1 /* Copyright 2013 Google Inc. All Rights Reserved. 2 3 Distributed under MIT license. 4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT 5 */ 6 7 /* Utilities for fast computation of logarithms. */ 8 9 #ifndef BROTLI_ENC_FAST_LOG_H_ 10 #define BROTLI_ENC_FAST_LOG_H_ 11 12 #include <math.h> 13 14 #include <brotli/types.h> 15 #include <brotli/port.h> 16 17 #if defined(__cplusplus) || defined(c_plusplus) 18 extern "C" { 19 #endif 20 21 static BROTLI_INLINE uint32_t Log2FloorNonZero(size_t n) { 22 #if BROTLI_MODERN_COMPILER || __has_builtin(__builtin_clz) 23 return 31u ^ (uint32_t)__builtin_clz((uint32_t)n); 24 #else 25 uint32_t result = 0; 26 while (n >>= 1) result++; 27 return result; 28 #endif 29 } 30 31 /* A lookup table for small values of log2(int) to be used in entropy 32 computation. 33 34 ", ".join(["%.16ff" % x for x in [0.0]+[log2(x) for x in range(1, 256)]]) */ 35 static const float kLog2Table[] = { 36 0.0000000000000000f, 0.0000000000000000f, 1.0000000000000000f, 37 1.5849625007211563f, 2.0000000000000000f, 2.3219280948873622f, 38 2.5849625007211561f, 2.8073549220576042f, 3.0000000000000000f, 39 3.1699250014423126f, 3.3219280948873626f, 3.4594316186372978f, 40 3.5849625007211565f, 3.7004397181410922f, 3.8073549220576037f, 41 3.9068905956085187f, 4.0000000000000000f, 4.0874628412503400f, 42 4.1699250014423122f, 4.2479275134435852f, 4.3219280948873626f, 43 4.3923174227787607f, 4.4594316186372973f, 4.5235619560570131f, 44 4.5849625007211570f, 4.6438561897747244f, 4.7004397181410926f, 45 4.7548875021634691f, 4.8073549220576037f, 4.8579809951275728f, 46 4.9068905956085187f, 4.9541963103868758f, 5.0000000000000000f, 47 5.0443941193584534f, 5.0874628412503400f, 5.1292830169449664f, 48 5.1699250014423122f, 5.2094533656289501f, 5.2479275134435852f, 49 5.2854022188622487f, 5.3219280948873626f, 5.3575520046180838f, 50 5.3923174227787607f, 5.4262647547020979f, 5.4594316186372973f, 51 5.4918530963296748f, 5.5235619560570131f, 5.5545888516776376f, 52 5.5849625007211570f, 5.6147098441152083f, 5.6438561897747244f, 53 5.6724253419714961f, 5.7004397181410926f, 5.7279204545631996f, 54 5.7548875021634691f, 5.7813597135246599f, 5.8073549220576046f, 55 5.8328900141647422f, 5.8579809951275719f, 5.8826430493618416f, 56 5.9068905956085187f, 5.9307373375628867f, 5.9541963103868758f, 57 5.9772799234999168f, 6.0000000000000000f, 6.0223678130284544f, 58 6.0443941193584534f, 6.0660891904577721f, 6.0874628412503400f, 59 6.1085244567781700f, 6.1292830169449672f, 6.1497471195046822f, 60 6.1699250014423122f, 6.1898245588800176f, 6.2094533656289510f, 61 6.2288186904958804f, 6.2479275134435861f, 6.2667865406949019f, 62 6.2854022188622487f, 6.3037807481771031f, 6.3219280948873617f, 63 6.3398500028846252f, 6.3575520046180847f, 6.3750394313469254f, 64 6.3923174227787598f, 6.4093909361377026f, 6.4262647547020979f, 65 6.4429434958487288f, 6.4594316186372982f, 6.4757334309663976f, 66 6.4918530963296748f, 6.5077946401986964f, 6.5235619560570131f, 67 6.5391588111080319f, 6.5545888516776376f, 6.5698556083309478f, 68 6.5849625007211561f, 6.5999128421871278f, 6.6147098441152092f, 69 6.6293566200796095f, 6.6438561897747253f, 6.6582114827517955f, 70 6.6724253419714952f, 6.6865005271832185f, 6.7004397181410917f, 71 6.7142455176661224f, 6.7279204545631988f, 6.7414669864011465f, 72 6.7548875021634691f, 6.7681843247769260f, 6.7813597135246599f, 73 6.7944158663501062f, 6.8073549220576037f, 6.8201789624151887f, 74 6.8328900141647422f, 6.8454900509443757f, 6.8579809951275719f, 75 6.8703647195834048f, 6.8826430493618416f, 6.8948177633079437f, 76 6.9068905956085187f, 6.9188632372745955f, 6.9307373375628867f, 77 6.9425145053392399f, 6.9541963103868758f, 