1
2
3
4
5<!DOCTYPE html>
6<html lang="en">
7<head>
8    <title>ImageMagick: Architecture</title>
9  <meta charset="utf-8" />
10  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
11  <meta name="viewport" content="width=device-width, initial-scale=1" />
12  <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
13  <meta name="application-name" content="ImageMagick"/>
14  <meta name="description" content="ImageMagick® is a software suite to create, edit, compose, or convert bitmap images. It can read and write images in a variety of formats (over 200) including PNG, JPEG, JPEG-2000, GIF, WebP, Postscript, PDF, and SVG. Use ImageMagick to resize, flip, mirror, rotate, distort, shear and transform images, adjust image colors, apply various special effects, or draw text, lines, polygons, ellipses and Bézier curves."/>
15  <meta name="application-url" content="http://www.imagemagick.org"/>
16  <meta name="generator" content="PHP"/>
17  <meta name="keywords" content="architecture, ImageMagick, PerlMagick, image processing, image, photo, software, Magick++, OpenMP, convert"/>
18  <meta name="rating" content="GENERAL"/>
19  <meta name="robots" content="INDEX, FOLLOW"/>
20  <meta name="generator" content="ImageMagick Studio LLC"/>
21  <meta name="author" content="ImageMagick Studio LLC"/>
22  <meta name="revisit-after" content="2 DAYS"/>
23  <meta name="resource-type" content="document"/>
24  <meta name="copyright" content="Copyright (c) 1999-2016 ImageMagick Studio LLC"/>
25  <meta name="distribution" content="Global"/>
26  <meta name="magick-serial" content="P131-S030410-R485315270133-P82224-A6668-G1245-1"/>
27  <meta name="google-site-verification" content="_bMOCDpkx9ZAzBwb2kF3PRHbfUUdFj2uO8Jd1AXArz4" />
28  <link rel="icon" href="../images/wand.png"/>
29  <link rel="shortcut icon" href="../images/wand.ico"/>
30  <link rel="stylesheet" type="text/css" href="http://fonts.googleapis.com/css?family=Roboto:900,400,400italic,700,700italic,300,300italic|Open+Sans:300italic,400italic,700italic,300,400,600,700">
31  <link rel="stylesheet" href="css/magick.css"/>
32</head>
33<body>
34<div class="main">
35<div class="magick-masthead">
36  <div class="container">
37    <script async="async" src="http://localhost/pagead/js/adsbygoogle.js"></script>    <ins class="adsbygoogle"
38         style="display:block"
39         data-ad-client="ca-pub-3129977114552745"
40         data-ad-slot="6345125851"
41         data-ad-format="auto"></ins>
42    <script>
43      (adsbygoogle = window.adsbygoogle || []).push({});
44    </script>
45    <nav class="magick-nav">
46      <a class="magick-nav-item " href="../index.html">Home</a>
47      <a class="magick-nav-item " href="binary-releases.html">Download</a>
48      <a class="magick-nav-item " href="command-line-tools.html">Tools</a>
49      <a class="magick-nav-item " href="command-line-processing.html">Command-line</a>
50      <a class="magick-nav-item " href="resources.html">Resources</a>
51      <a class="magick-nav-item " href="api.html">Develop</a>
52      <a class="magick-nav-item " href="http://www.imagemagick.org/script/search.php">Search</a>
53      <a class="magick-nav-item pull-right" href="https://www.imagemagick.org/discourse-server/">Community</a>
54    </nav>
55  </div>
56</div>
57<div class="container">
58<div class="magick-header">
59<p class="text-center"><a href="architecture.html#cache">The Pixel Cache</a> • <a href="architecture.html#stream">Streaming Pixels</a> • <a href="architecture.html#properties">Image Properties and Profiles</a> • <a href="architecture.html#tera-pixel">Large Image Support</a> • <a href="architecture.html#threads">Threads of Execution</a> • <a href="architecture.html#distributed">Heterogeneous Distributed Processing</a> • <a href="architecture.html#coders">Custom Image Coders</a> • <a href="architecture.html#filters">Custom Image Filters</a></p>
60
61<p class="lead magick-description">The citizens of Oz were quite content with their benefactor, the all-powerful Wizard.  They accepted his wisdom and benevolence without ever questioning the who, why, and where of his power.  Like the citizens of Oz, if you feel comfortable that ImageMagick can help you convert, edit, or compose your images without knowing what goes on behind the curtain, feel free to skip this section.  However, if you want to know more about the software and algorithms behind ImageMagick, read on.  To fully benefit from this discussion, you should be comfortable with image nomenclature and be familiar with computer programming.</p>
62
63<h2 class="magick-header"><a id="overview"></a>Architecture Overview</h2>
64
65<p>An image typically consists of a rectangular region of pixels and metadata.  To convert, edit, or compose an image in an efficient manner, we need convenient access to any pixel anywhere within the region (and sometimes outside the region).  And in the case of an image sequence, we need access to any pixel of any region of any image in the sequence.  However, there are hundreds of image formats such JPEG, TIFF, PNG, GIF, etc., that makes it difficult to access pixels on demand.  Within these formats we find differences in:</p>
66
67<ul>
68  <li>colorspace (e.g sRGB, linear RGB, linear GRAY, CMYK, YUV, Lab, etc.)</li>
69  <li>bit depth (.e.g 1, 4, 8, 12, 16, etc.)</li>
70  <li>storage format (e.g. unsigned, signed, float, double, etc.)</li>
71  <li>compression (e.g. uncompressed, RLE, Zip, BZip, etc.)</li>
72  <li>orientation (i.e. top-to-bottom, right-to-left, etc.),</li>
73  <li>layout (.e.g. raw, interspersed with opcodes, etc.)</li>
74</ul>
75
76<p>In addition, some image pixels may require attenuation, some formats permit more than one frame, and some formats contain vector graphics that must first be rasterized (converted from vector to pixels).</p>
77
78<p>An efficient implementation of an image processing algorithm may require we get or set:</p>
79
80<ul>
81  <li>one pixel a time (e.g. pixel at location 10,3)</li>
82  <li>a single scanline (e.g. all pixels from row 4)</li>
83  <li>a few scanlines at once (e.g. pixel rows 4-7)</li>
84  <li>a single column or columns of pixels (e.g. all pixels from column 11)</li>
85  <li>an arbitrary region of pixels from the image (e.g. pixels defined at 10,7 to 10,19)</li>
86  <li>a pixel in random order (e.g. pixel at 14,15 and 640,480)</li>
87  <li>pixels from two different images (e.g. pixel at 5,1 from image 1 and pixel at 5,1 from image 2)</li>
88  <li>pixels outside the boundaries of the image (e.g. pixel at -1,-3)</li>
89  <li>a pixel component that is unsigned (65311) or in a floating-point representation (e.g. 0.17836)</li>
90  <li>a high-dynamic range pixel that can include negative values (e.g. -0.00716) as well as values that exceed the quantum depth (e.g. 65931)</li>
91  <li>one or more pixels simultaneously in different threads of execution</li>
92  <li>all the pixels in memory to take advantage of speed-ups offered by executing in concert across heterogeneous platforms consisting of CPUs, GPUs, and other processors</li>
93</ul>
94
95<p>Some images include a clip mask that define which pixels are eligible to be updated.  Pixels outside the area defined by the clip mask remain untouched.</p>
96
97<p>Given the varied image formats and image processing requirements, we implemented the ImageMagick <a href="architecture.html#cache">pixel cache</a> to provide convenient sequential or parallel access to any pixel on demand anywhere inside the image region (i.e. <a href="architecture.html#authentic-pixels">authentic pixels</a>)  and from any image in a sequence.  In addition, the pixel cache permits access to pixels outside the boundaries defined by the image (i.e. <a href="architecture.html#virtual-pixels">virtual pixels</a>).</p>
98
99<p>In addition to pixels, images have a plethora of <a href="architecture.html#properties">image properties and profiles</a>.  Properties include the well known attributes such as width, height, depth, and colorspace.  An image may have optional properties which might include the image author, a comment, a create date, and others.  Some images also include profiles for color management, or EXIF, IPTC, 8BIM, or XMP informational profiles.  ImageMagick provides command line options and programming methods to get, set, or view image properties or profiles or apply profiles.</p>
100
101<p>ImageMagick consists of nearly a half million lines of C code and optionally depends on several million lines of code in dependent libraries (e.g. JPEG, PNG, TIFF libraries).  Given that, one might expect a huge architecture document.  However, a great majority of image processing is simply accessing pixels and its metadata and our simple, elegant, and efficient implementation makes this easy for the ImageMagick developer.  We discuss the implementation of the pixel cache and getting and setting image properties and profiles in the next few sections. Next, we discuss using ImageMagick within a <a href="architecture.html#threads">thread</a> of execution.  In the final sections, we discuss <a href="architecture.html#coders">image coders</a> to read or write a particular image format followed by a few words on creating a <a href="architecture.html#filters">filter</a> to access or update pixels based on your custom requirements.</p>
102
103<h2 class="magick-header"><a id="cache"></a>The Pixel Cache</h2>
104
105<p>The ImageMagick pixel cache is a repository for image pixels with up to 32 channels.  The channels are stored contiguously at the depth specified when ImageMagick was built.  The channel depths are 8 bits-per-pixel component for the Q8 version of ImageMagick, 16 bits-per-pixel component for the Q16 version, and 32 bits-per-pixel component for the Q32 version.  By default pixel components are 32-bit floating-bit <a href="high-dynamic-range.html">high dynamic-range</a> quantities. The channels can hold any value but typically contain red, green, blue, and alpha intensities or cyan, magenta, yellow, alpha intensities.  A channel might contain the colormap indexes for colormapped images or the black channel for CMYK images.  The pixel cache storage may be heap memory, disk-backed memory mapped, or on disk.  The pixel cache is reference-counted.  Only the cache properties are copied when the cache is cloned.  The cache pixels are subsequently copied only when you signal your intention to update any of the pixels.</p>
