1# Copyright 2016 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the 'License'); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an 'AS IS' BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import os 16 17import its.caps 18import its.cv2image 19import its.device 20import its.image 21import its.objects 22import numpy as np 23 24NUM_TRYS = 2 25NUM_STEPS = 6 26SHARPNESS_TOL = 0.1 27POSITION_TOL = 0.1 28FRAME_TIME_TOL = 10 # ms 29VGA_WIDTH = 640 30VGA_HEIGHT = 480 31NAME = os.path.basename(__file__).split('.')[0] 32CHART_FILE = os.path.join(os.environ['CAMERA_ITS_TOP'], 'pymodules', 'its', 33 'test_images', 'ISO12233.png') 34CHART_HEIGHT = 13.5 # cm 35CHART_DISTANCE = 30.0 # cm 36CHART_SCALE_START = 0.65 37CHART_SCALE_STOP = 1.35 38CHART_SCALE_STEP = 0.025 39 40 41def test_lens_position(cam, props, fmt, sensitivity, exp, chart): 42 """Return fd, sharpness, lens state of the output images. 43 44 Args: 45 cam: An open device session. 46 props: Properties of cam 47 fmt: dict; capture format 48 sensitivity: Sensitivity for the 3A request as defined in 49 android.sensor.sensitivity 50 exp: Exposure time for the 3A request as defined in 51 android.sensor.exposureTime 52 chart: Object with chart properties 53 54 Returns: 55 Dictionary of results for different focal distance captures 56 with static lens positions and moving lens positions 57 d_static, d_moving 58 """ 59 60 # initialize variables and take data sets 61 data_static = {} 62 data_moving = {} 63 white_level = int(props['android.sensor.info.whiteLevel']) 64 min_fd = props['android.lens.info.minimumFocusDistance'] 65 hyperfocal = props['android.lens.info.hyperfocalDistance'] 66 fds_f = np.arange(hyperfocal, min_fd, (min_fd-hyperfocal)/(NUM_STEPS-1)) 67 fds_f = np.append(fds_f, min_fd) 68 fds_f = fds_f.tolist() 69 fds_b = list(reversed(fds_f)) 70 fds_fb = list(fds_f) 71 fds_fb.extend(fds_b) # forward and back 72 # take static data set 73 for i, fd in enumerate(fds_fb): 74 req = its.objects.manual_capture_request(sensitivity, exp) 75 req['android.lens.focusDistance'] = fd 76 cap = its.image.stationary_lens_cap(cam, req, fmt) 77 data = {'fd': fds_fb[i]} 78 data['loc'] = cap['metadata']['android.lens.focusDistance'] 79 print ' focus distance (diopters): %.3f' % data['fd'] 80 print ' current lens location (diopters): %.3f' % data['loc'] 81 y, _, _ = its.image.convert_capture_to_planes(cap, props) 82 chart.img = its.image.normalize_img(its.image.get_image_patch( 83 y, chart.xnorm, chart.ynorm, chart.wnorm, chart.hnorm)) 84 its.image.write_image(chart.img, '%s_stat_i=%d_chart.jpg' % (NAME, i)) 85 data['sharpness'] = white_level*its.image.compute_image_sharpness( 86 chart.img) 87 print 'Chart sharpness: %.1f\n' % data['sharpness'] 88 data_static[i] = data 89 # take moving data set 90 reqs = [] 91 for i, fd in enumerate(fds_f): 92 reqs.append(its.objects.manual_capture_request(sensitivity, exp)) 93 reqs[i]['android.lens.focusDistance'] = fd 94 caps = cam.do_capture(reqs, fmt) 95 for i, cap in enumerate(caps): 96 data = {'fd': fds_f[i]} 97 data['loc'] = cap['metadata']['android.lens.focusDistance'] 98 data['lens_moving'] = (cap['metadata']['android.lens.state'] 99 == 1) 100 timestamp = cap['metadata']['android.sensor.timestamp'] * 1E-6 101 if i == 0: 102 timestamp_init = timestamp 103 timestamp -= timestamp_init 104 data['timestamp'] = timestamp 105 print ' focus distance (diopters): %.3f' % data['fd'] 106 print ' current lens location (diopters): %.3f' % data['loc'] 107 y, _, _ = its.image.convert_capture_to_planes(cap, props) 108 y = its.image.rotate_img_per_argv(y) 109 chart.img = its.image.normalize_img(its.image.get_image_patch( 110 y, chart.xnorm, chart.ynorm, chart.wnorm, chart.hnorm)) 111 its.image.write_image(chart.img, '%s_move_i=%d_chart.jpg' % (NAME, i)) 112 data['sharpness'] = white_level*its.image.compute_image_sharpness( 113 chart.img) 114 print 'Chart sharpness: %.1f\n' % data['sharpness'] 115 data_moving[i] = data 116 return data_static, data_moving 117 118 119def main(): 120 """Test if focus position is properly reported for moving lenses.""" 