[h];
548             err -= term * outB[i];
549         }
550         sserr += w[h] * w[h] * err * err;
551         float var = y[h] - ymean;
552         sstot += w[h] * w[h] * var * var;
553     }
554     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
555 #if DEBUG_STRATEGY
556     ALOGD("  - sserr=%f", sserr);
557     ALOGD("  - sstot=%f", sstot);
558     ALOGD("  - det=%f", *outDet);
559 #endif
560     return true;
561 }
562 
563 /*
564  * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
565  * the default implementation
566  */
solveUnweightedLeastSquaresDeg2(const float * x,const float * y,size_t count)567 static float solveUnweightedLeastSquaresDeg2(const float* x, const float* y, size_t count) {
568     float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
569 
570     for (size_t i = 0; i < count; i++) {
571         float xi = x[i];
572         float yi = y[i];
573         float xi2 = xi*xi;
574         float xi3 = xi2*xi;
575         float xi4 = xi3*xi;
576         float xi2yi = xi2*yi;
577         float xiyi = xi*yi;
578 
579         sxi += xi;
580         sxi2 += xi2;
581         sxiyi += xiyi;
582         sxi2yi += xi2yi;
583         syi += yi;
584         sxi3 += xi3;
585         sxi4 += xi4;
586     }
587 
588     float Sxx = sxi2 - sxi*sxi / count;
589     float Sxy = sxiyi - sxi*syi / count;
590     float Sxx2 = sxi3 - sxi*sxi2 / count;
591     float Sx2y = sxi2yi - sxi2*syi / count;
592     float Sx2x2 = sxi4 - sxi2*sxi2 / count;
593 
594     float numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
595     float denominator = Sxx*Sx2x2 - Sxx2*Sxx2;
596     if (denominator == 0) {
597         ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
598         return 0;
599     }
600     return numerator/denominator;
601 }
602 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const603 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
604         VelocityTracker::Estimator* outEstimator) const {
605     outEstimator->clear();
606 
607     // Iterate over movement samples in reverse time order and collect samples.
608     float x[HISTORY_SIZE];
609     float y[HISTORY_SIZE];
610     float w[HISTORY_SIZE];
611     float time[HISTORY_SIZE];
612     uint32_t m = 0;
613     uint32_t index = mIndex;
614     const Movement& newestMovement = mMovements[mIndex];
615     do {
616         const Movement& movement = mMovements[index];
617         if (!movement.idBits.hasBit(id)) {
618             break;
619         }
620 
621         nsecs_t age = newestMovement.eventTime - movement.eventTime;
622         if (age > HORIZON) {
623             break;
624         }
625 
626         const VelocityTracker::Position& position = movement.getPosition(id);
627         x[m] = position.x;
628         y[m] = position.y;
629         w[m] = chooseWeight(index);
630         time[m] = -age * 0.000000001f;
631         index = (index == 0 ? HISTORY_SIZE : index) - 1;
632     } while (++m < HISTORY_SIZE);
633 
634     if (m == 0) {
635         return false; // no data
636     }
637 
638     // Calculate a least squares polynomial fit.
639     uint32_t degree = mDegree;
640     if (degree > m - 1) {
641         degree = m - 1;
642     }
643     if (degree >= 1) {
644         if (degree == 2 && mWeighting == WEIGHTING_NONE) { // optimize unweighted, degree=2 fit
645             outEstimator->time = newestMovement.eventTime;
646             outEstimator->degree = 2;
647             outEstimator->confidence = 1;
648             outEstimator->xCoeff[0] = 0; // only slope is calculated, set rest of coefficients = 0
649             outEstimator->yCoeff[0] = 0;
650             outEstimator->xCoeff[1] = solveUnweightedLeastSquaresDeg2(time, x, m);
651             outEstimator->yCoeff[1] = solveUnweightedLeastSquaresDeg2(time, y, m);
652             outEstimator->xCoeff[2] = 0;
653             outEstimator->yCoeff[2] = 0;
654             return true;
655         }
656 
657         float xdet, ydet;
658         uint32_t n = degree + 1;
659         if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
660                 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
661             outEstimator->time = newestMovement.eventTime;
662             outEstimator->degree = degree;
663             outEstimator->confidence = xdet * ydet;
664 #if DEBUG_STRATEGY
665             ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
666                     int(outEstimator->degree),
667                     vectorToString(outEstimator->xCoeff, n).c_str(),
668                     vectorToString(outEstimator->yCoeff, n).c_str(),
669                     outEstimator->confidence);
670 #endif
671             return true;
672         }
673     }
674 
675     // No velocity data available for this pointer, but we do have its current position.