6.9657842846620879f, 78 6.9772799234999168f, 6.9886846867721664f, 7.0000000000000000f, 79 7.0112272554232540f, 7.0223678130284544f, 7.0334230015374501f, 80 7.0443941193584534f, 7.0552824355011898f, 7.0660891904577721f, 81 7.0768155970508317f, 7.0874628412503400f, 7.0980320829605272f, 82 7.1085244567781700f, 7.1189410727235076f, 7.1292830169449664f, 83 7.1395513523987937f, 7.1497471195046822f, 7.1598713367783891f, 84 7.1699250014423130f, 7.1799090900149345f, 7.1898245588800176f, 85 7.1996723448363644f, 7.2094533656289492f, 7.2191685204621621f, 86 7.2288186904958804f, 7.2384047393250794f, 7.2479275134435861f, 87 7.2573878426926521f, 7.2667865406949019f, 7.2761244052742384f, 88 7.2854022188622487f, 7.2946207488916270f, 7.3037807481771031f, 89 7.3128829552843557f, 7.3219280948873617f, 7.3309168781146177f, 90 7.3398500028846243f, 7.3487281542310781f, 7.3575520046180847f, 91 7.3663222142458151f, 7.3750394313469254f, 7.3837042924740528f, 92 7.3923174227787607f, 7.4008794362821844f, 7.4093909361377026f, 93 7.4178525148858991f, 7.4262647547020979f, 7.4346282276367255f, 94 7.4429434958487288f, 7.4512111118323299f, 7.4594316186372973f, 95 7.4676055500829976f, 7.4757334309663976f, 7.4838157772642564f, 96 7.4918530963296748f, 7.4998458870832057f, 7.5077946401986964f, 97 7.5156998382840436f, 7.5235619560570131f, 7.5313814605163119f, 98 7.5391588111080319f, 7.5468944598876373f, 7.5545888516776376f, 99 7.5622424242210728f, 7.5698556083309478f, 7.5774288280357487f, 100 7.5849625007211561f, 7.5924570372680806f, 7.5999128421871278f, 101 7.6073303137496113f, 7.6147098441152075f, 7.6220518194563764f, 102 7.6293566200796095f, 7.6366246205436488f, 7.6438561897747244f, 103 7.6510516911789290f, 7.6582114827517955f, 7.6653359171851765f, 104 7.6724253419714952f, 7.6794800995054464f, 7.6865005271832185f, 105 7.6934869574993252f, 7.7004397181410926f, 7.7073591320808825f, 106 7.7142455176661224f, 7.7210991887071856f, 7.7279204545631996f, 107 7.7347096202258392f, 7.7414669864011465f, 7.7481928495894596f, 108 7.7548875021634691f, 7.7615512324444795f, 7.7681843247769260f, 109 7.7747870596011737f, 7.7813597135246608f, 7.7879025593914317f, 110 7.7944158663501062f, 7.8008998999203047f, 7.8073549220576037f, 111 7.8137811912170374f, 7.8201789624151887f, 7.8265484872909159f, 112 7.8328900141647422f, 7.8392037880969445f, 7.8454900509443757f, 113 7.8517490414160571f, 7.8579809951275719f, 7.8641861446542798f, 114 7.8703647195834048f, 7.8765169465650002f, 7.8826430493618425f, 115 7.8887432488982601f, 7.8948177633079446f, 7.9008668079807496f, 116 7.9068905956085187f, 7.9128893362299619f, 7.9188632372745955f, 117 7.9248125036057813f, 7.9307373375628867f, 7.9366379390025719f, 118 7.9425145053392399f, 7.9483672315846778f, 7.9541963103868758f, 119 7.9600019320680806f, 7.9657842846620870f, 7.9715435539507720f, 120 7.9772799234999168f, 7.9829935746943104f, 7.9886846867721664f, 121 7.9943534368588578f 122 }; 123 124 #define LOG_2_INV 1.4426950408889634 125 126 /* Faster logarithm for small integers, with the property of log2(0) == 0. */ 127 static BROTLI_INLINE double FastLog2(size_t v) { 128 if (v < sizeof(kLog2Table) / sizeof(kLog2Table[0])) { 129 return kLog2Table[v]; 130 } 131 #if (defined(_MSC_VER) && _MSC_VER <= 1700) || \ 132 (defined(__ANDROID_API__) && __ANDROID_API__ < 18) 133 /* Visual Studio 2012 and Android API levels < 18 do not have the log2() 134 * function defined, so we use log() and a multiplication instead. */ 135 return log((double)v) * LOG_2_INV; 136 #else 137 return log2((double)v); 138 #endif 139 } 140 141 #if defined(__cplusplus) || defined(c_plusplus) 142 } /* extern "C" */ 143 #endif 144 145 #endif /* BROTLI_ENC_FAST_LOG_H_ */ 146