1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "VelocityTracker"
18 //#define LOG_NDEBUG 0
19
20 // Log debug messages about velocity tracking.
21 #define DEBUG_VELOCITY 0
22
23 // Log debug messages about the progress of the algorithm itself.
24 #define DEBUG_STRATEGY 0
25
26 #include <inttypes.h>
27 #include <limits.h>
28 #include <math.h>
29
30 #include <android-base/stringprintf.h>
31 #include <cutils/properties.h>
32 #include <input/VelocityTracker.h>
33 #include <utils/BitSet.h>
34 #include <utils/Timers.h>
35
36 namespace android {
37
38 // Nanoseconds per milliseconds.
39 static const nsecs_t NANOS_PER_MS = 1000000;
40
41 // Threshold for determining that a pointer has stopped moving.
42 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
43 // stopped. We need to detect this case so that we can accurately predict the
44 // velocity after the pointer starts moving again.
45 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
46
47
vectorDot(const float * a,const float * b,uint32_t m)48 static float vectorDot(const float* a, const float* b, uint32_t m) {
49 float r = 0;
50 for (size_t i = 0; i < m; i++) {
51 r += *(a++) * *(b++);
52 }
53 return r;
54 }
55
vectorNorm(const float * a,uint32_t m)56 static float vectorNorm(const float* a, uint32_t m) {
57 float r = 0;
58 for (size_t i = 0; i < m; i++) {
59 float t = *(a++);
60 r += t * t;
61 }
62 return sqrtf(r);
63 }
64
65 #if DEBUG_STRATEGY || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)66 static std::string vectorToString(const float* a, uint32_t m) {
67 std::string str;
68 str += "[";
69 for (size_t i = 0; i < m; i++) {
70 if (i) {
71 str += ",";
72 }
73 str += android::base::StringPrintf(" %f", *(a++));
74 }
75 str += " ]";
76 return str;
77 }
78 #endif
79
80 #if DEBUG_STRATEGY
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)81 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
82 std::string str;
83 str = "[";
84 for (size_t i = 0; i < m; i++) {
85 if (i) {
86 str += ",";
87 }
88 str += " [";
89 for (size_t j = 0; j < n; j++) {
90 if (j) {
91 str += ",";
92 }
93 str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
94 }
95 str += " ]";
96 }
97 str += " ]";
98 return str;
99 }
100 #endif
101
102
103 // --- VelocityTracker ---
104
105 // The default velocity tracker strategy.
106 // Although other strategies are available for testing and comparison purposes,
107 // this is the strategy that applications will actually use. Be very careful
108 // when adjusting the default strategy because it can dramatically affect
109 // (often in a bad way) the user experience.
110 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
111
VelocityTracker(const char * strategy)112 VelocityTracker::VelocityTracker(const char* strategy) :
113 mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
114 char value[PROPERTY_VALUE_MAX];
115
116 // Allow the default strategy to be overridden using a system property for debugging.
117 if (!strategy) {
118 int length = property_get("debug.velocitytracker.strategy", value, NULL);
119 if (length > 0) {
120 strategy = value;
121 } else {
122 strategy = DEFAULT_STRATEGY;
123 }
124 }
125
126 // Configure the strategy.
127 if (!configureStrategy(strategy)) {
128 ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
129 if (!configureStrategy(DEFAULT_STRATEGY)) {
130 LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
131 strategy);
132 }
133 }
134 }
135
~VelocityTracker()136 VelocityTracker::~VelocityTracker() {
137 delete mStrategy;
138 }
139
configureStrategy(const char * strategy)140 bool VelocityTracker::configureStrategy(const char* strategy) {
141 mStrategy = createStrategy(strategy);
142 return mStrategy != NULL;
143 }
144
createStrategy(const char * strategy)145 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
146 if (!strcmp("impulse", strategy)) {
147 // Physical model of pushing an object. Quality: VERY GOOD.
148 // Works with duplicate coordinates, unclean finger liftoff.
149 return new ImpulseVelocityTrackerStrategy();
150 }
151 if (!strcmp("lsq1", strategy)) {
152 // 1st order least squares. Quality: POOR.
153 // Frequently underfits the touch data especially when the finger accelerates
154 // or changes direction. Often underestimates velocity. The direction
155 // is overly influenced by historical touch points.
156 return new LeastSquaresVelocityTrackerStrategy(1);
157 }
158 if (!strcmp("lsq2", strategy)) {
159 // 2nd order least squares. Quality: VERY GOOD.
160 // Pretty much ideal, but can be confused by certain kinds of touch data,
161 // particularly if the panel has a tendency to generate delayed,
162 // duplicate or jittery touch coordinates when the finger is released.
163 return new LeastSquaresVelocityTrackerStrategy(2);
164 }
165 if (!strcmp("lsq3", strategy)) {
166 // 3rd order least squares. Quality: UNUSABLE.
167 // Frequently overfits the touch data yielding wildly divergent estimates
168 // of the velocity when the finger is released.