106
107<h3>Create the Pixel Cache</h3>
108
109<p>The pixel cache is associated with an image when it is created and it is initialized when you try to get or put pixels.  Here are three common methods to associate a pixel cache with an image:</p>
110
111<dl>
112<dt>Create an image canvas initialized to the background color:</dt><br/>
113<dd><pre>image=AllocateImage(image_info);
114if (SetImageExtent(image,640,480) == MagickFalse)
115  { /* an exception was thrown */ }
116(void) QueryMagickColor("red",&amp;image-&gt;background_color,&amp;image-&gt;exception);
117SetImageBackgroundColor(image);
118</pre></dd>
119
120<dt>Create an image from a JPEG image on disk:</dt><br/>
121<dd><pre>(void) strcpy(image_info-&gt;filename,"image.jpg"):
122image=ReadImage(image_info,exception);
123if (image == (Image *) NULL)
124  { /* an exception was thrown */ }
125</pre></dd>
126<dt>Create an image from a memory based image:</dt><br/>
127<dd><pre>image=BlobToImage(blob_info,blob,extent,exception);
128if (image == (Image *) NULL)
129  { /* an exception was thrown */ }
130</pre></dd>
131</dl>
132
133<p>In our discussion of the pixel cache, we use the <a href="magick-core.html">MagickCore API</a> to illustrate our points, however, the principles are the same for other program interfaces to ImageMagick.</p>
134
135<p>When the pixel cache is initialized, pixels are scaled from whatever bit depth they originated from to that required by the pixel cache.  For example, a 1-channel 1-bit monochrome PBM image is scaled to 8-bit gray image, if you are using the Q8 version of ImageMagick, and 16-bit RGBA for the Q16 version.  You can determine which version you have with the <a href="command-line-options.html#version">&#x2011;version</a> option: </p>
136
137<pre><span class="crtprompt"> </span><span class='crtin'>identify -version</span><span class='crtout'>Version: ImageMagick 7.0.2-0 2016-06-08 Q16 http://www.imagemagick.org</span></pre>
138<p>As you can see, the convenience of the pixel cache sometimes comes with a trade-off in storage (e.g. storing a 1-bit monochrome image as 16-bit is wasteful) and speed (i.e. storing the entire image in memory is generally slower than accessing one scanline of pixels at a time).  In most cases, the benefits of the pixel cache typically outweigh any disadvantages.</p>
139
140<h3><a id="authentic-pixels"></a>Access the Pixel Cache</h3>
141
142<p>Once the pixel cache is associated with an image, you typically want to get, update, or put pixels into it.  We refer to pixels inside the image region as <a href="architecture.html#authentic-pixels">authentic pixels</a> and outside the region as <a href="architecture.html#virtual-pixels">virtual pixels</a>.  Use these methods to access the pixels in the cache:</p>
143<ul>
144  <li><a href="api/cache.html#GetVirtualPixels">GetVirtualPixels()</a>: gets pixels that you do not intend to modify or pixels that lie outside the image region (e.g. pixel @ -1,-3)</li>
145  <li><a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a>: gets pixels that you intend to modify</li>
146  <li><a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>: queue pixels that you intend to set</li>
147  <li><a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a>: update the pixel cache with any modified pixels</li>
148</ul>
149
150<p>Here is a typical <a href="magick-core.html">MagickCore</a> code snippet for manipulating pixels in the pixel cache.  In our example, we copy pixels from the input image to the output image and decrease the intensity by 10%:</p>
151
152<pre class="pre-scrollable">const Quantum
153  *p;
154
155Quantum
156  *q;
157
158ssize_t
159  x,
160  y;
161
162destination=CloneImage(source,source->columns,source->rows,MagickTrue,
163  exception);
164if (destination == (Image *) NULL)
165  { /* an exception was thrown */ }
166for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
167{
168  p=GetVirtualPixels(source,0,y,source-&gt;columns,1,exception);
169  q=GetAuthenticPixels(destination,0,y,destination-&gt;columns,1,exception);
170  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)
171    break;
172  for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
173  {
174    SetPixelRed(image,90*p-&gt;red/100,q);
175    SetPixelGreen(image,90*p-&gt;green/100,q);
176    SetPixelBlue(image,90*p-&gt;blue/100,q);
177    SetPixelAlpha(image,90*p-&gt;opacity/100,q);
178    p+=GetPixelChannels(source);
179    q+=GetPixelChannels(destination);
180  }
181  if (SyncAuthenticPixels(destination,exception) == MagickFalse)
182    break;
183}
184if (y &lt; (ssize_t) source-&gt;rows)
185  { /* an exception was thrown */ }
186</pre>
187
188<p>When we first create the destination image by cloning the source image, the pixel cache pixels are not copied.  They are only copied when you signal your intentions to modify or set the pixel cache by calling <a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a> or <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>. Use <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a> if you want to set new pixel values rather than update existing ones.  You could use GetAuthenticPixels() to set pixel values but it is slightly more efficient to use QueueAuthenticPixels() instead. Finally, use <a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a> to ensure any updated pixels are pushed to the pixel cache.</p>
189
190<p>Recall how we mentioned that the indexes of a colormapped image or the black channel of a CMYK image are stored separately.  Use  <a href="api/cache.html#GetVirtualIndexQueue">GetVirtualIndexQueue()</a> (to read the indexes) or <a href="api/cache.html#GetAuthenticIndexQueue">GetAuthenticIndexQueue()</a> (to update the indexes) to gain access to this channel.  For example, to print the colormap indexes, use:</p>
191
192<pre>const IndexPacket
193  *indexes;
194
195for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
196{
197  p=GetVirtualPixels(source,0,y,source-&gt;columns,1);
198  if (p == (const Quantum *) NULL)
199    break;
200  indexes=GetVirtualIndexQueue(source);
201  for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
202    (void) printf("%d\n",GetPixelIndex(indexes+x));
203}
204if (y &lt; (ssize_t) source-&gt;rows)
205  /* an exception was thrown */
206</pre>
207
208<p>The pixel cache manager decides whether to give you direct or indirect access to the image pixels.  In some cases the pixels are staged to an intermediate buffer-- and that is why you must call SyncAuthenticPixels() to ensure this buffer is <var>pushed</var> out to the pixel cache to guarantee the corresponding pixels in the cache are updated.  For this reason we recommend that you only read or update a scanline or a few scanlines of pixels at a time.  However, you can get any rectangular region of pixels you want.  GetAuthenticPixels() requires that the region you request is within the bounds of the image area.  For a 640 by 480 image, you can get a scanline of 640 pixels at row 479 but if you ask for a scanline at row 480, an exception is returned (rows are numbered starting at 0).  GetVirtualPixels() does not have this constraint.  For example,</p>
209
210<pre>p=GetVirtualPixels(source,-3,-3,source-&gt;columns+3,6,exception);
211</pre>
212
213<p>gives you the pixels you asked for without complaint, even though some are not within the confines of the image region.</p>
214
215<h3><a id="virtual-pixels"></a>Virtual Pixels</h3>
216
217<p>There are a plethora of image processing algorithms that require a neighborhood of pixels about a pixel of interest.  The algorithm typically includes a caveat concerning how to handle pixels around the image boundaries, known as edge pixels.  With virtual pixels, you do not need to concern yourself about special edge processing other than choosing  which virtual pixel method is most appropriate for your algorithm.</p>
218 <p>Access to the virtual pixels are controlled by the <a href="api/cache.html#SetImageVirtualPixelMethod">SetImageVirtualPixelMethod()</a> method from the MagickCore API or the <a href="command-line-options.html#virtual-pixel">&#x2011;virtual&#x2011;pixel</a> option from the command line.  The methods include:</p>
219
220<dl class="dl-horizontal">
221<dt>background</dt>
222<dd>the area surrounding the image is the background color</dd>
223<dt>black</dt>
224<dd>the area surrounding the image is black</dd>
225<dt>checker-tile</dt>
226<dd>alternate squares with image and background color</dd>
227<dt>dither</dt>
228<dd>non-random 32x32 dithered pattern</dd>
229<dt>edge</dt>
230<dd>extend the edge pixel toward infinity (default)</dd>
231<dt>gray</dt>
232<dd>the area surrounding the image is gray</dd>
233<dt>horizontal-tile</dt>
234<dd>horizontally tile the image, background color above/below</dd>
235<dt>horizontal-tile-edge</dt>
236<dd>horizontally tile the image and replicate the side edge pixels</dd>
237<dt>mirror</dt>
238<dd>mirror tile the image</dd>
239<dt>random</dt>
240<dd>choose a random pixel from the image</dd>
241<dt>tile</dt>
242<dd>tile the image</dd>
243<dt>transparent</dt>
244<dd>the area surrounding the image is transparent blackness</dd>
245<dt>vertical-tile</dt>
246<dd>vertically tile the image, sides are background color</dd>
247<dt>vertical-tile-edge</dt>
248<dd>vertically tile the image and replicate the side edge pixels</dd>
249<dt>white</dt>
250<dd>the area surrounding the image is white</dd>
251</dl>
252
253
254<h3>Cache Storage and Resource Requirements</h3>
255
