1 /* 2 * Signed 64-bit integer multiply. 3 * 4 * Consider WXxYZ (r1r0 x r3r2) with a long multiply: 5 * WX 6 * x YZ 7 * -------- 8 * ZW ZX 9 * YW YX 10 * 11 * The low word of the result holds ZX, the high word holds 12 * (ZW+YX) + (the high overflow from ZX). YW doesn't matter because 13 * it doesn't fit in the low 64 bits. 14 * 15 * Unlike most ARM math operations, multiply instructions have 16 * restrictions on using the same register more than once (Rd and Rm 17 * cannot be the same). 18 */ 19 /* mul-long vAA, vBB, vCC */ 20 FETCH r0, 1 @ r0<- CCBB 21 and r2, r0, #255 @ r2<- BB 22 mov r3, r0, lsr #8 @ r3<- CC 23 VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[BB] 24 VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[CC] 25 ldmia r2, {r0-r1} @ r0/r1<- vBB/vBB+1 26 ldmia r3, {r2-r3} @ r2/r3<- vCC/vCC+1 27 mul ip, r2, r1 @ ip<- ZxW 28 umull r1, lr, r2, r0 @ r1/lr <- ZxX 29 mla r2, r0, r3, ip @ r2<- YxX + (ZxW) 30 mov r0, rINST, lsr #8 @ r0<- AA 31 add r2, r2, lr @ r2<- lr + low(ZxW + (YxX)) 32 VREG_INDEX_TO_ADDR r0, r0 @ r0<- &fp[AA] 33 FETCH_ADVANCE_INST 2 @ advance rPC, load rINST 34 GET_INST_OPCODE ip @ extract opcode from rINST 35 stmia r0, {r1-r2 } @ vAA/vAA+1<- r1/r2 36 GOTO_OPCODE ip @ jump to next instruction 37