169 return new LeastSquaresVelocityTrackerStrategy(3);
170 }
171 if (!strcmp("wlsq2-delta", strategy)) {
172 // 2nd order weighted least squares, delta weighting. Quality: EXPERIMENTAL
173 return new LeastSquaresVelocityTrackerStrategy(2,
174 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
175 }
176 if (!strcmp("wlsq2-central", strategy)) {
177 // 2nd order weighted least squares, central weighting. Quality: EXPERIMENTAL
178 return new LeastSquaresVelocityTrackerStrategy(2,
179 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
180 }
181 if (!strcmp("wlsq2-recent", strategy)) {
182 // 2nd order weighted least squares, recent weighting. Quality: EXPERIMENTAL
183 return new LeastSquaresVelocityTrackerStrategy(2,
184 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
185 }
186 if (!strcmp("int1", strategy)) {
187 // 1st order integrating filter. Quality: GOOD.
188 // Not as good as 'lsq2' because it cannot estimate acceleration but it is
189 // more tolerant of errors. Like 'lsq1', this strategy tends to underestimate
190 // the velocity of a fling but this strategy tends to respond to changes in
191 // direction more quickly and accurately.
192 return new IntegratingVelocityTrackerStrategy(1);
193 }
194 if (!strcmp("int2", strategy)) {
195 // 2nd order integrating filter. Quality: EXPERIMENTAL.
196 // For comparison purposes only. Unlike 'int1' this strategy can compensate
197 // for acceleration but it typically overestimates the effect.
198 return new IntegratingVelocityTrackerStrategy(2);
199 }
200 if (!strcmp("legacy", strategy)) {
201 // Legacy velocity tracker algorithm. Quality: POOR.
202 // For comparison purposes only. This algorithm is strongly influenced by
203 // old data points, consistently underestimates velocity and takes a very long
204 // time to adjust to changes in direction.
205 return new LegacyVelocityTrackerStrategy();
206 }
207 return NULL;
208 }
209
clear()210 void VelocityTracker::clear() {
211 mCurrentPointerIdBits.clear();
212 mActivePointerId = -1;
213
214 mStrategy->clear();
215 }
216
clearPointers(BitSet32 idBits)217 void VelocityTracker::clearPointers(BitSet32 idBits) {
218 BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
219 mCurrentPointerIdBits = remainingIdBits;
220
221 if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
222 mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
223 }
224
225 mStrategy->clearPointers(idBits);
226 }
227
addMovement(nsecs_t eventTime,BitSet32 idBits,const Position * positions)228 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
229 while (idBits.count() > MAX_POINTERS) {
230 idBits.clearLastMarkedBit();
231 }
232
233 if ((mCurrentPointerIdBits.value & idBits.value)
234 && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
235 #if DEBUG_VELOCITY
236 ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
237 (eventTime - mLastEventTime) * 0.000001f);
238 #endif
239 // We have not received any movements for too long. Assume that all pointers
240 // have stopped.
241 mStrategy->clear();
242 }
243 mLastEventTime = eventTime;
244
245 mCurrentPointerIdBits = idBits;
246 if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
247 mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
248 }
249
250 mStrategy->addMovement(eventTime, idBits, positions);
251
252 #if DEBUG_VELOCITY
253 ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
254 eventTime, idBits.value, mActivePointerId);
255 for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
256 uint32_t id = iterBits.firstMarkedBit();
257 uint32_t index = idBits.getIndexOfBit(id);
258 iterBits.clearBit(id);
259 Estimator estimator;
260 getEstimator(id, &estimator);
261 ALOGD(" %d: position (%0.3f, %0.3f), "
262 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
263 id, positions[index].x, positions[index].y,
264 int(estimator.degree),
265 vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
266 vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
267 estimator.confidence);
268 }
269 #endif
270 }
271
addMovement(const MotionEvent * event)272 void VelocityTracker::addMovement(const MotionEvent* event) {
273 int32_t actionMasked = event->getActionMasked();
274
275 switch (actionMasked) {
276 case AMOTION_EVENT_ACTION_DOWN:
277 case AMOTION_EVENT_ACTION_HOVER_ENTER:
278 // Clear all pointers on down before adding the new movement.
279 clear();
280 break;
281 case AMOTION_EVENT_ACTION_POINTER_DOWN: {
282 // Start a new movement trace for a pointer that just went down.
283 // We do this on down instead of on up because the client may want to query the
284 // final velocity for a pointer that just went up.
285 BitSet32 downIdBits;
286 downIdBits.markBit(event->getPointerId(event->getActionIndex()));
287 clearPointers(downIdBits);
288 break;
289 }
290 case AMOTION_EVENT_ACTION_MOVE:
291 case AMOTION_EVENT_ACTION_HOVER_MOVE:
292 break;
293 default:
294 // Ignore all other actions because they do not convey any new information about
295 // pointer movement. We also want to preserve the last known velocity of the pointers.
296 // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
297 // of the pointers that went up. ACTION_POINTER_UP does include the new position of
298 // pointers that remained down but we will also receive an ACTION_MOVE with this
299 // information if any of them actually moved. Since we don't know how many pointers
300 // will be going up at once it makes sense to just wait for the following ACTION_MOVE
301 // before adding the movement.