256<p>Recall that this simple and elegant design of the ImageMagick pixel cache comes at a cost in terms of storage and processing speed.  The pixel cache storage requirements scales with the area of the image and the bit depth of the pixel components.  For example, if we have a 640 by 480 image and we are using the Q16 version of ImageMagick, the pixel cache consumes image <var>width * height * bit-depth / 8 * channels</var> bytes or approximately 2.3 mebibytes (i.e. 640 * 480 * 2 * 4).  Not too bad, but what if your image is 25000 by 25000 pixels?  The pixel cache requires approximately 4.7 gibibytes of storage.  Ouch.  ImageMagick accounts for possible huge storage requirements by caching large images to disk rather than memory.  Typically the pixel cache is stored in memory using heap memory. If heap memory is exhausted, we create the pixel cache on disk and attempt to memory-map it. If memory-map memory is exhausted, we simply use standard disk I/O.  Disk storage is cheap but it is also very slow, upwards of 1000 times slower than memory.  We can get some speed improvements, up to 5 times, if we use memory mapping to the disk-based cache.  These decisions about storage are made <var>automagically</var> by the pixel cache manager negotiating with the operating system.  However, you can influence how the pixel cache manager allocates the pixel cache with <var>cache resource limits</var>.  The limits include:</p>
257
258<dl class="dl-horizontal">
259  <dt>width</dt>
260  <dd>maximum width of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
261  <dt>height</dt>
262  <dd>maximum height of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
263  <dt>area</dt>
264  <dd>maximum area in bytes of any one image that can reside in the pixel cache memory.  If this limit is exceeded, the image is automagically cached to disk and optionally memory-mapped.</dd>
265  <dt>memory</dt>
266  <dd>maximum amount of memory in bytes to allocate for the pixel cache from the heap.</dd>
267  <dt>map</dt>
268  <dd>maximum amount of memory map in bytes to allocate for the pixel cache.</dd>
269  <dt>disk</dt>
270  <dd>maximum amount of disk space in bytes permitted for use by the pixel cache.  If this limit is exceeded, the pixel cache is not created and a fatal exception is thrown.</dd>
271  <dt>files</dt>
272  <dd>maximum number of open pixel cache files.  When this limit is exceeded, any subsequent pixels cached to disk are closed and reopened on demand. This behavior permits a large number of images to be accessed simultaneously on disk, but without a speed penalty due to repeated open/close calls.</dd>
273  <dt>thread</dt>
274  <dd>maximum number of threads that are permitted to run in parallel.</dd>
275  <dt>time</dt>
276  <dd>maximum number of seconds that the process is permitted to execute.  Exceed this limit and an exception is thrown and processing stops.</dd>
277</dl>
278
279<p>To determine the current setting of these limits, use this command:</p>
280
281<pre>
282-> identify -list resource
283Resource limits:
284  Width: 100MP
285  Height: 100MP
286  Area: 25.181GB
287  Memory: 11.726GiB
288  Map: 23.452GiB
289  Disk: unlimited
290  File: 768
291  Thread: 12
292  Throttle: 0
293  Time: unlimited
294</pre>
295
296<p>You can set these limits either as a <a href="resources.html#configure">policy</a> (see <a href="../source/policy.xml">policy.xml</a>), with an <a href="resources.html#environment">environment variable</a>, with the <a href="command-line-options.html#limit">-limit</a> command line option, or with the <a href="api/resource.html#SetMagickResourceLimit">SetMagickResourceLimit()</a> MagickCore API method. As an example, our online web interface to ImageMagick, <a href="http://www.imagemagick.org/MagickStudio/scripts/MagickStudio.cgi">ImageMagick Studio</a>, includes these policy limits to help prevent a denial-of-service:</p>
297<pre>
298&lt;policymap>
299  &lt;policy domain="resource" name="temporary-path" value="/tmp"/>
300  &lt;policy domain="resource" name="memory" value="256MiB"/>
301  &lt;policy domain="resource" name="map" value="512MiB"/>
302  &lt;policy domain="resource" name="width" value="8KP"/>
303  &lt;policy domain="resource" name="height" value="8KP"/>
304  &lt;policy domain="resource" name="area" value="128MB"/>
305  &lt;policy domain="resource" name="disk" value="1GiB"/>
306  &lt;policy domain="resource" name="file" value="768"/>
307  &lt;policy domain="resource" name="thread" value="2"/>
308  &lt;policy domain="resource" name="throttle" value="0"/>
309  &lt;policy domain="resource" name="time" value="120"/>
310  &lt;policy domain="system" name="precision" value="6"/>
311  &lt;policy domain="cache" name="shared-secret" value="replace with your secret phrase" stealth="true"/>
312  &lt;policy domain="delegate" rights="none" pattern="HTTPS" />
313  &lt;policy domain="path" rights="none" pattern="@*"/>  &lt;!-- indirect reads not permitted -->
314&lt;/policymap>
315</pre>
316<p>Since we process multiple simultaneous sessions, we don't want any one session consuming all the available memory.With this policy, large images are cached to disk. If the image is too large and exceeds the pixel cache disk limit, the program exits. In addition, we place a time limit to prevent any run-away processing tasks. If any one image has a width or height that exceeds 8192 pixels, an exception is thrown and processing stops. As of ImageMagick 7.0.1-8 you can prevent the use of any delegate or all delegates (set the pattern to "*"). Note, prior to this release, use a domain of "coder" to prevent delegate usage (e.g. domain="coder" rights="none" pattern="HTTPS"). The policy also prevents indirect reads.  If you want to, for example, read text from a file (e.g. caption:@myCaption.txt), you'll need to remove this policy.</p>
317
318<p>Note, the cache limits are global to each invocation of ImageMagick, meaning if you create several images, the combined resource requirements are compared to the limit to determine the pixel cache storage disposition.</p>
319
320<p>To determine which type and how much resources are consumed by the pixel cache, add the <a href="command-line-options.html#debug">-debug cache</a> option to the command-line:</p>
321<pre>-> convert -debug cache logo: -sharpen 3x2 null:
3222016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
323  destroy
3242016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
325  open LOGO[0] (Heap Memory, 640x480x4 4.688MiB)
3262016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
327  open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
3282016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
329  Memory => Memory
3302016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
331  Memory => Memory
3322016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
333  open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
3342016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
335  destroy LOGO[0]
3362016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
337  destroy LOGO[0]
338</pre>
339<p>This command utilizes a pixel cache in memory.  The logo consumed 4.688MiB and after it was sharpened, 3.516MiB.</p>
340
341
342<h3>Distributed Pixel Cache</h3>
343<p>A distributed pixel cache is an extension of the traditional pixel cache available on a single host.  The distributed pixel cache may span multiple servers so that it can grow in size and transactional capacity to support very large images.  Start up the pixel cache server on one or more machines.  When you read or operate on an image and the local pixel cache resources are exhausted, ImageMagick contacts one or more of these remote pixel servers to store or retrieve pixels.  The distributed pixel cache relies on network bandwidth to marshal pixels to and from the remote server.  As such, it will likely be significantly slower than a pixel cache utilizing local storage (e.g. memory, disk, etc.).</p>
344<pre>
345convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
346convert -define registry:cache:hosts=192.168.100.50:6668 myimage.jpg -sharpen 5x2 mimage.png
347</pre>
348
349<h3>Cache Views</h3>
350
351<p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels(), from the MagickCore API, can only deal with one pixel cache area per image at a time.  Suppose you want to access the first and last scanline from the same image at the same time?  The solution is to use a <var>cache view</var>.  A cache view permits you to access as many areas simultaneously in the pixel cache as you require.  The cache view <a href="api/cache-view.html">methods</a> are analogous to the previous methods except you must first open a view and close it when you are finished with it. Here is a snippet of MagickCore code that permits us to access the first and last pixel row of the image simultaneously:</p>
352
353<pre class="pre-scrollable">CacheView
354  *view_1,
355  *view_2;
356
357view_1=AcquireVirtualCacheView(source,exception);
358view_2=AcquireVirtualCacheView(source,exception);
359for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
360{
361  u=GetCacheViewVirtualPixels(view_1,0,y,source-&gt;columns,1,exception);
362  v=GetCacheViewVirtualPixels(view_2,0,source-&gt;rows-y-1,source-&gt;columns,1,exception);
363  if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL))
364    break;
365  for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
366  {
367    /* do something with u &amp; v here */
368  }
369}
370view_2=DestroyCacheView(view_2);
371view_1=DestroyCacheView(view_1);
372if (y &lt; (ssize_t) source-&gt;rows)
373  { /* an exception was thrown */ }
374</pre>
375
376<h3>Magick Persistent Cache Format</h3>
377
378<p>Recall that each image format is decoded by ImageMagick and the pixels are deposited in the pixel cache.  If you write an image, the pixels are read from the pixel cache and encoded as required by the format you are writing (e.g. GIF, PNG, etc.).  The Magick Persistent Cache (MPC) format is designed to eliminate the overhead of decoding and encoding pixels to and from an image format.  MPC writes two files.  One, with the extension <code>.mpc</code>, retains all the properties associated with the image or image sequence (e.g. width, height, colorspace, etc.) and the second, with the extension <code>.cache</code>, is the pixel cache in the native raw format.  When reading an MPC image file, ImageMagick reads the image properties and memory maps the pixel cache on disk eliminating the need for decoding the image pixels.  The tradeoff is in disk space.  MPC is generally larger in file size than most other image formats.</p>
379<p>The most efficient use of MPC image files is a write-once, read-many-times pattern.  For example, your workflow requires extracting random blocks of pixels from the source image.  Rather than re-reading and possibly decompressing the source image each time, we use MPC and map the image directly to memory.</p>
380
381<h3>Best Practices</h3>
382