121 print '\nStarting test_lens_position.py' 122 # check skip conditions 123 with its.device.ItsSession() as cam: 124 props = cam.get_camera_properties() 125 its.caps.skip_unless(not its.caps.fixed_focus(props)) 126 its.caps.skip_unless(its.caps.read_3a(props) and 127 its.caps.lens_calibrated(props)) 128 # initialize chart class 129 chart = its.cv2image.Chart(CHART_FILE, CHART_HEIGHT, CHART_DISTANCE, 130 CHART_SCALE_START, CHART_SCALE_STOP, 131 CHART_SCALE_STEP) 132 133 with its.device.ItsSession() as cam: 134 mono_camera = its.caps.mono_camera(props) 135 fmt = {'format': 'yuv', 'width': VGA_WIDTH, 'height': VGA_HEIGHT} 136 137 # Get proper sensitivity and exposure time with 3A 138 s, e, _, _, _ = cam.do_3a(get_results=True, mono_camera=mono_camera) 139 140 # Get sharpness for each focal distance 141 d_stat, d_move = test_lens_position(cam, props, fmt, s, e, chart) 142 print 'Lens stationary' 143 for k in sorted(d_stat): 144 print ('i: %d\tfd: %.3f\tlens location (diopters): %.3f \t' 145 'sharpness: %.1f' % (k, d_stat[k]['fd'], 146 d_stat[k]['loc'], 147 d_stat[k]['sharpness'])) 148 print 'Lens moving' 149 for k in sorted(d_move): 150 print ('i: %d\tfd: %.3f\tlens location (diopters): %.3f \t' 151 'sharpness: %.1f \tlens_moving: %r \t' 152 'timestamp: %.1fms' % (k, d_move[k]['fd'], 153 d_move[k]['loc'], 154 d_move[k]['sharpness'], 155 d_move[k]['lens_moving'], 156 d_move[k]['timestamp'])) 157 158 # assert static reported location/sharpness is close 159 print 'Asserting static lens locations/sharpness are similar' 160 for i in range(len(d_stat)/2): 161 j = 2 * NUM_STEPS - 1 - i 162 rw_msg = 'fd_write: %.3f, fd_read: %.3f, RTOL: %.2f' % ( 163 d_stat[i]['fd'], d_stat[i]['loc'], POSITION_TOL) 164 fr_msg = 'loc_fwd: %.3f, loc_rev: %.3f, RTOL: %.2f' % ( 165 d_stat[i]['loc'], d_stat[j]['loc'], POSITION_TOL) 166 s_msg = 'sharpness_fwd: %.3f, sharpness_rev: %.3f, RTOL: %.2f' % ( 167 d_stat[i]['sharpness'], d_stat[j]['sharpness'], 168 SHARPNESS_TOL) 169 assert np.isclose(d_stat[i]['loc'], d_stat[i]['fd'], 170 rtol=POSITION_TOL), rw_msg 171 assert np.isclose(d_stat[i]['loc'], d_stat[j]['loc'], 172 rtol=POSITION_TOL), fr_msg 173 assert np.isclose(d_stat[i]['sharpness'], d_stat[j]['sharpness'], 174 rtol=SHARPNESS_TOL), s_msg 175 # assert moving frames approximately consecutive with even distribution 176 print 'Asserting moving frames are consecutive' 177 times = [v['timestamp'] for v in d_move.itervalues()] 178 diffs = np.gradient(times) 179 assert np.isclose(np.amin(diffs), np.amax(diffs), atol=FRAME_TIME_TOL) 180 # assert reported location/sharpness is correct in moving frames 181 print 'Asserting moving lens locations/sharpness are similar' 182 for i in range(len(d_move)): 183 m_msg = 'static: %.3f, moving: %.3f, RTOL: %.2f' % ( 184 d_stat[i]['loc'], d_move[i]['loc'], POSITION_TOL) 185 assert np.isclose(d_stat[i]['loc'], d_move[i]['loc'], 186 rtol=POSITION_TOL), m_msg 187 if d_move[i]['lens_moving'] and i > 0: 188 if d_stat[i]['sharpness'] > d_stat[i-1]['sharpness']: 189 assert (d_stat[i]['sharpness']*(1.0+SHARPNESS_TOL) > 190 d_move[i]['sharpness'] > 191 d_stat[i-1]['sharpness']*(1.0-SHARPNESS_TOL)) 192 else: 193 assert (d_stat[i-1]['sharpness']*(1.0+SHARPNESS_TOL) > 194 d_move[i]['sharpness'] > 195 d_stat[i]['sharpness']*(1.0-SHARPNESS_TOL)) 196 elif not d_move[i]['lens_moving']: 197 assert np.isclose( 198 d_stat[i]['sharpness'], d_move[i]['sharpness'], 199 rtol=SHARPNESS_TOL) 200 else: 201 raise its.error.Error('Lens is moving at frame 0!') 202 203if __name__ == '__main__': 204 main() 205 206