302 return;
303 }
304
305 size_t pointerCount = event->getPointerCount();
306 if (pointerCount > MAX_POINTERS) {
307 pointerCount = MAX_POINTERS;
308 }
309
310 BitSet32 idBits;
311 for (size_t i = 0; i < pointerCount; i++) {
312 idBits.markBit(event->getPointerId(i));
313 }
314
315 uint32_t pointerIndex[MAX_POINTERS];
316 for (size_t i = 0; i < pointerCount; i++) {
317 pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
318 }
319
320 nsecs_t eventTime;
321 Position positions[pointerCount];
322
323 size_t historySize = event->getHistorySize();
324 for (size_t h = 0; h < historySize; h++) {
325 eventTime = event->getHistoricalEventTime(h);
326 for (size_t i = 0; i < pointerCount; i++) {
327 uint32_t index = pointerIndex[i];
328 positions[index].x = event->getHistoricalRawX(i, h);
329 positions[index].y = event->getHistoricalRawY(i, h);
330 }
331 addMovement(eventTime, idBits, positions);
332 }
333
334 eventTime = event->getEventTime();
335 for (size_t i = 0; i < pointerCount; i++) {
336 uint32_t index = pointerIndex[i];
337 positions[index].x = event->getRawX(i);
338 positions[index].y = event->getRawY(i);
339 }
340 addMovement(eventTime, idBits, positions);
341 }
342
getVelocity(uint32_t id,float * outVx,float * outVy) const343 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
344 Estimator estimator;
345 if (getEstimator(id, &estimator) && estimator.degree >= 1) {
346 *outVx = estimator.xCoeff[1];
347 *outVy = estimator.yCoeff[1];
348 return true;
349 }
350 *outVx = 0;
351 *outVy = 0;
352 return false;
353 }
354
getEstimator(uint32_t id,Estimator * outEstimator) const355 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
356 return mStrategy->getEstimator(id, outEstimator);
357 }
358
359
360 // --- LeastSquaresVelocityTrackerStrategy ---
361
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)362 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
363 uint32_t degree, Weighting weighting) :
364 mDegree(degree), mWeighting(weighting) {
365 clear();
366 }
367
~LeastSquaresVelocityTrackerStrategy()368 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
369 }
370
clear()371 void LeastSquaresVelocityTrackerStrategy::clear() {
372 mIndex = 0;
373 mMovements[0].idBits.clear();
374 }
375
clearPointers(BitSet32 idBits)376 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
377 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
378 mMovements[mIndex].idBits = remainingIdBits;
379 }
380
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)381 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
382 const VelocityTracker::Position* positions) {
383 if (++mIndex == HISTORY_SIZE) {
384 mIndex = 0;
385 }
386
387 Movement& movement = mMovements[mIndex];
388 movement.eventTime = eventTime;
389 movement.idBits = idBits;
390 uint32_t count = idBits.count();
391 for (uint32_t i = 0; i < count; i++) {
392 movement.positions[i] = positions[i];
393 }
394 }
395
396 /**
397 * Solves a linear least squares problem to obtain a N degree polynomial that fits
398 * the specified input data as nearly as possible.
399 *
400 * Returns true if a solution is found, false otherwise.
401 *
402 * The input consists of two vectors of data points X and Y with indices 0..m-1
403 * along with a weight vector W of the same size.
404 *
405 * The output is a vector B with indices 0..n that describes a polynomial
406 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
407 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
408 *
409 * Accordingly, the weight vector W should be initialized by the caller with the
410 * reciprocal square root of the variance of the error in each input data point.
411 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
412 * The weights express the relative importance of each data point. If the weights are
413 * all 1, then the data points are considered to be of equal importance when fitting
414 * the polynomial. It is a good idea to choose weights that diminish the importance
415 * of data points that may have higher than usual error margins.
416 *
417 * Errors among data points are assumed to be independent. W is represented here
418 * as a vector although in the literature it is typically taken to be a diagonal matrix.
419 *
420 * That is to say, the function that generated the input data can be approximated
421 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
422 *
423 * The coefficient of determination (R^2) is also returned to describe the goodness
424 * of fit of the model for the given data. It is a value between 0 and 1, where 1
425 * indicates perfect correspondence.
426 *
427 * This function first expands the X vector to a m by n matrix A such that
428 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
429 * multiplies it by w[i]./
430 *
431 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
432 * and an m by n upper triangular matrix R. Because R is upper triangular (lower
433 * part is all zeroes), we can simplify the decomposition into an m by n matrix
434 * Q1 and a n by n matrix R1 such that A = Q1 R1.
435 *
436 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
437 * to find B.
438 *
439 * For efficiency, we lay out A and Q column-wise in memory because we frequently
440 * operate on the column vectors. Conversely, we lay out R row-wise.
441 *
442 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
443 * http://en.wikipedia.org/wiki/Gram-Schmidt
444 */
solveLeastSquares(const float * x,const float * y,const float * w,uint32_t m,uint32_t n,float * outB,float * outDet)445 static bool solveLeastSquares(const float* x, const float* y,
446 const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
447 #if DEBUG_STRATEGY
448 ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
449 vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
450 vectorToString(w, m).c_str());
451 #endif
452
453 // Expand the X vector to a matrix A, pre-multiplied by the weights.