383<p>Although you can request any pixel from the pixel cache, any block of pixels, any scanline, multiple scanlines, any row, or multiple rows with the GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels, GetCacheViewVirtualPixels(), GetCacheViewAuthenticPixels(), and QueueCacheViewAuthenticPixels() methods, ImageMagick is optimized to return a few pixels or a few pixels rows at time.  There are additional optimizations if you request a single scanline or a few scanlines at a time.  These methods also permit random access to the pixel cache, however, ImageMagick is optimized for sequential access.  Although you can access scanlines of pixels sequentially from the last row of the image to the first, you may get a performance boost if you access scanlines from the first row of the image to the last, in sequential order.</p>
384
385<p>You can get, modify, or set pixels in row or column order.  However, it is more efficient to access the pixels by row rather than by column.</p>
386
387<p>If you update pixels returned from GetAuthenticPixels() or GetCacheViewAuthenticPixels(), don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to ensure your changes are synchronized with the pixel cache.</p>
388
389<p>Use QueueAuthenticPixels() or QueueCacheViewAuthenticPixels() if you are setting an initial pixel value.  The GetAuthenticPixels() or GetCacheViewAuthenticPixels() method reads pixels from the cache and if you are setting an initial pixel value, this read is unnecessary. Don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to push any pixel changes to the pixel cache.</p>
390
391<p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels() are slightly more efficient than their cache view counter-parts.  However, cache views are required if you need access to more than one region of the image simultaneously or if more than one <a href="architecture.html#threads">thread of execution</a> is accessing the image.</p>
392
393<p>You can request pixels outside the bounds of the image with GetVirtualPixels() or GetCacheViewVirtualPixels(), however, it is more efficient to request pixels within the confines of the image region.</p>
394
395<p>Although you can force the pixel cache to disk using appropriate resource limits, disk access can be upwards of 1000 times slower than memory access.  For fast, efficient, access to the pixel cache, try to keep the pixel cache in heap memory.</p>
396
397<p>The ImageMagick Q16 version of ImageMagick permits you to read and write 16 bit images without scaling but the pixel cache consumes twice as many resources as the Q8 version.  If your system has constrained memory or disk resources, consider the Q8 version of ImageMagick.  In addition, the Q8 version typically executes faster than the Q16 version.</p>
398
399<p>A great majority of image formats and algorithms restrict themselves to a fixed range of pixel values from 0 to some maximum value, for example, the Q16 version of ImageMagick permit intensities from 0 to 65535.  High dynamic-range imaging (HDRI), however, permits a far greater dynamic range of exposures (i.e. a large difference between light and dark areas) than standard digital imaging techniques. HDRI accurately represents the wide range of intensity levels found in real scenes ranging from the brightest direct sunlight to the deepest darkest shadows.  Enable <a href="high-dynamic-range.html">HDRI</a> at ImageMagick build time to deal with high dynamic-range images, but be mindful that each pixel component is a 32-bit floating point value. In addition, pixel values are not clamped by default so some algorithms may have unexpected results due to out-of-band pixel values than the non-HDRI version.</p>
400
401<p>If you are dealing with large images, make sure the pixel cache is written to a disk area with plenty of free space.  Under Unix, this is typically <code>/tmp</code> and for Windows, <code>c:/temp</code>.  You can tell ImageMagick to write the pixel cache to an alternate location and conserve memory with these options:</p>
402
403<pre>
404convert -limit memory 2GB -limit map 4GB -define registry:temporary-path=/data/tmp ...
405</pre>
406
407<p>Set global resource limits for your environment in the <code>policy.xml</code> configuration file.</p>
408
409<p>If you plan on processing the same image many times, consider the MPC format.  Reading a MPC image has near-zero overhead because its in the native pixel cache format eliminating the need for decoding the image pixels.  Here is an example:</p>
410
411<pre>
412convert image.tif image.mpc
413convert image.mpc -crop 100x100+0+0 +repage 1.png
414convert image.mpc -crop 100x100+100+0 +repage 2.png
415convert image.mpc -crop 100x100+200+0 +repage 3.png
416</pre>
417
418<p>MPC is ideal for web sites.  It reduces the overhead of reading and writing an image.  We use it exclusively at our <a href="http://www.imagemagick.org/MagickStudio/scripts/MagickStudio.cgi">online image studio</a>.</p>
419
420<h2 class="magick-header"><a id="stream"></a>Streaming Pixels</h2>
421
422<p>ImageMagick provides for streaming pixels as they are read from or written to an image.  This has several advantages over the pixel cache.  The time and resources consumed by the pixel cache scale with the area of an image, whereas the pixel stream resources scale with the width of an image.  The disadvantage is the pixels must be consumed as they are streamed so there is no persistence.</p>
423
424<p>Use <a href="api/stream.html#ReadStream">ReadStream()</a> or <a href="api/stream.html#WriteStream">WriteStream()</a> with an appropriate callback method in your MagickCore program to consume the pixels as they are streaming.  Here's an abbreviated example of using ReadStream:</p>
425
426<pre class="pre-scrollable">static size_t StreamPixels(const Image *image,const void *pixels,const size_t columns)
427{
428  register const Quantum
429    *p;
430
431  MyData
432    *my_data;
433
434  my_data=(MyData *) image->client_data;
435  p=(Quantum *) pixels;
436  if (p != (const Quantum *) NULL)
437    {
438      /* process pixels here */
439    }
440  return(columns);
441}
442
443...
444
445/* invoke the pixel stream here */
446image_info->client_data=(void *) MyData;
447image=ReadStream(image_info,&amp;StreamPixels,exception);
448</pre>
449
450<p>We also provide a lightweight tool, <a href="stream.html">stream</a>, to stream one or more pixel components of the image or portion of the image to your choice of storage formats.  It writes the pixel components as they are read from the input image a row at a time making <a href="stream.html">stream</a> desirable when working with large images or when you require raw pixel components.  A majority of the image formats stream pixels (red, green, and blue) from left to right and top to bottom.  However, a few formats do not support this common ordering (e.g. the PSD format).</p>
451
452<h2 class="magick-header"><a id="properties"></a>Image Properties and Profiles</h2>
453
454<p>Images have metadata associated with them in the form of properties (e.g. width, height, description, etc.) and profiles (e.g. EXIF, IPTC, color management).  ImageMagick provides convenient methods to get, set, or update image properties and get, set, update, or apply profiles.  Some of the more popular image properties are associated with the Image structure in the MagickCore API.  For example:</p>
455
456<pre>(void) printf("image width: %lu, height: %lu\n",image-&gt;columns,image-&gt;rows);
457</pre>
458
459<p>For a great majority of image properties, such as an image comment or description, we use the <a href="api/property.html#GetImageProperty">GetImageProperty()</a> and <a href="api/property.html#SetImageProperty">SetImageProperty()</a> methods.  Here we set a property and fetch it right back:</p>
460
461<pre>const char
462  *comment;
463
464(void) SetImageProperty(image,"comment","This space for rent");
465comment=GetImageProperty(image,"comment");
466if (comment == (const char *) NULL)
467  (void) printf("Image comment: %s\n",comment);
468</pre>
469
470<p>ImageMagick supports artifacts with the GetImageArtifact() and SetImageArtifact() methods.  Artifacts are stealth properties that are not exported to image formats (e.g. PNG).</p>
471
472<p>Image profiles are handled with <a href="api/profile.html#GetImageProfile">GetImageProfile()</a>, <a href="api/profile.html#SetImageProfile">SetImageProfile()</a>, and <a href="api/profile.html#ProfileImage">ProfileImage()</a> methods.  Here we set a profile and fetch it right back:</p>
473
474<pre>StringInfo
475  *profile;
476
477profile=AcquireStringInfo(length);
478SetStringInfoDatum(profile,my_exif_profile);
479(void) SetImageProfile(image,"EXIF",profile);
480DestroyStringInfo(profile);
481profile=GetImageProfile(image,"EXIF");
482if (profile != (StringInfo *) NULL)
483  (void) PrintStringInfo(stdout,"EXIF",profile);
484</pre>
485
486<h2 class="magick-header"><a id="tera-pixel"></a>Large Image Support</h2>
487<p>ImageMagick can read, process, or write mega-, giga-, or tera-pixel image sizes.  An image width or height can range from 1 to 2 giga-pixels on a 32 bit OS and up to 9 exa-pixels on a 64-bit OS.  Note, that some image formats have restrictions on image size.  For example, Photoshop images are limited to 300,000 pixels for width or height.  Here we resize an image to a quarter million pixels square:</p>
488
489<pre>
490convert logo: -resize 250000x250000 logo.miff
491</pre>
492
493<p>For large images, ImageMagick will likely create a pixel cache on disk.  Make sure you have plenty of temporary disk space.  If your default temporary disk partition is too small, tell ImageMagick to use another partition with plenty of free space.  For example:</p>
494
495<pre>
496convert -define registry:temporary-path=/data/tmp logo:  \ <br/>     -resize 250000x250000 logo.miff
497</pre>
498
499<p>To ensure large images do not consume all the memory on your system, force the image pixels to memory-mapped disk with resource limits:</p>
500
501<pre>
502convert -define registry:temporary-path=/data/tmp -limit memory 16mb \
503  logo: -resize 250000x250000 logo.miff
504</pre>
505
506<p>Here we force all image pixels to disk:</p>
507
508<pre>
509convert -define registry:temporary-path=/data/tmp -limit area 0 \
510  logo: -resize 250000x250000 logo.miff
