1# Copyright 2014 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import its.image 16import its.caps 17import its.device 18import its.objects 19import its.target 20import time 21from matplotlib import pylab 22import os.path 23import matplotlib 24import matplotlib.pyplot 25import numpy 26 27def main(): 28 """Test if the gyro has stable output when device is stationary. 29 """ 30 NAME = os.path.basename(__file__).split(".")[0] 31 32 # Number of samples averaged together, in the plot. 33 N = 20 34 35 # Pass/fail thresholds for gyro drift 36 MEAN_THRESH = 0.01 37 VAR_THRESH = 0.001 38 39 with its.device.ItsSession() as cam: 40 props = cam.get_camera_properties() 41 # Only run test if the appropriate caps are claimed. 42 its.caps.skip_unless(its.caps.sensor_fusion(props)) 43 44 print "Collecting gyro events" 45 cam.start_sensor_events() 46 time.sleep(5) 47 gyro_events = cam.get_sensor_events()["gyro"] 48 49 nevents = (len(gyro_events) / N) * N 50 gyro_events = gyro_events[:nevents] 51 times = numpy.array([(e["time"] - gyro_events[0]["time"])/1000000000.0 52 for e in gyro_events]) 53 xs = numpy.array([e["x"] for e in gyro_events]) 54 ys = numpy.array([e["y"] for e in gyro_events]) 55 zs = numpy.array([e["z"] for e in gyro_events]) 56 57 # Group samples into size-N groups and average each together, to get rid 58 # of individual random spikes in the data. 59 times = times[N/2::N] 60 xs = xs.reshape(nevents/N, N).mean(1) 61 ys = ys.reshape(nevents/N, N).mean(1) 62 zs = zs.reshape(nevents/N, N).mean(1) 63 64 pylab.plot(times, xs, 'r', label="x") 65 pylab.plot(times, ys, 'g', label="y") 66 pylab.plot(times, zs, 'b', label="z") 67 pylab.xlabel("Time (seconds)") 68 pylab.ylabel("Gyro readings (mean of %d samples)"%(N)) 69 pylab.legend() 70 matplotlib.pyplot.savefig("%s_plot.png" % (NAME)) 71 72 for samples in [xs,ys,zs]: 73 assert(samples.mean() < MEAN_THRESH) 74 assert(numpy.var(samples) < VAR_THRESH) 75 76if __name__ == '__main__': 77 main() 78 79