454 float a[n][m]; // column-major order
455 for (uint32_t h = 0; h < m; h++) {
456 a[0][h] = w[h];
457 for (uint32_t i = 1; i < n; i++) {
458 a[i][h] = a[i - 1][h] * x[h];
459 }
460 }
461 #if DEBUG_STRATEGY
462 ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
463 #endif
464
465 // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
466 float q[n][m]; // orthonormal basis, column-major order
467 float r[n][n]; // upper triangular matrix, row-major order
468 for (uint32_t j = 0; j < n; j++) {
469 for (uint32_t h = 0; h < m; h++) {
470 q[j][h] = a[j][h];
471 }
472 for (uint32_t i = 0; i < j; i++) {
473 float dot = vectorDot(&q[j][0], &q[i][0], m);
474 for (uint32_t h = 0; h < m; h++) {
475 q[j][h] -= dot * q[i][h];
476 }
477 }
478
479 float norm = vectorNorm(&q[j][0], m);
480 if (norm < 0.000001f) {
481 // vectors are linearly dependent or zero so no solution
482 #if DEBUG_STRATEGY
483 ALOGD(" - no solution, norm=%f", norm);
484 #endif
485 return false;
486 }
487
488 float invNorm = 1.0f / norm;
489 for (uint32_t h = 0; h < m; h++) {
490 q[j][h] *= invNorm;
491 }
492 for (uint32_t i = 0; i < n; i++) {
493 r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
494 }
495 }
496 #if DEBUG_STRATEGY
497 ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
498 ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
499
500 // calculate QR, if we factored A correctly then QR should equal A
501 float qr[n][m];
502 for (uint32_t h = 0; h < m; h++) {
503 for (uint32_t i = 0; i < n; i++) {
504 qr[i][h] = 0;
505 for (uint32_t j = 0; j < n; j++) {
506 qr[i][h] += q[j][h] * r[j][i];
507 }
508 }
509 }
510 ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
511 #endif
512
513 // Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
514 // We just work from bottom-right to top-left calculating B's coefficients.
515 float wy[m];
516 for (uint32_t h = 0; h < m; h++) {
517 wy[h] = y[h] * w[h];
518 }
519 for (uint32_t i = n; i != 0; ) {
520 i--;
521 outB[i] = vectorDot(&q[i][0], wy, m);
522 for (uint32_t j = n - 1; j > i; j--) {
523 outB[i] -= r[i][j] * outB[j];
524 }
525 outB[i] /= r[i][i];
526 }
527 #if DEBUG_STRATEGY
528 ALOGD(" - b=%s", vectorToString(outB, n).c_str());
529 #endif
530
531 // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
532 // SSerr is the residual sum of squares (variance of the error),
533 // and SStot is the total sum of squares (variance of the data) where each
534 // has been weighted.
535 float ymean = 0;
536 for (uint32_t h = 0; h < m; h++) {
537 ymean += y[h];
538 }
539 ymean /= m;
540
541 float sserr = 0;
542 float sstot = 0;
543 for (uint32_t h = 0; h < m; h++) {
544 float err = y[h] - outB[0];
545 float term = 1;
546 for (uint32_t i = 1; i < n; i++) {
547 term *= x[h];
548 err -= term * outB[i];
549 }
550 sserr += w[h] * w[h] * err * err;
551 float var = y[h] - ymean;
552 sstot += w[h] * w[h] * var * var;
553 }
554 *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
555 #if DEBUG_STRATEGY
556 ALOGD(" - sserr=%f", sserr);
557 ALOGD(" - sstot=%f", sstot);
558 ALOGD(" - det=%f", *outDet);
559 #endif
560 return true;
561 }
562
563 /*
564 * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
565 * the default implementation
566 */
solveUnweightedLeastSquaresDeg2(const float * x,const float * y,size_t count)567 static float solveUnweightedLeastSquaresDeg2(const float* x, const float* y, size_t count) {
568 float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
569
570 for (size_t i = 0; i < count; i++) {
571 float xi = x[i];
572 float yi = y[i];
573 float xi2 = xi*xi;
574 float xi3 = xi2*xi;
575 float xi4 = xi3*xi;
576 float xi2yi = xi2*yi;
577 float xiyi = xi*yi;
578
579 sxi += xi;
580 sxi2 += xi2;
581 sxiyi += xiyi;
582 sxi2yi += xi2yi;
583 syi += yi;
584 sxi3 += xi3;
585 sxi4 += xi4;
586 }
587
588 float Sxx = sxi2 - sxi*sxi / count;
589 float Sxy = sxiyi - sxi*syi / count;
590 float Sxx2 = sxi3 - sxi*sxi2 / count;
591 float Sx2y = sxi2yi - sxi2*syi / count;
592 float Sx2x2 = sxi4 - sxi2*sxi2 / count;
593
594 float numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
595 float denominator = Sxx*Sx2x2 - Sxx2*Sxx2;
596 if (denominator == 0) {
597 ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
598 return 0;
599 }
600 return numerator/denominator;
601 }
602
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const603 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
604 VelocityTracker::Estimator* outEstimator) const {
605 outEstimator->clear();
606
607 // Iterate over movement samples in reverse time order and collect samples.