511</pre>
512
513<p>Caching pixels to disk is about 1000 times slower than memory.  Expect long run times when processing large images on disk with ImageMagick.  You can monitor progress with this command:</p>
514
515<pre>convert -monitor -limit memory 2GiB -limit map 4GiB -define registry:temporary-path=/data/tmp \
516  logo: -resize 250000x250000 logo.miff
517</pre>
518
519<p>For really large images, or if there is limited resources on your host, you can utilize a distributed pixel cache on one or more remote hosts:</p>
520<pre>
521convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
522convert -distribute-cache 6668 &amp;  // start on 192.168.100.51
523convert -limit memory 2mb -limit map 2mb -limit disk 2gb \
524  -define registry:cache:hosts=192.168.100.50:6668,192.168.100.51:6668 \
525  myhugeimage.jpg -sharpen 5x2 myhugeimage.png
526</pre>
527
528<h2 class="magick-header"><a id="threads"></a>Threads of Execution</h2>
529
530<p>Many of ImageMagick's internal algorithms are threaded to take advantage of speed-ups offered by the multicore processor chips. However, you are welcome to use ImageMagick algorithms in your threads of execution with the exception of the MagickCore's GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), or SyncAuthenticPixels() pixel cache methods.  These methods are intended for one thread of execution only with the exception of an OpenMP parallel section.  To access the pixel cache with more than one thread of execution, use a cache view.  We do this for the <a href="api/composite.html#CompositeImage">CompositeImage()</a> method, for example.  Suppose we want to composite a single image over a different image in each thread of execution.  If we use GetVirtualPixels(), the results are unpredictable because multiple threads would likely be asking for different areas of the pixel cache simultaneously.  Instead we use GetCacheViewVirtualPixels() which creates a unique view for each thread of execution ensuring our program behaves properly regardless of how many threads are invoked.  The other program interfaces, such as the <a href="magick-wand.html">MagickWand API</a>, are completely thread safe so there are no special precautions for threads of execution.</p>
531
532<p>Here is an MagickCore code snippet that takes advantage of threads of execution with the <a href="openmp.html">OpenMP</a> programming paradigm:</p>
533
534<pre class="pre-scrollable">CacheView
535  *image_view;
536
537MagickBooleanType
538  status;
539
540ssize_t
541  y;
542
543status=MagickTrue;
544image_view=AcquireVirtualCacheView(image,exception);
545#pragma omp parallel for schedule(dynamic,4) shared(status)
546for (y=0; y &lt; (ssize_t) image-&gt;rows; y++)
547{
548  register IndexPacket
549    *indexes;
550
551  register Quantum
552    *q;
553
554  register ssize_t
555    x;
556
557  if (status == MagickFalse)
558    continue;
559  q=GetCacheViewAuthenticPixels(image_view,0,y,image-&gt;columns,1,exception);
560  if (q == (Quantum *) NULL)
561    {
562      status=MagickFalse;
563      continue;
564    }
565  indexes=GetCacheViewAuthenticIndexQueue(image_view);
566  for (x=0; x &lt; (ssize_t) image-&gt;columns; x++)
567  {
568    SetPixelRed(image,...,q);
569    SetPixelGreen(image,...,q);
570    SetPixelBlue(image,...,q);
571    SetPixelAlpha(image,...,q);
572    if (indexes != (IndexPacket *) NULL)
573      SetPixelIndex(indexes+x,...);
574    q+=GetPixelChannels(image);
575  }
576  if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
577    status=MagickFalse;
578}
579image_view=DestroyCacheView(image_view);
580if (status == MagickFalse)
581  perror("something went wrong");
582</pre>
583
584<p>This code snippet converts an uncompressed Windows bitmap to a Magick++ image:</p>
585
586<pre class="pre-scrollable">#include "Magick++.h"
587#include &lt;assert.h&gt;
588#include "omp.h"
589
590void ConvertBMPToImage(const BITMAPINFOHEADER *bmp_info,
591  const unsigned char *restrict pixels,Magick::Image *image)
592{
593  /*
594    Prepare the image so that we can modify the pixels directly.
595  */
596  assert(bmp_info->biCompression == BI_RGB);
597  assert(bmp_info->biWidth == image->columns());
598  assert(abs(bmp_info->biHeight) == image->rows());
599  image->modifyImage();
600  if (bmp_info->biBitCount == 24)
601    image->type(MagickCore::TrueColorType);
602  else
603    image->type(MagickCore::TrueColorMatteType);
604  register unsigned int bytes_per_row=bmp_info->biWidth*bmp_info->biBitCount/8;
605  if (bytes_per_row % 4 != 0) {
606    bytes_per_row=bytes_per_row+(4-bytes_per_row % 4);  // divisible by 4.
607  }
608  /*
609    Copy all pixel data, row by row.
610  */
611  #pragma omp parallel for
612  for (int y=0; y &lt; int(image->rows()); y++)
613  {
614    int
615      row;
616
617    register const unsigned char
618      *restrict p;
619
620    register MagickCore::Quantum
621      *restrict q;
622
623    row=(bmp_info->biHeight > 0) ? (image->rows()-y-1) : y;
624    p=pixels+row*bytes_per_row;
625    q=image->setPixels(0,y,image->columns(),1);
626    for (int x=0; x &lt; int(image->columns()); x++)
627    {
628      SetPixelBlue(image,p[0],q);
629      SetPixelGreen(image,p[1],q);
630      SetPixelRed(image,p[2],q);
631      if (bmp_info->biBitCount == 32) {
632        SetPixelAlpha(image,p[3],q);
633      }
634      q+=GetPixelChannels(image);
635      p+=bmp_info->biBitCount/8;
636    }
637    image->syncPixels();  // sync pixels to pixel cache.
638  }
639  return;
640}</pre>
641
642<p>If you call the ImageMagick API from your OpenMP-enabled application and you intend to dynamically increase the number of threads available in subsequent parallel regions, be sure to perform the increase <var>before</var> you call the API otherwise ImageMagick may fault.</p>
643
644<p><a href="api/wand-view.html">MagickWand</a> supports wand views.  A view iterates over the entire, or portion, of the image in parallel and for each row of pixels, it invokes a callback method you provide.  This limits most of your parallel programming activity to just that one module.  There are similar methods in <a href="api/image-view.html">MagickCore</a>.  For an example, see the same sigmoidal contrast algorithm implemented in both <a href="magick-wand.html#wand-view">MagickWand</a> and <a href="magick-core.html#image-view">MagickCore</a>.</p>
645
646<p>In most circumstances, the default number of threads is set to the number of processor cores on your system for optimal performance.  However, if your system is hyperthreaded or if you are running on a virtual host and only a subset of the processors are available to your server instance, you might get an increase in performance by setting the thread <a href="resources.html#configure">policy</a> or the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable.  For example, your virtual host has 8 processors but only 2 are assigned to your server instance.  The default of 8 threads can cause severe performance problems.  One solution is to limit the number of threads to the available processors in your <a href="../source/policy.xml">policy.xml</a> configuration file:</p>
647
648<pre>
649&lt;policy domain="resource" name="thread" value="2"/>
650</pre>
651
652<p>Or suppose your 12 core hyperthreaded computer defaults to 24 threads.  Set the MAGICK_THREAD_LIMIT environment variable and you will likely get improved performance:</p>
653
654<pre>
655export MAGICK_THREAD_LIMIT=12
656</pre>
657
658<p>The OpenMP committee has not defined the behavior of mixing OpenMP with other threading models such as Posix threads.  However, using modern releases of Linux, OpenMP and Posix threads appear to interoperate without complaint.  If you want to use Posix threads from a program module that calls one of the ImageMagick application programming interfaces (e.g. MagickCore, MagickWand, Magick++, etc.) from Mac OS X or an older Linux release, you may need to disable OpenMP support within ImageMagick.  Add the <code>--disable-openmp</code> option to the configure script command line and rebuild and reinstall ImageMagick.</p>
659
660<h4>Threading Performance</h4>
661<p>It can be difficult to predict behavior in a parallel environment.   Performance might depend on a number of factors including the compiler, the version of the OpenMP library, the processor type, the number of cores, the amount of memory, whether hyperthreading is enabled, the mix of applications that are executing concurrently with ImageMagick, or the particular image-processing algorithm you utilize.  The only way to be certain of optimal performance, in terms of the number of threads, is to benchmark.   ImageMagick includes progressive threading when benchmarking a command and returns the elapsed time and efficiency for one or more threads.  This can help you identify how many threads is the most efficient in your environment.  For this benchmark we sharpen a 1920x1080 image of a model 10 times with 1 to 12 threads:</p>
662<pre>
663-> convert -bench 10 model.png -sharpen 5x2 null:
664Performance[1]: 10i 1.135ips 1.000e 8.760u 0:08.810
665Performance[2]: 10i 2.020ips 0.640e 9.190u 0:04.950
666Performance[3]: 10i 2.786ips 0.710e 9.400u 0:03.590
667Performance[4]: 10i 3.378ips 0.749e 9.580u 0:02.960
668Performance[5]: 10i 4.032ips 0.780e 9.580u 0:02.480
669Performance[6]: 10i 4.566ips 0.801e 9.640u 0:02.190
670Performance[7]: 10i 3.788ips 0.769e 10.980u 0:02.640
671Performance[8]: 10i 4.115ips 0.784e 12.030u 0:02.430
672Performance[9]: 10i 4.484ips 0.798e 12.860u 0:02.230
673Performance[10]: 10i 4.274ips 0.790e 14.830u 0:02.340
674Performance[11]: 10i 4.348ips 0.793e 16.500u 0:02.300
675Performance[12]: 10i 4.525ips 0.799e 18.320u 0:02.210
676</pre>
677<p>The sweet spot for this example is 6 threads. This makes sense since there are 6 physical cores.  The other 6 are hyperthreads. It appears that sharpening does not benefit from hyperthreading.</p>
678<p>In certain cases, it might be optimal to set the number of threads to 1 or to disable OpenMP completely with the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable, <a href="command-line-options.html#limit">-limit</a> command line option,  or the  <a href="resources.html#configure">policy.xml</a> configuration file.</p>
679