676     outEstimator->xCoeff[0] = x[0];
677     outEstimator->yCoeff[0] = y[0];
678     outEstimator->time = newestMovement.eventTime;
679     outEstimator->degree = 0;
680     outEstimator->confidence = 1;
681     return true;
682 }
683 
chooseWeight(uint32_t index) const684 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
685     switch (mWeighting) {
686     case WEIGHTING_DELTA: {
687         // Weight points based on how much time elapsed between them and the next
688         // point so that points that "cover" a shorter time span are weighed less.
689         //   delta  0ms: 0.5
690         //   delta 10ms: 1.0
691         if (index == mIndex) {
692             return 1.0f;
693         }
694         uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
695         float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
696                 * 0.000001f;
697         if (deltaMillis < 0) {
698             return 0.5f;
699         }
700         if (deltaMillis < 10) {
701             return 0.5f + deltaMillis * 0.05;
702         }
703         return 1.0f;
704     }
705 
706     case WEIGHTING_CENTRAL: {
707         // Weight points based on their age, weighing very recent and very old points less.
708         //   age  0ms: 0.5
709         //   age 10ms: 1.0
710         //   age 50ms: 1.0
711         //   age 60ms: 0.5
712         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
713                 * 0.000001f;
714         if (ageMillis < 0) {
715             return 0.5f;
716         }
717         if (ageMillis < 10) {
718             return 0.5f + ageMillis * 0.05;
719         }
720         if (ageMillis < 50) {
721             return 1.0f;
722         }
723         if (ageMillis < 60) {
724             return 0.5f + (60 - ageMillis) * 0.05;
725         }
726         return 0.5f;
727     }
728 
729     case WEIGHTING_RECENT: {
730         // Weight points based on their age, weighing older points less.
731         //   age   0ms: 1.0
732         //   age  50ms: 1.0
733         //   age 100ms: 0.5
734         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
735                 * 0.000001f;
736         if (ageMillis < 50) {
737             return 1.0f;
738         }
739         if (ageMillis < 100) {
740             return 0.5f + (100 - ageMillis) * 0.01f;
741         }
742         return 0.5f;
743     }
744 
745     case WEIGHTING_NONE:
746     default:
747         return 1.0f;
748     }
749 }
750 
751 
752 // --- IntegratingVelocityTrackerStrategy ---
753 
IntegratingVelocityTrackerStrategy(uint32_t degree)754 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
755         mDegree(degree) {
756 }
757 
~IntegratingVelocityTrackerStrategy()758 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
759 }
760 
clear()761 void IntegratingVelocityTrackerStrategy::clear() {
762     mPointerIdBits.clear();
763 }
764 
clearPointers(BitSet32 idBits)765 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
766     mPointerIdBits.value &= ~idBits.value;
767 }
768 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)769 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
770         const VelocityTracker::Position* positions) {
771     uint32_t index = 0;
772     for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
773         uint32_t id = iterIdBits.clearFirstMarkedBit();
774         State& state = mPointerState[id];
775         const VelocityTracker::Position& position = positions[index++];
776         if (mPointerIdBits.hasBit(id)) {
777             updateState(state, eventTime, position.x, position.y);
778         } else {
779             initState(state, eventTime, position.x, position.y);
780         }
781     }
782 
783     mPointerIdBits = idBits;
784 }
785 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const786 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
787         VelocityTracker::Estimator* outEstimator) const {
788     outEstimator->clear();
789 
790     if (mPointerIdBits.hasBit(id)) {
791         const State& state = mPointerState[id];
792         populateEstimator(state, outEstimator);
793         return true;
794     }
795 
796     return false;
797 }
798 
initState(State & state,nsecs_t eventTime,float xpos,float ypos) const799 void IntegratingVelocityTrackerStrategy::initState(State& state,
800         nsecs_t eventTime, float xpos, float ypos) const {
801     state.updateTime = eventTime;
802     state.degree = 0;
803 
804     state.xpos = xpos;
805     state.xvel = 0;
806     state.xaccel = 0;
807     state.ypos = ypos;
808     state.yvel = 0;
809     state.yaccel = 0;
810 }
811 
updateState(State & state,nsecs_t eventTime,float xpos,float ypos) const812 void IntegratingVelocityTrackerStrategy::updateState(State& state,
813         nsecs_t eventTime, float xpos, float ypos) const {
814     const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
815     const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