608 float x[HISTORY_SIZE];
609 float y[HISTORY_SIZE];
610 float w[HISTORY_SIZE];
611 float time[HISTORY_SIZE];
612 uint32_t m = 0;
613 uint32_t index = mIndex;
614 const Movement& newestMovement = mMovements[mIndex];
615 do {
616 const Movement& movement = mMovements[index];
617 if (!movement.idBits.hasBit(id)) {
618 break;
619 }
620
621 nsecs_t age = newestMovement.eventTime - movement.eventTime;
622 if (age > HORIZON) {
623 break;
624 }
625
626 const VelocityTracker::Position& position = movement.getPosition(id);
627 x[m] = position.x;
628 y[m] = position.y;
629 w[m] = chooseWeight(index);
630 time[m] = -age * 0.000000001f;
631 index = (index == 0 ? HISTORY_SIZE : index) - 1;
632 } while (++m < HISTORY_SIZE);
633
634 if (m == 0) {
635 return false; // no data
636 }
637
638 // Calculate a least squares polynomial fit.
639 uint32_t degree = mDegree;
640 if (degree > m - 1) {
641 degree = m - 1;
642 }
643 if (degree >= 1) {
644 if (degree == 2 && mWeighting == WEIGHTING_NONE) { // optimize unweighted, degree=2 fit
645 outEstimator->time = newestMovement.eventTime;
646 outEstimator->degree = 2;
647 outEstimator->confidence = 1;
648 outEstimator->xCoeff[0] = 0; // only slope is calculated, set rest of coefficients = 0
649 outEstimator->yCoeff[0] = 0;
650 outEstimator->xCoeff[1] = solveUnweightedLeastSquaresDeg2(time, x, m);
651 outEstimator->yCoeff[1] = solveUnweightedLeastSquaresDeg2(time, y, m);
652 outEstimator->xCoeff[2] = 0;
653 outEstimator->yCoeff[2] = 0;
654 return true;
655 }
656
657 float xdet, ydet;
658 uint32_t n = degree + 1;
659 if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
660 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
661 outEstimator->time = newestMovement.eventTime;
662 outEstimator->degree = degree;
663 outEstimator->confidence = xdet * ydet;
664 #if DEBUG_STRATEGY
665 ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
666 int(outEstimator->degree),
667 vectorToString(outEstimator->xCoeff, n).c_str(),
668 vectorToString(outEstimator->yCoeff, n).c_str(),
669 outEstimator->confidence);
670 #endif
671 return true;
672 }
673 }
674
675 // No velocity data available for this pointer, but we do have its current position.
676 outEstimator->xCoeff[0] = x[0];
677 outEstimator->yCoeff[0] = y[0];
678 outEstimator->time = newestMovement.eventTime;
679 outEstimator->degree = 0;
680 outEstimator->confidence = 1;
681 return true;
682 }
683
chooseWeight(uint32_t index) const684 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
685 switch (mWeighting) {
686 case WEIGHTING_DELTA: {
687 // Weight points based on how much time elapsed between them and the next
688 // point so that points that "cover" a shorter time span are weighed less.
689 // delta 0ms: 0.5
690 // delta 10ms: 1.0
691 if (index == mIndex) {
692 return 1.0f;
693 }
694 uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
695 float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
696 * 0.000001f;
697 if (deltaMillis < 0) {
698 return 0.5f;
699 }
700 if (deltaMillis < 10) {
701 return 0.5f + deltaMillis * 0.05;
702 }
703 return 1.0f;
704 }
705
706 case WEIGHTING_CENTRAL: {
707 // Weight points based on their age, weighing very recent and very old points less.
708 // age 0ms: 0.5
709 // age 10ms: 1.0
710 // age 50ms: 1.0
711 // age 60ms: 0.5
712 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
713 * 0.000001f;
714 if (ageMillis < 0) {
715 return 0.5f;
716 }
717 if (ageMillis < 10) {
718 return 0.5f + ageMillis * 0.05;
719 }
720 if (ageMillis < 50) {
721 return 1.0f;
722 }
723 if (ageMillis < 60) {
724 return 0.5f + (60 - ageMillis) * 0.05;
725 }
726 return 0.5f;
727 }
728
729 case WEIGHTING_RECENT: {
730 // Weight points based on their age, weighing older points less.