680<h2 class="magick-header"><a id="distributed"></a>Heterogeneous Distributed Processing</h2>
681<p>ImageMagick includes support for heterogeneous distributed processing with the <a href="http://en.wikipedia.org/wiki/OpenCL">OpenCL</a> framework.  OpenCL kernels within ImageMagick permit image processing algorithms to execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors.  Depending on your platform, speed-ups can be an order of magnitude faster than the traditional single CPU.</p>
682
683<p>First verify that your version of ImageMagick includes support for the OpenCL feature:</p>
684
685<pre>
686identify -version
687Features: DPC Cipher Modules OpenCL OpenMP
688</pre>
689
690<p>If so, run this command to realize a significant speed-up for image convolution:</p>
691
692<pre>
693convert image.png -convolve '-1, -1, -1, -1, 9, -1, -1, -1, -1' convolve.png
694</pre>
695
696<p>If an accelerator is not available or if the accelerator fails to respond, ImageMagick reverts to the non-accelerated convolution algorithm.</p>
697
698<p>Here is an example OpenCL kernel that convolves an image:</p>
699
700<pre class="pre-scrollable">static inline long ClampToCanvas(const long offset,const ulong range)
701{
702  if (offset &lt; 0L)
703    return(0L);
704  if (offset >= range)
705    return((long) (range-1L));
706  return(offset);
707}
708
709static inline CLQuantum ClampToQuantum(const float value)
710{
711  if (value &lt; 0.0)
712    return((CLQuantum) 0);
713  if (value >= (float) QuantumRange)
714    return((CLQuantum) QuantumRange);
715  return((CLQuantum) (value+0.5));
716}
717
718__kernel void Convolve(const __global CLPixelType *source,__constant float *filter,
719  const ulong width,const ulong height,__global CLPixelType *destination)
720{
721  const ulong columns = get_global_size(0);
722  const ulong rows = get_global_size(1);
723
724  const long x = get_global_id(0);
725  const long y = get_global_id(1);
726
727  const float scale = (1.0/QuantumRange);
728  const long mid_width = (width-1)/2;
729  const long mid_height = (height-1)/2;
730  float4 sum = { 0.0, 0.0, 0.0, 0.0 };
731  float gamma = 0.0;
732  register ulong i = 0;
733
734  for (long v=(-mid_height); v &lt;= mid_height; v++)
735  {
736    for (long u=(-mid_width); u &lt;= mid_width; u++)
737    {
738      register const ulong index=ClampToCanvas(y+v,rows)*columns+ClampToCanvas(x+u,
739        columns);
740      const float alpha=scale*(QuantumRange-source[index].w);
741      sum.x+=alpha*filter[i]*source[index].x;
742      sum.y+=alpha*filter[i]*source[index].y;
743      sum.z+=alpha*filter[i]*source[index].z;
744      sum.w+=filter[i]*source[index].w;
745      gamma+=alpha*filter[i];
746      i++;
747    }
748  }
749
750  gamma=1.0/(fabs(gamma) &lt;= MagickEpsilon ? 1.0 : gamma);
751  const ulong index=y*columns+x;
752  destination[index].x=ClampToQuantum(gamma*sum.x);
753  destination[index].y=ClampToQuantum(gamma*sum.y);
754  destination[index].z=ClampToQuantum(gamma*sum.z);
755  destination[index].w=ClampToQuantum(sum.w);
756};</pre>
757
758<p>See <a href="https://github.com/ImageMagick/ImageMagick/tree/ImageMagick-6/magick/accelerate.c">magick/accelerate.c</a> for a complete implementation of image convolution with an OpenCL kernel.</p>
759
760<p>Note, that under Windows, you might have an issue with TDR (Timeout Detection and Recovery of GPUs). Its purpose is to detect runaway tasks hanging the GPU by using an execution time threshold.  For some older low-end GPUs running the OpenCL filters in ImageMagick, longer execution times might trigger the TDR mechanism and pre-empt the GPU image filter.  When this happens, ImageMagick automatically falls back to the CPU code path and returns the expected results.  To avoid pre-emption, increase the <a href="http://msdn.microsoft.com/en-us/library/windows/hardware/gg487368.aspx">TdrDelay</a> registry key.</p>
761
762<h2 class="magick-header"><a id="coders"></a>Custom Image Coders</h2>
763
764<p>An image coder (i.e. encoder / decoder) is responsible for registering, optionally classifying, optionally reading, optionally writing, and unregistering one image format (e.g.  PNG, GIF, JPEG, etc.).  Registering an image coder alerts ImageMagick a particular format is available to read or write.  While unregistering tells ImageMagick the format is no longer available.  The classifying method looks at the first few bytes of an image and determines if the image is in the expected format.  The reader sets the image size, colorspace, and other properties and loads the pixel cache with the pixels.  The reader returns a single image or an image sequence (if the format supports multiple images per file), or if an error occurs, an exception and a null image.  The writer does the reverse.  It takes the image properties and unloads the pixel cache and writes them as required by the image format.</p>
765
766<p>Here is a listing of a sample <a href="../source/mgk.c">custom coder</a>.  It reads and writes images in the MGK image format which is simply an ID followed by the image width and height followed by the RGB pixel values.</p>
767
768<pre class="pre-scrollable">/*
769  Include declarations.
770*/
771#include "magick/studio.h"
772#include "magick/blob.h"
773#include "magick/blob-private.h"
774#include "magick/colorspace.h"
775#include "magick/exception.h"
776#include "magick/exception-private.h"
777#include "magick/image.h"
778#include "magick/image-private.h"
779#include "magick/list.h"
780#include "magick/magick.h"
781#include "magick/memory_.h"
782#include "magick/monitor.h"
783#include "magick/monitor-private.h"
784#include "magick/quantum-private.h"
785#include "magick/static.h"
786#include "magick/string_.h"
787#include "magick/module.h"
788
789/*
790  Forward declarations.
791*/
792static MagickBooleanType
793  WriteMGKImage(const ImageInfo *,Image *);
794
795/*
796%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
797%                                                                             %
798%                                                                             %
799%                                                                             %
800%   I s M G K                                                                 %
801%                                                                             %
802%                                                                             %
803%                                                                             %
804%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
805%
806%  IsMGK() returns MagickTrue if the image format type, identified by the
807%  magick string, is MGK.
808%
809%  The format of the IsMGK method is:
810%
811%      MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
812%
813%  A description of each parameter follows:
814%
815%    o magick: This string is generally the first few bytes of an image file
816%      or blob.
817%
818%    o length: Specifies the length of the magick string.
819%
820*/
821static MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
822{
823  if (length &lt; 7)
824    return(MagickFalse);
825  if (LocaleNCompare((char *) magick,"id=mgk",7) == 0)
826    return(MagickTrue);
827  return(MagickFalse);
828}
829
830/*
831%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
832%                                                                             %
833%                                                                             %
834%                                                                             %
835%   R e a d M G K I m a g e                                                   %
836%                                                                             %
837%                                                                             %
838%                                                                             %
839%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
840%
841%  ReadMGKImage() reads a MGK image file and returns it.  It allocates
842%  the memory necessary for the new Image structure and returns a pointer to
843%  the new image.
844%
845%  The format of the ReadMGKImage method is:
846%
847%      Image *ReadMGKImage(const ImageInfo *image_info,ExceptionInfo *exception)
848%
849%  A description of each parameter follows:
850%
851%    o image_info: the image info.
852%
853%    o exception: return any errors or warnings in this structure.
854%
855*/
856static Image *ReadMGKImage(const ImageInfo *image_info,
857  ExceptionInfo *exception)
858{
859  char
860    buffer[MaxTextExtent];
861
862  Image
863    *image;
864
865  MagickBooleanType
866    status;
867
868  register Quantum
869    *q;
870
871  register size_t
872    x;
873
874  register unsigned char
875    *p;
876
877  ssize_t
878    count,
879    y;
880
881  unsigned char
882    *pixels;
883
884  unsigned long
885    columns,
886    rows;
887
888  /*
889    Open image file.
890  */
891  assert(image_info != (const ImageInfo *) NULL);
892  assert(image_info-&gt;signature == MagickSignature);
893  if (image_info-&gt;debug != MagickFalse)
894    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image_info-&gt;filename);
895  assert(exception != (ExceptionInfo *) NULL);
896  assert(exception-&gt;signature == MagickSignature);
897  image=AcquireImage(image_info);
898  status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
899  if (status == MagickFalse)
900    {
901      image=DestroyImageList(image);
902      return((Image *) NULL);
903    }
904  /*
905    Read MGK image.
906  */
907  (void) ReadBlobString(image,buffer);  /* read magic number */
908  if (IsMGK(buffer,7) == MagickFalse)
909    ThrowReaderException(CorruptImageError,"ImproperImageHeader");
910  (void) ReadBlobString(image,buffer);
911  count=(ssize_t) sscanf(buffer,"%lu %lu\n",&amp;columns,&amp;rows);
912  if (count &lt;= 0)
913    ThrowReaderException(CorruptImageError,"ImproperImageHeader");
914  do
915  {
916    /*
917      Initialize image structure.
918    */
919    image-&gt;columns=columns;
920    image-&gt;rows=rows;
921    image-&gt;depth=8;
922    if ((image_info-&gt;ping != MagickFalse) &amp;&amp; (image_info-&gt;number_scenes != 0))
923      if (image-&gt;scene >= (image_info-&gt;scene+image_info-&gt;number_scenes-1))
924        break;