816 
817     if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
818         return;
819     }
820 
821     float dt = (eventTime - state.updateTime) * 0.000000001f;
822     state.updateTime = eventTime;
823 
824     float xvel = (xpos - state.xpos) / dt;
825     float yvel = (ypos - state.ypos) / dt;
826     if (state.degree == 0) {
827         state.xvel = xvel;
828         state.yvel = yvel;
829         state.degree = 1;
830     } else {
831         float alpha = dt / (FILTER_TIME_CONSTANT + dt);
832         if (mDegree == 1) {
833             state.xvel += (xvel - state.xvel) * alpha;
834             state.yvel += (yvel - state.yvel) * alpha;
835         } else {
836             float xaccel = (xvel - state.xvel) / dt;
837             float yaccel = (yvel - state.yvel) / dt;
838             if (state.degree == 1) {
839                 state.xaccel = xaccel;
840                 state.yaccel = yaccel;
841                 state.degree = 2;
842             } else {
843                 state.xaccel += (xaccel - state.xaccel) * alpha;
844                 state.yaccel += (yaccel - state.yaccel) * alpha;
845             }
846             state.xvel += (state.xaccel * dt) * alpha;
847             state.yvel += (state.yaccel * dt) * alpha;
848         }
849     }
850     state.xpos = xpos;
851     state.ypos = ypos;
852 }
853 
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const854 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
855         VelocityTracker::Estimator* outEstimator) const {
856     outEstimator->time = state.updateTime;
857     outEstimator->confidence = 1.0f;
858     outEstimator->degree = state.degree;
859     outEstimator->xCoeff[0] = state.xpos;
860     outEstimator->xCoeff[1] = state.xvel;
861     outEstimator->xCoeff[2] = state.xaccel / 2;
862     outEstimator->yCoeff[0] = state.ypos;
863     outEstimator->yCoeff[1] = state.yvel;
864     outEstimator->yCoeff[2] = state.yaccel / 2;
865 }
866 
867 
868 // --- LegacyVelocityTrackerStrategy ---
869 
LegacyVelocityTrackerStrategy()870 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
871     clear();
872 }
873 
~LegacyVelocityTrackerStrategy()874 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
875 }
876 
clear()877 void LegacyVelocityTrackerStrategy::clear() {
878     mIndex = 0;
879     mMovements[0].idBits.clear();
880 }
881 
clearPointers(BitSet32 idBits)882 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
883     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
884     mMovements[mIndex].idBits = remainingIdBits;
885 }
886 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)887 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
888         const VelocityTracker::Position* positions) {
889     if (++mIndex == HISTORY_SIZE) {
890         mIndex = 0;
891     }
892 
893     Movement& movement = mMovements[mIndex];
894     movement.eventTime = eventTime;
895     movement.idBits = idBits;
896     uint32_t count = idBits.count();
897     for (uint32_t i = 0; i < count; i++) {
898         movement.positions[i] = positions[i];
899     }
900 }
901 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const902 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
903         VelocityTracker::Estimator* outEstimator) const {
904     outEstimator->clear();
905 
906     const Movement& newestMovement = mMovements[mIndex];
907     if (!newestMovement.idBits.hasBit(id)) {
908         return false; // no data
909     }
910 
911     // Find the oldest sample that contains the pointer and that is not older than HORIZON.
912     nsecs_t minTime = newestMovement.eventTime - HORIZON;
913     uint32_t oldestIndex = mIndex;
914     uint32_t numTouches = 1;
915     do {
916         uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
917         const Movement& nextOldestMovement = mMovements[nextOldestIndex];
918         if (!nextOldestMovement.idBits.hasBit(id)
919                 || nextOldestMovement.eventTime < minTime) {
920             break;
921         }
922         oldestIndex = nextOldestIndex;
923     } while (++numTouches < HISTORY_SIZE);
924 
925     // Calculate an exponentially weighted moving average of the velocity estimate
926     // at different points in time measured relative to the oldest sample.
927     // This is essentially an IIR filter.  Newer samples are weighted more heavily
928     // than older samples.  Samples at equal time points are weighted more or less
929     // equally.
930     //
931     // One tricky problem is that the sample data may be poorly conditioned.
932     // Sometimes samples arrive very close together in time which can cause us to
933     // overestimate the velocity at that time point.  Most samples might be measured
934     // 16ms apart but some consecutive samples could be only 0.5sm apart because
935     // the hardware or driver reports them irregularly or in bursts.