731 // age 0ms: 1.0
732 // age 50ms: 1.0
733 // age 100ms: 0.5
734 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
735 * 0.000001f;
736 if (ageMillis < 50) {
737 return 1.0f;
738 }
739 if (ageMillis < 100) {
740 return 0.5f + (100 - ageMillis) * 0.01f;
741 }
742 return 0.5f;
743 }
744
745 case WEIGHTING_NONE:
746 default:
747 return 1.0f;
748 }
749 }
750
751
752 // --- IntegratingVelocityTrackerStrategy ---
753
IntegratingVelocityTrackerStrategy(uint32_t degree)754 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
755 mDegree(degree) {
756 }
757
~IntegratingVelocityTrackerStrategy()758 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
759 }
760
clear()761 void IntegratingVelocityTrackerStrategy::clear() {
762 mPointerIdBits.clear();
763 }
764
clearPointers(BitSet32 idBits)765 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
766 mPointerIdBits.value &= ~idBits.value;
767 }
768
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)769 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
770 const VelocityTracker::Position* positions) {
771 uint32_t index = 0;
772 for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
773 uint32_t id = iterIdBits.clearFirstMarkedBit();
774 State& state = mPointerState[id];
775 const VelocityTracker::Position& position = positions[index++];
776 if (mPointerIdBits.hasBit(id)) {
777 updateState(state, eventTime, position.x, position.y);
778 } else {
779 initState(state, eventTime, position.x, position.y);
780 }
781 }
782
783 mPointerIdBits = idBits;
784 }
785
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const786 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
787 VelocityTracker::Estimator* outEstimator) const {
788 outEstimator->clear();
789
790 if (mPointerIdBits.hasBit(id)) {
791 const State& state = mPointerState[id];
792 populateEstimator(state, outEstimator);
793 return true;
794 }
795
796 return false;
797 }
798
initState(State & state,nsecs_t eventTime,float xpos,float ypos) const799 void IntegratingVelocityTrackerStrategy::initState(State& state,
800 nsecs_t eventTime, float xpos, float ypos) const {
801 state.updateTime = eventTime;
802 state.degree = 0;
803
804 state.xpos = xpos;
805 state.xvel = 0;
806 state.xaccel = 0;
807 state.ypos = ypos;
808 state.yvel = 0;
809 state.yaccel = 0;
810 }
811
updateState(State & state,nsecs_t eventTime,float xpos,float ypos) const812 void IntegratingVelocityTrackerStrategy::updateState(State& state,
813 nsecs_t eventTime, float xpos, float ypos) const {
814 const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
815 const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
816
817 if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
818 return;
819 }
820
821 float dt = (eventTime - state.updateTime) * 0.000000001f;
822 state.updateTime = eventTime;
823
824 float xvel = (xpos - state.xpos) / dt;
825 float yvel = (ypos - state.ypos) / dt;
826 if (state.degree == 0) {
827 state.xvel = xvel;
828 state.yvel = yvel;
829 state.degree = 1;
830 } else {
831 float alpha = dt / (FILTER_TIME_CONSTANT + dt);
832 if (mDegree == 1) {
833 state.xvel += (xvel - state.xvel) * alpha;
834 state.yvel += (yvel - state.yvel) * alpha;
835 } else {
836 float xaccel = (xvel - state.xvel) / dt;
837 float yaccel = (yvel - state.yvel) / dt;
838 if (state.degree == 1) {
839 state.xaccel = xaccel;
840 state.yaccel = yaccel;
841 state.degree = 2;
842 } else {
843 state.xaccel += (xaccel - state.xaccel) * alpha;
844 state.yaccel += (yaccel - state.yaccel) * alpha;
845 }
846 state.xvel += (state.xaccel * dt) * alpha;
847 state.yvel += (state.yaccel * dt) * alpha;
848 }
849 }
850 state.xpos = xpos;
851 state.ypos = ypos;
852 }
853
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const854 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
855 VelocityTracker::Estimator* outEstimator) const {
856 outEstimator->time = state.updateTime;
857 outEstimator->confidence = 1.0f;
858 outEstimator->degree = state.degree;
859 outEstimator->xCoeff[0] = state.xpos;
860 outEstimator->xCoeff[1] = state.xvel;
861 outEstimator->xCoeff[2] = state.xaccel / 2;
862 outEstimator->yCoeff[0] = state.ypos;
863 outEstimator->yCoeff[1] = state.yvel;
864 outEstimator->yCoeff[2] = state.yaccel / 2;
865 }
866
867
868 // --- LegacyVelocityTrackerStrategy ---
869
LegacyVelocityTrackerStrategy()870 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
871 clear();
872 }
873
~LegacyVelocityTrackerStrategy()874 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
875 }
876
clear()877 void LegacyVelocityTrackerStrategy::clear() {
878 mIndex = 0;
879 mMovements[0].idBits.clear();
880 }
881
clearPointers(BitSet32 idBits)882 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
883 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
884 mMovements[mIndex].idBits = remainingIdBits;
885 }
886
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)887 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
888 const VelocityTracker::Position* positions) {
889 if (++mIndex == HISTORY_SIZE) {
890 mIndex = 0;
891 }
892
893 Movement& movement = mMovements[mIndex];
894 movement.eventTime = eventTime;
895 movement.idBits = idBits;
896 uint32_t count = idBits.count();
897 for (uint32_t i = 0; i < count; i++) {
898 movement.positions[i] = positions[i];
899 }
900 }
901
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const902 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
903 VelocityTracker::Estimator* outEstimator) const {
904 outEstimator->clear();
905
906 const Movement& newestMovement = mMovements[mIndex];
907 if (!newestMovement.idBits.hasBit(id)) {
908 return false; // no data
909 }
910
911 // Find the oldest sample that contains the pointer and that is not older than HORIZON.