925    /*
926      Convert MGK raster image to pixel packets.
927    */
928    if (SetImageExtent(image,0,0) == MagickFalse)
929      {
930        InheritException(exception,&amp;image-&gt;exception);
931        return(DestroyImageList(image));
932      }
933    pixels=(unsigned char *) AcquireQuantumMemory((size_t) image-&gt;columns,3UL*sizeof(*pixels));
934    if (pixels == (unsigned char *) NULL)
935      ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
936    for (y=0; y &lt; (ssize_t) image-&gt;rows; y++)
937    {
938      count=(ssize_t) ReadBlob(image,(size_t) (3*image-&gt;columns),pixels);
939      if (count != (ssize_t) (3*image-&gt;columns))
940        ThrowReaderException(CorruptImageError,"UnableToReadImageData");
941      p=pixels;
942      q=QueueAuthenticPixels(image,0,y,image-&gt;columns,1,exception);
943      if (q == (Quantum *) NULL)
944        break;
945      for (x=0; x &lt; (ssize_t) image-&gt;columns; x++)
946      {
947        SetPixelRed(image,ScaleCharToQuantum(*p++),q);
948        SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
949        SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
950        q+=GetPixelChannels(image);
951      }
952      if (SyncAuthenticPixels(image,exception) == MagickFalse)
953        break;
954      if ((image-&gt;previous == (Image *) NULL) &amp;&amp;
955          (SetImageProgress(image,LoadImageTag,y,image&gt;>rows) == MagickFalse))
956        break;
957    }
958    pixels=(unsigned char *) RelinquishMagickMemory(pixels);
959    if (EOFBlob(image) != MagickFalse)
960      {
961        ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",image-&gt;filename);
962        break;
963      }
964    /*
965      Proceed to next image.
966    */
967    if (image_info-&gt;number_scenes != 0)
968      if (image-&gt;scene >= (image_info-&gt;scene+image_info-&gt;number_scenes-1))
969        break;
970    *buffer='\0';
971    (void) ReadBlobString(image,buffer);
972    count=(ssize_t) sscanf(buffer,"%lu %lu\n",&amp;columns,&amp;rows);
973    if (count != 0)
974      {
975        /*
976          Allocate next image structure.
977        */
978        AcquireNextImage(image_info,image);
979        if (GetNextImageInList(image) == (Image *) NULL)
980          {
981            image=DestroyImageList(image);
982            return((Image *) NULL);
983          }
984        image=SyncNextImageInList(image);
985        status=SetImageProgress(image,LoadImageTag,TellBlob(image),GetBlobSize(image));
986        if (status == MagickFalse)
987          break;
988      }
989  } while (count != 0);
990  (void) CloseBlob(image);
991  return(GetFirstImageInList(image));
992}
993
994/*
995%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
996%                                                                             %
997%                                                                             %
998%                                                                             %
999%   R e g i s t e r M G K I m a g e                                           %
1000%                                                                             %
1001%                                                                             %
1002%                                                                             %
1003%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1004%
1005%  RegisterMGKImage() adds attributes for the MGK image format to
1006%  the list of supported formats.  The attributes include the image format
1007%  tag, a method to read and/or write the format, whether the format
1008%  supports the saving of more than one frame to the same file or blob,
1009%  whether the format supports native in-memory I/O, and a brief
1010%  description of the format.
1011%
1012%  The format of the RegisterMGKImage method is:
1013%
1014%      unsigned long RegisterMGKImage(void)
1015%
1016*/
1017ModuleExport unsigned long RegisterMGKImage(void)
1018{
1019  MagickInfo
1020    *entry;
1021
1022  entry=SetMagickInfo("MGK");
1023  entry-&gt;decoder=(DecodeImageHandler *) ReadMGKImage;
1024  entry-&gt;encoder=(EncodeImageHandler *) WriteMGKImage;
1025  entry-&gt;magick=(IsImageFormatHandler *) IsMGK;
1026  entry-&gt;description=ConstantString("MGK");
1027  entry-&gt;module=ConstantString("MGK");
1028  (void) RegisterMagickInfo(entry);
1029  return(MagickImageCoderSignature);
1030}
1031
1032/*
1033%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1034%                                                                             %
1035%                                                                             %
1036%                                                                             %
1037%   U n r e g i s t e r M G K I m a g e                                       %
1038%                                                                             %
1039%                                                                             %
1040%                                                                             %
1041%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1042%
1043%  UnregisterMGKImage() removes format registrations made by the
1044%  MGK module from the list of supported formats.
1045%
1046%  The format of the UnregisterMGKImage method is:
1047%
1048%      UnregisterMGKImage(void)
1049%
1050*/
1051ModuleExport void UnregisterMGKImage(void)
1052{
1053  (void) UnregisterMagickInfo("MGK");
1054}
1055
1056/*
1057%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1058%                                                                             %
1059%                                                                             %
1060%                                                                             %
1061%   W r i t e M G K I m a g e                                                 %
1062%                                                                             %
1063%                                                                             %
1064%                                                                             %
1065%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1066%
1067%  WriteMGKImage() writes an image to a file in red, green, and blue
1068%  MGK rasterfile format.
1069%
1070%  The format of the WriteMGKImage method is:
1071%
1072%      MagickBooleanType WriteMGKImage(const ImageInfo *image_info,Image *image)
1073%
1074%  A description of each parameter follows.
1075%
1076%    o image_info: the image info.
1077%
1078%    o image:  The image.
1079%
1080*/
1081static MagickBooleanType WriteMGKImage(const ImageInfo *image_info,Image *image)
1082{
1083  char
1084    buffer[MaxTextExtent];
1085
1086  MagickBooleanType
1087    status;
1088
1089  MagickOffsetType
1090    scene;
1091
1092  register const Quantum
1093    *p;
1094
1095  register ssize_t
1096    x;
1097
1098  register unsigned char
1099    *q;
1100
1101  ssize_t
1102    y;
1103
1104  unsigned char
1105    *pixels;
1106
1107  /*
1108    Open output image file.
1109  */
1110  assert(image_info != (const ImageInfo *) NULL);
1111  assert(image_info-&gt;signature == MagickSignature);
1112  assert(image != (Image *) NULL);
1113  assert(image-&gt;signature == MagickSignature);
1114  if (image-&gt;debug != MagickFalse)
1115    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image-&gt;filename);
1116  status=OpenBlob(image_info,image,WriteBinaryBlobMode,&amp;image-&gt;exception);
1117  if (status == MagickFalse)
1118    return(status);
1119  scene=0;
1120  do
1121  {
1122    /*
1123      Allocate memory for pixels.
1124    */
1125    if (image-&gt;colorspace != RGBColorspace)
1126      (void) SetImageColorspace(image,RGBColorspace);
1127    pixels=(unsigned char *) AcquireQuantumMemory((size_t) image-&gt;columns,
1128      3UL*sizeof(*pixels));
1129    if (pixels == (unsigned char *) NULL)
1130      ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
1131    /*
1132      Initialize raster file header.
1133    */
1134    (void) WriteBlobString(image,"id=mgk\n");
1135    (void) FormatLocaleString(buffer,MaxTextExtent,"%lu %lu\n",
1136      image-&gt;columns,image-&gt;rows);
1137    (void) WriteBlobString(image,buffer);
1138    for (y=0; y &lt; (ssize_t) image-&gt;rows; y++)
1139    {
1140      p=GetVirtualPixels(image,0,y,image-&gt;columns,1,&amp;image-&gt;exception);
1141      if (p == (const Quantum *) NULL)
1142        break;
1143      q=pixels;
1144      for (x=0; x &lt; (ssize_t) image-&gt;columns; x++)
1145      {
1146        *q++=ScaleQuantumToChar(GetPixelRed(p));
1147        *q++=ScaleQuantumToChar(GetPixelGreen(p));
1148        *q++=ScaleQuantumToChar(GetPixelBlue(p));
1149        p+=GetPixelChannels(image);
1150      }
1151      (void) WriteBlob(image,(size_t) (q-pixels),pixels);
1152      if ((image-&gt;previous == (Image *) NULL) &amp;&amp;
1153          (SetImageProgress(image,SaveImageTag,y,image-&gt;rows) == MagickFalse))
1154        break;
1155    }
1156    pixels=(unsigned char *) RelinquishMagickMemory(pixels);
1157    if (GetNextImageInList(image) == (Image *) NULL)
1158      break;
1159    image=SyncNextImageInList(image);
1160    status=SetImageProgress(image,SaveImagesTag,scene,
1161      GetImageListLength(image));
1162    if (status == MagickFalse)
1163      break;
1164    scene++;
1165  } while (image_info-&gt;adjoin != MagickFalse);
1166  (void) CloseBlob(image);
1167  return(MagickTrue);
1168}</pre>
1169
1170<p>To invoke the custom coder from the command line, use these commands:</p>
1171
1172<pre>convert logo: logo.mgk
1173display logo.mgk
1174</pre>
1175
1176<p>We provide the <a href="http://www.imagemagick.org/download/kits/">Magick Coder Kit</a> to help you get started writing your own custom coder.</p>
1177
1178<h2 class="magick-header"><a id="filters"></a>Custom Image Filters</h2>
1179
1180<p>ImageMagick provides a convenient mechanism for adding your own custom image processing algorithms.  We call these image filters and they are invoked from the command line with the <a href="command-line-options.html#process">-process</a> option or from the MagickCore API method <a href="api/module.html#ExecuteModuleProcess">ExecuteModuleProcess()</a>.</p>
1181
1182<p>Here is a listing of a sample <a href="../source/analyze.c">custom image filter</a>.  It computes a few statistics such as the pixel brightness and saturation mean and standard-deviation.</p>
1183
1184<pre class="pre-scrollable">#include &lt;stdio.h&gt;
1185#include &lt;stdlib.h&gt;
1186#include &lt;string.h&gt;
1187#include &lt;time.h&gt;
1188#include &lt;assert.h&gt;
1189#include &lt;math.h&gt;
1190#include "magick/MagickCore.h"
1191
1192/*
1193%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1194%                                                                             %
1195%                                                                             %
1196%                                                                             %
1197%   a n a l y z e I m a g e                                                   %
1198%                                                                             %
1199%                                                                             %
1200%                                                                             %
1201%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1202%
1203%  analyzeImage() computes the brightness and saturation mean,  standard
1204%  deviation, kurtosis and skewness and stores these values as attributes
1205%  of the image.