936     float accumVx = 0;
937     float accumVy = 0;
938     uint32_t index = oldestIndex;
939     uint32_t samplesUsed = 0;
940     const Movement& oldestMovement = mMovements[oldestIndex];
941     const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
942     nsecs_t lastDuration = 0;
943 
944     while (numTouches-- > 1) {
945         if (++index == HISTORY_SIZE) {
946             index = 0;
947         }
948         const Movement& movement = mMovements[index];
949         nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
950 
951         // If the duration between samples is small, we may significantly overestimate
952         // the velocity.  Consequently, we impose a minimum duration constraint on the
953         // samples that we include in the calculation.
954         if (duration >= MIN_DURATION) {
955             const VelocityTracker::Position& position = movement.getPosition(id);
956             float scale = 1000000000.0f / duration; // one over time delta in seconds
957             float vx = (position.x - oldestPosition.x) * scale;
958             float vy = (position.y - oldestPosition.y) * scale;
959             accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
960             accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
961             lastDuration = duration;
962             samplesUsed += 1;
963         }
964     }
965 
966     // Report velocity.
967     const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
968     outEstimator->time = newestMovement.eventTime;
969     outEstimator->confidence = 1;
970     outEstimator->xCoeff[0] = newestPosition.x;
971     outEstimator->yCoeff[0] = newestPosition.y;
972     if (samplesUsed) {
973         outEstimator->xCoeff[1] = accumVx;
974         outEstimator->yCoeff[1] = accumVy;
975         outEstimator->degree = 1;
976     } else {
977         outEstimator->degree = 0;
978     }
979     return true;
980 }
981 
982 // --- ImpulseVelocityTrackerStrategy ---
983 
ImpulseVelocityTrackerStrategy()984 ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy() {
985     clear();
986 }
987 
~ImpulseVelocityTrackerStrategy()988 ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
989 }
990 
clear()991 void ImpulseVelocityTrackerStrategy::clear() {
992     mIndex = 0;
993     mMovements[0].idBits.clear();
994 }
995 
clearPointers(BitSet32 idBits)996 void ImpulseVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
997     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
998     mMovements[mIndex].idBits = remainingIdBits;
999 }
1000 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)1001 void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
1002         const VelocityTracker::Position* positions) {
1003     if (++mIndex == HISTORY_SIZE) {
1004         mIndex = 0;
1005     }
1006 
1007     Movement& movement = mMovements[mIndex];
1008     movement.eventTime = eventTime;
1009     movement.idBits = idBits;
1010     uint32_t count = idBits.count();
1011     for (uint32_t i = 0; i < count; i++) {
1012         movement.positions[i] = positions[i];
1013     }
1014 }
1015 
1016 /**
1017  * Calculate the total impulse provided to the screen and the resulting velocity.
1018  *
1019  * The touchscreen is modeled as a physical object.
1020  * Initial condition is discussed below, but for now suppose that v(t=0) = 0
1021  *
1022  * The kinetic energy of the object at the release is E=0.5*m*v^2
1023  * Then vfinal = sqrt(2E/m). The goal is to calculate E.
1024  *
1025  * The kinetic energy at the release is equal to the total work done on the object by the finger.
1026  * The total work W is the sum of all dW along the path.
1027  *
1028  * dW = F*dx, where dx is the piece of path traveled.
1029  * Force is change of momentum over time, F = dp/dt = m dv/dt.
1030  * Then substituting:
1031  * dW = m (dv/dt) * dx = m * v * dv
1032  *
1033  * Summing along the path, we get:
1034  * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv)
1035  * Since the mass stays constant, the equation for final velocity is:
1036  * vfinal = sqrt(2*sum(v * dv))
1037  *
1038  * Here,
1039  * dv : change of velocity = (v[i+1]-v[i])
1040  * dx : change of distance = (x[i+1]-x[i])
1041  * dt : change of time = (t[i+1]-t[i])
1042  * v : instantaneous velocity = dx/dt
1043  *
1044  * The final formula is:
1045  * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i
1046  * The absolute value is needed to properly account for the sign. If the velocity over a
1047  * particular segment descreases, then this indicates braking, which means that negative
1048  * work was done. So for two positive, but decreasing, velocities, this contribution would be
1049  * negative and will cause a smaller final velocity.
1050  *
1051  * Initial condition
1052  * There are two ways to deal with initial condition:
1053  * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest.
1054  * This is not entirely accurate. We are only taking the past X ms of touch data, where X is
1055  * currently equal to 100. However, a touch event that created a fling probably lasted for longer
1056  * than that, which would mean that the user has already been interacting with the touchscreen
1057  * and it has probably already been moving.
1058  * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this
1059  * initial velocity and the equivalent energy, and start with this initial energy.