912 nsecs_t minTime = newestMovement.eventTime - HORIZON;
913 uint32_t oldestIndex = mIndex;
914 uint32_t numTouches = 1;
915 do {
916 uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
917 const Movement& nextOldestMovement = mMovements[nextOldestIndex];
918 if (!nextOldestMovement.idBits.hasBit(id)
919 || nextOldestMovement.eventTime < minTime) {
920 break;
921 }
922 oldestIndex = nextOldestIndex;
923 } while (++numTouches < HISTORY_SIZE);
924
925 // Calculate an exponentially weighted moving average of the velocity estimate
926 // at different points in time measured relative to the oldest sample.
927 // This is essentially an IIR filter. Newer samples are weighted more heavily
928 // than older samples. Samples at equal time points are weighted more or less
929 // equally.
930 //
931 // One tricky problem is that the sample data may be poorly conditioned.
932 // Sometimes samples arrive very close together in time which can cause us to
933 // overestimate the velocity at that time point. Most samples might be measured
934 // 16ms apart but some consecutive samples could be only 0.5sm apart because
935 // the hardware or driver reports them irregularly or in bursts.
936 float accumVx = 0;
937 float accumVy = 0;
938 uint32_t index = oldestIndex;
939 uint32_t samplesUsed = 0;
940 const Movement& oldestMovement = mMovements[oldestIndex];
941 const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
942 nsecs_t lastDuration = 0;
943
944 while (numTouches-- > 1) {
945 if (++index == HISTORY_SIZE) {
946 index = 0;
947 }
948 const Movement& movement = mMovements[index];
949 nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
950
951 // If the duration between samples is small, we may significantly overestimate
952 // the velocity. Consequently, we impose a minimum duration constraint on the
953 // samples that we include in the calculation.
954 if (duration >= MIN_DURATION) {
955 const VelocityTracker::Position& position = movement.getPosition(id);
956 float scale = 1000000000.0f / duration; // one over time delta in seconds
957 float vx = (position.x - oldestPosition.x) * scale;
958 float vy = (position.y - oldestPosition.y) * scale;
959 accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
960 accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
961 lastDuration = duration;
962 samplesUsed += 1;
963 }
964 }
965
966 // Report velocity.
967 const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
968 outEstimator->time = newestMovement.eventTime;
969 outEstimator->confidence = 1;
970 outEstimator->xCoeff[0] = newestPosition.x;
971 outEstimator->yCoeff[0] = newestPosition.y;
972 if (samplesUsed) {
973 outEstimator->xCoeff[1] = accumVx;
974 outEstimator->yCoeff[1] = accumVy;
975 outEstimator->degree = 1;
976 } else {
977 outEstimator->degree = 0;
978 }
979 return true;
980 }
981
982 // --- ImpulseVelocityTrackerStrategy ---
983
ImpulseVelocityTrackerStrategy()984 ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy() {
985 clear();
986 }
987
~ImpulseVelocityTrackerStrategy()988 ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
989 }
990
clear()991 void ImpulseVelocityTrackerStrategy::clear() {
992 mIndex = 0;
993 mMovements[0].idBits.clear();
994 }
995
clearPointers(BitSet32 idBits)996 void ImpulseVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
997 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
998 mMovements[mIndex].idBits = remainingIdBits;
999 }
1000
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)1001 void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
1002 const VelocityTracker::Position* positions) {
1003 if (++mIndex == HISTORY_SIZE) {
1004 mIndex = 0;
1005 }
1006
1007 Movement& movement = mMovements[mIndex];
1008 movement.eventTime = eventTime;
1009 movement.idBits = idBits;
1010 uint32_t count = idBits.count();
1011 for (uint32_t i = 0; i < count; i++) {
1012 movement.positions[i] = positions[i];
1013 }
1014 }
1015
1016 /**
1017 * Calculate the total impulse provided to the screen and the resulting velocity.
1018 *
1019 * The touchscreen is modeled as a physical object.
1020 * Initial condition is discussed below, but for now suppose that v(t=0) = 0
1021 *
1022 * The kinetic energy of the object at the release is E=0.5*m*v^2
1023 * Then vfinal = sqrt(2E/m). The goal is to calculate E.
1024 *
1025 * The kinetic energy at the release is equal to the total work done on the object by the finger.
1026 * The total work W is the sum of all dW along the path.
1027 *
1028 * dW = F*dx, where dx is the piece of path traveled.
1029 * Force is change of momentum over time, F = dp/dt = m dv/dt.
1030 * Then substituting:
1031 * dW = m (dv/dt) * dx = m * v * dv
1032 *
1033 * Summing along the path, we get:
1034 * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv)
1035 * Since the mass stays constant, the equation for final velocity is:
1036 * vfinal = sqrt(2*sum(v * dv))
1037 *
1038 * Here,
1039 * dv : change of velocity = (v[i+1]-v[i])
1040 * dx : change of distance = (x[i+1]-x[i])
1041 * dt : change of time = (t[i+1]-t[i])
1042 * v : instantaneous velocity = dx/dt
1043 *
1044 * The final formula is:
1045 * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i
1046 * The absolute value is needed to properly account for the sign. If the velocity over a
1047 * particular segment descreases, then this indicates braking, which means that negative
1048 * work was done. So for two positive, but decreasing, velocities, this contribution would be
1049 * negative and will cause a smaller final velocity.