1206%
1207%  The format of the analyzeImage method is:
1208%
1209%      size_t analyzeImage(Image *images,const int argc,char **argv,
1210%        ExceptionInfo *exception)
1211%
1212%  A description of each parameter follows:
1213%
1214%    o image: the address of a structure of type Image.
1215%
1216%    o argc: Specifies a pointer to an integer describing the number of
1217%      elements in the argument vector.
1218%
1219%    o argv: Specifies a pointer to a text array containing the command line
1220%      arguments.
1221%
1222%    o exception: return any errors or warnings in this structure.
1223%
1224*/
1225ModuleExport size_t analyzeImage(Image **images,const int argc,const char **argv,
1226  ExceptionInfo *exception)
1227{
1228  char
1229    text[MaxTextExtent];
1230
1231  double
1232    area,
1233    brightness,
1234    brightness_mean,
1235    brightness_standard_deviation,
1236    brightness_kurtosis,
1237    brightness_skewness,
1238    brightness_sum_x,
1239    brightness_sum_x2,
1240    brightness_sum_x3,
1241    brightness_sum_x4,
1242    hue,
1243    saturation,
1244    saturation_mean,
1245    saturation_standard_deviation,
1246    saturation_kurtosis,
1247    saturation_skewness,
1248    saturation_sum_x,
1249    saturation_sum_x2,
1250    saturation_sum_x3,
1251    saturation_sum_x4;
1252
1253  Image
1254    *image;
1255
1256  assert(images != (Image **) NULL);
1257  assert(*images != (Image *) NULL);
1258  assert((*images)-&gt;signature == MagickSignature);
1259  (void) argc;
1260  (void) argv;
1261  image=(*images);
1262  for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
1263  {
1264    CacheView
1265      *image_view;
1266
1267    MagickBooleanType
1268      status;
1269
1270    ssize_t
1271      y;
1272
1273    brightness_sum_x=0.0;
1274    brightness_sum_x2=0.0;
1275    brightness_sum_x3=0.0;
1276    brightness_sum_x4=0.0;
1277    brightness_mean=0.0;
1278    brightness_standard_deviation=0.0;
1279    brightness_kurtosis=0.0;
1280    brightness_skewness=0.0;
1281    saturation_sum_x=0.0;
1282    saturation_sum_x2=0.0;
1283    saturation_sum_x3=0.0;
1284    saturation_sum_x4=0.0;
1285    saturation_mean=0.0;
1286    saturation_standard_deviation=0.0;
1287    saturation_kurtosis=0.0;
1288    saturation_skewness=0.0;
1289    area=0.0;
1290    status=MagickTrue;
1291    image_view=AcquireVirtualCacheView(image,exception);
1292#if defined(MAGICKCORE_OPENMP_SUPPORT)
1293    #pragma omp parallel for schedule(dynamic,4) shared(status)
1294#endif
1295    for (y=0; y &lt; (ssize_t) image-&gt;rows; y++)
1296    {
1297      register const Quantum
1298        *p;
1299
1300      register ssize_t
1301        x;
1302
1303      if (status == MagickFalse)
1304        continue;
1305      p=GetCacheViewVirtualPixels(image_view,0,y,image-&gt;columns,1,exception);
1306      if (p == (const Quantum *) NULL)
1307        {
1308          status=MagickFalse;
1309          continue;
1310        }
1311      for (x=0; x &lt; (ssize_t) image-&gt;columns; x++)
1312      {
1313        ConvertRGBToHSB(GetPixelRed(p),GetPixelGreen(p),GetPixelBue(p),&amp;hue,&amp;saturation,&amp;brightness);
1314        brightness*=QuantumRange;
1315        brightness_sum_x+=brightness;
1316        brightness_sum_x2+=brightness*brightness;
1317        brightness_sum_x3+=brightness*brightness*brightness;
1318        brightness_sum_x4+=brightness*brightness*brightness*brightness;
1319        saturation*=QuantumRange;
1320        saturation_sum_x+=saturation;
1321        saturation_sum_x2+=saturation*saturation;
1322        saturation_sum_x3+=saturation*saturation*saturation;
1323        saturation_sum_x4+=saturation*saturation*saturation*saturation;
1324        area++;
1325        p+=GetPixelChannels(image);
1326      }
1327    }
1328    image_view=DestroyCacheView(image_view);
1329    if (area &lt;= 0.0)
1330      break;
1331    brightness_mean=brightness_sum_x/area;
1332    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_mean);
1333    (void) SetImageProperty(image,"filter:brightness:mean",text);
1334    brightness_standard_deviation=sqrt(brightness_sum_x2/area-(brightness_sum_x/
1335      area*brightness_sum_x/area));
1336    (void) FormatLocaleString(text,MaxTextExtent,"%g",
1337      brightness_standard_deviation);
1338    (void) SetImageProperty(image,"filter:brightness:standard-deviation",text);
1339    if (brightness_standard_deviation != 0)
1340      brightness_kurtosis=(brightness_sum_x4/area-4.0*brightness_mean*
1341        brightness_sum_x3/area+6.0*brightness_mean*brightness_mean*
1342        brightness_sum_x2/area-3.0*brightness_mean*brightness_mean*
1343        brightness_mean*brightness_mean)/(brightness_standard_deviation*
1344        brightness_standard_deviation*brightness_standard_deviation*
1345        brightness_standard_deviation)-3.0;
1346    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_kurtosis);
1347    (void) SetImageProperty(image,"filter:brightness:kurtosis",text);
1348    if (brightness_standard_deviation != 0)
1349      brightness_skewness=(brightness_sum_x3/area-3.0*brightness_mean*
1350        brightness_sum_x2/area+2.0*brightness_mean*brightness_mean*
1351        brightness_mean)/(brightness_standard_deviation*
1352        brightness_standard_deviation*brightness_standard_deviation);
1353    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_skewness);
1354    (void) SetImageProperty(image,"filter:brightness:skewness",text);
1355    saturation_mean=saturation_sum_x/area;
1356    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_mean);
1357    (void) SetImageProperty(image,"filter:saturation:mean",text);
1358    saturation_standard_deviation=sqrt(saturation_sum_x2/area-(saturation_sum_x/
1359      area*saturation_sum_x/area));
1360    (void) FormatLocaleString(text,MaxTextExtent,"%g",
1361      saturation_standard_deviation);
1362    (void) SetImageProperty(image,"filter:saturation:standard-deviation",text);
1363    if (saturation_standard_deviation != 0)
1364      saturation_kurtosis=(saturation_sum_x4/area-4.0*saturation_mean*
1365        saturation_sum_x3/area+6.0*saturation_mean*saturation_mean*
1366        saturation_sum_x2/area-3.0*saturation_mean*saturation_mean*
1367        saturation_mean*saturation_mean)/(saturation_standard_deviation*
1368        saturation_standard_deviation*saturation_standard_deviation*
1369        saturation_standard_deviation)-3.0;
1370    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_kurtosis);
1371    (void) SetImageProperty(image,"filter:saturation:kurtosis",text);
1372    if (saturation_standard_deviation != 0)
1373      saturation_skewness=(saturation_sum_x3/area-3.0*saturation_mean*
1374        saturation_sum_x2/area+2.0*saturation_mean*saturation_mean*
1375        saturation_mean)/(saturation_standard_deviation*
1376        saturation_standard_deviation*saturation_standard_deviation);
1377    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_skewness);
1378    (void) SetImageProperty(image,"filter:saturation:skewness",text);
1379  }
1380  return(MagickImageFilterSignature);
1381}</pre>
1382
1383<p>To invoke the custom filter from the command line, use this command:</p>
1384
1385<pre>convert logo: -process \"analyze\" -verbose info:
1386  Image: logo:
1387    Format: LOGO (ImageMagick Logo)
1388    Class: PseudoClass
1389    Geometry: 640x480
1390    ...
1391    filter:brightness:kurtosis: 8.17947
1392    filter:brightness:mean: 60632.1
1393    filter:brightness:skewness: -2.97118
1394    filter:brightness:standard-deviation: 13742.1
1395    filter:saturation:kurtosis: 4.33554
1396    filter:saturation:mean: 5951.55
1397    filter:saturation:skewness: 2.42848
1398    filter:saturation:standard-deviation: 15575.9
1399</pre>
1400
1401
1402<p>We provide the <a href="http://www.imagemagick.org/download/kits/">Magick Filter Kit</a> to help you get started writing your own custom image filter.</p>
1403
1404</div>
1405  <footer class="magick-footer">
1406    <p><a href="support.html">Donate</a> •
1407     <a href="sitemap.html">Sitemap</a> •
1408    <a href="links.html">Related</a> •
1409    <a href="architecture.html">Architecture</a>
1410</p>
1411    <p><a href="architecture.html#">Back to top</a> •
1412    <a href="http://pgp.mit.edu:11371/pks/lookup?op=get&amp;search=0x89AB63D48277377A">Public Key</a> •
1413    <a href="http://www.imagemagick.org/script/contact.php">Contact Us</a></p>
1414        <p><small>©  1999-2016 ImageMagick Studio LLC</small></p>
1415  </footer>
1416</div><!-- /.container -->
1417
1418  <script src="https://localhost/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
1419  <script src="../js/magick.html"></script>
1420</div>
1421</body>
1422</html>
1423