1060  * Consider an example where we have the following data, consisting of 3 points:
1061  *                 time: t0, t1, t2
1062  *                 x   : x0, x1, x2
1063  *                 v   : 0 , v1, v2
1064  * Here is what will happen in each of these scenarios:
1065  * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get
1066  * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0
1067  * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1)))
1068  * since velocity is a real number
1069  * 2) If we treat the screen as already moving, then it must already have an energy (per mass)
1070  * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment
1071  * will contribute to the total kinetic energy (since we can effectively consider that v0=v1).
1072  * This will give the following expression for the final velocity:
1073  * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1)))
1074  * This analysis can be generalized to an arbitrary number of samples.
1075  *
1076  *
1077  * Comparing the two equations above, we see that the only mathematical difference
1078  * is the factor of 1/2 in front of the first velocity term.
1079  * This boundary condition would allow for the "proper" calculation of the case when all of the
1080  * samples are equally spaced in time and distance, which should suggest a constant velocity.
1081  *
1082  * Note that approach 2) is sensitive to the proper ordering of the data in time, since
1083  * the boundary condition must be applied to the oldest sample to be accurate.
1084  */
kineticEnergyToVelocity(float work)1085 static float kineticEnergyToVelocity(float work) {
1086     static constexpr float sqrt2 = 1.41421356237;
1087     return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
1088 }
1089 
calculateImpulseVelocity(const nsecs_t * t,const float * x,size_t count)1090 static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count) {
1091     // The input should be in reversed time order (most recent sample at index i=0)
1092     // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
1093     static constexpr float SECONDS_PER_NANO = 1E-9;
1094 
1095     if (count < 2) {
1096         return 0; // if 0 or 1 points, velocity is zero
1097     }
1098     if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
1099         ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
1100     }
1101     if (count == 2) { // if 2 points, basic linear calculation
1102         if (t[1] == t[0]) {
1103             ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
1104             return 0;
1105         }
1106         return (x[1] - x[0]) / (SECONDS_PER_NANO * (t[1] - t[0]));
1107     }
1108     // Guaranteed to have at least 3 points here
1109     float work = 0;
1110     for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
1111         if (t[i] == t[i-1]) {
1112             ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
1113             continue;
1114         }
1115         float vprev = kineticEnergyToVelocity(work); // v[i-1]
1116         float vcurr = (x[i] - x[i-1]) / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i]
1117         work += (vcurr - vprev) * fabsf(vcurr);
1118         if (i == count - 1) {
1119             work *= 0.5; // initial condition, case 2) above
1120         }
1121     }
1122     return kineticEnergyToVelocity(work);
1123 }
1124 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const1125 bool ImpulseVelocityTrackerStrategy::getEstimator(uint32_t id,
1126         VelocityTracker::Estimator* outEstimator) const {
1127     outEstimator->clear();
1128 
1129     // Iterate over movement samples in reverse time order and collect samples.
1130     float x[HISTORY_SIZE];
1131     float y[HISTORY_SIZE];
1132     nsecs_t time[HISTORY_SIZE];
1133     size_t m = 0; // number of points that will be used for fitting
1134     size_t index = mIndex;
1135     const Movement& newestMovement = mMovements[mIndex];
1136     do {
1137         const Movement& movement = mMovements[index];
1138         if (!movement.idBits.hasBit(id)) {
1139             break;
1140         }
1141 
1142         nsecs_t age = newestMovement.eventTime - movement.eventTime;
1143         if (age > HORIZON) {
1144             break;
1145         }
1146 
1147         const VelocityTracker::Position& position = movement.getPosition(id);
1148         x[m] = position.x;
1149         y[m] = position.y;
1150         time[m] = movement.eventTime;
1151         index = (index == 0 ? HISTORY_SIZE : index) - 1;
1152     } while (++m < HISTORY_SIZE);
1153 
1154     if (m == 0) {
1155         return false; // no data
1156     }
1157     outEstimator->xCoeff[0] = 0;
1158     outEstimator->yCoeff[0] = 0;
1159     outEstimator->xCoeff[1] = calculateImpulseVelocity(time, x, m);
1160     outEstimator->yCoeff[1] = calculateImpulseVelocity(time, y, m);
1161     outEstimator->xCoeff[2] = 0;
1162     outEstimator->yCoeff[2] = 0;
1163     outEstimator->time = newestMovement.eventTime;
1164     outEstimator->degree = 2; // similar results to 2nd degree fit
1165     outEstimator->confidence = 1;
1166 #if DEBUG_STRATEGY
1167     ALOGD("velocity: (%f, %f)", outEstimator->xCoeff[1], outEstimator->yCoeff[1]);
1168 #endif
1169     return true;
1170 }
1171 
1172 } // namespace android
1173