1050 *
1051 * Initial condition
1052 * There are two ways to deal with initial condition:
1053 * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest.
1054 * This is not entirely accurate. We are only taking the past X ms of touch data, where X is
1055 * currently equal to 100. However, a touch event that created a fling probably lasted for longer
1056 * than that, which would mean that the user has already been interacting with the touchscreen
1057 * and it has probably already been moving.
1058 * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this
1059 * initial velocity and the equivalent energy, and start with this initial energy.
1060 * Consider an example where we have the following data, consisting of 3 points:
1061 * time: t0, t1, t2
1062 * x : x0, x1, x2
1063 * v : 0 , v1, v2
1064 * Here is what will happen in each of these scenarios:
1065 * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get
1066 * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0
1067 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1)))
1068 * since velocity is a real number
1069 * 2) If we treat the screen as already moving, then it must already have an energy (per mass)
1070 * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment
1071 * will contribute to the total kinetic energy (since we can effectively consider that v0=v1).
1072 * This will give the following expression for the final velocity:
1073 * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1)))
1074 * This analysis can be generalized to an arbitrary number of samples.
1075 *
1076 *
1077 * Comparing the two equations above, we see that the only mathematical difference
1078 * is the factor of 1/2 in front of the first velocity term.
1079 * This boundary condition would allow for the "proper" calculation of the case when all of the
1080 * samples are equally spaced in time and distance, which should suggest a constant velocity.
1081 *
1082 * Note that approach 2) is sensitive to the proper ordering of the data in time, since
1083 * the boundary condition must be applied to the oldest sample to be accurate.
1084 */
kineticEnergyToVelocity(float work)1085 static float kineticEnergyToVelocity(float work) {
1086 static constexpr float sqrt2 = 1.41421356237;
1087 return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
1088 }
1089
calculateImpulseVelocity(const nsecs_t * t,const float * x,size_t count)1090 static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count) {
1091 // The input should be in reversed time order (most recent sample at index i=0)
1092 // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
1093 static constexpr float SECONDS_PER_NANO = 1E-9;
1094
1095 if (count < 2) {
1096 return 0; // if 0 or 1 points, velocity is zero
1097 }
1098 if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
1099 ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
1100 }
1101 if (count == 2) { // if 2 points, basic linear calculation
1102 if (t[1] == t[0]) {
1103 ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
1104 return 0;
1105 }
1106 return (x[1] - x[0]) / (SECONDS_PER_NANO * (t[1] - t[0]));
1107 }
1108 // Guaranteed to have at least 3 points here
1109 float work = 0;
1110 for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
1111 if (t[i] == t[i-1]) {
1112 ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
1113 continue;
1114 }
1115 float vprev = kineticEnergyToVelocity(work); // v[i-1]
1116 float vcurr = (x[i] - x[i-1]) / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i]
1117 work += (vcurr - vprev) * fabsf(vcurr);
1118 if (i == count - 1) {
1119 work *= 0.5; // initial condition, case 2) above
1120 }
1121 }
1122 return kineticEnergyToVelocity(work);
1123 }
1124
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const1125 bool ImpulseVelocityTrackerStrategy::getEstimator(uint32_t id,
1126 VelocityTracker::Estimator* outEstimator) const {
1127 outEstimator->clear();
1128
1129 // Iterate over movement samples in reverse time order and collect samples.
1130 float x[HISTORY_SIZE];
1131 float y[HISTORY_SIZE];
1132 nsecs_t time[HISTORY_SIZE];
1133 size_t m = 0; // number of points that will be used for fitting
1134 size_t index = mIndex;
1135 const Movement& newestMovement = mMovements[mIndex];
1136 do {
1137 const Movement& movement = mMovements[index];
1138 if (!movement.idBits.hasBit(id)) {
1139 break;
1140 }
1141
1142 nsecs_t age = newestMovement.eventTime - movement.eventTime;
1143 if (age > HORIZON) {
1144 break;
1145 }
1146
1147 const VelocityTracker::Position& position = movement.getPosition(id);
1148 x[m] = position.x;
1149 y[m] = position.y;
1150 time[m] = movement.eventTime;
1151 index = (index == 0 ? HISTORY_SIZE : index) - 1;
1152 } while (++m < HISTORY_SIZE);
1153
1154 if (m == 0) {
1155 return false; // no data
1156 }
1157 outEstimator->xCoeff[0] = 0;
1158 outEstimator->yCoeff[0] = 0;
1159 outEstimator->xCoeff[1] = calculateImpulseVelocity(time, x, m);
1160 outEstimator->yCoeff[1] = calculateImpulseVelocity(time, y, m);
1161 outEstimator->xCoeff[2] = 0;
1162 outEstimator->yCoeff[2] = 0;
1163 outEstimator->time = newestMovement.eventTime;
1164 outEstimator->degree = 2; // similar results to 2nd degree fit
1165 outEstimator->confidence = 1;
1166 #if DEBUG_STRATEGY
1167 ALOGD("velocity: (%f, %f)", outEstimator->xCoeff[1], outEstimator->yCoeff[1]);
1168 #endif
1169 return true;
1170 }
1171
1172 } // namespace android
1173