1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Weak pointers are pointers to an object that do not affect its lifetime,
6 // and which may be invalidated (i.e. reset to nullptr) by the object, or its
7 // owner, at any time, most commonly when the object is about to be deleted.
8 
9 // Weak pointers are useful when an object needs to be accessed safely by one
10 // or more objects other than its owner, and those callers can cope with the
11 // object vanishing and e.g. tasks posted to it being silently dropped.
12 // Reference-counting such an object would complicate the ownership graph and
13 // make it harder to reason about the object's lifetime.
14 
15 // EXAMPLE:
16 //
17 //  class Controller {
18 //   public:
19 //    Controller() : weak_factory_(this) {}
20 //    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
21 //    void WorkComplete(const Result& result) { ... }
22 //   private:
23 //    // Member variables should appear before the WeakPtrFactory, to ensure
24 //    // that any WeakPtrs to Controller are invalidated before its members
25 //    // variable's destructors are executed, rendering them invalid.
26 //    WeakPtrFactory<Controller> weak_factory_;
27 //  };
28 //
29 //  class Worker {
30 //   public:
31 //    static void StartNew(const WeakPtr<Controller>& controller) {
32 //      Worker* worker = new Worker(controller);
33 //      // Kick off asynchronous processing...
34 //    }
35 //   private:
36 //    Worker(const WeakPtr<Controller>& controller)
37 //        : controller_(controller) {}
38 //    void DidCompleteAsynchronousProcessing(const Result& result) {
39 //      if (controller_)
40 //        controller_->WorkComplete(result);
41 //    }
42 //    WeakPtr<Controller> controller_;
43 //  };
44 //
45 // With this implementation a caller may use SpawnWorker() to dispatch multiple
46 // Workers and subsequently delete the Controller, without waiting for all
47 // Workers to have completed.
48 
49 // ------------------------- IMPORTANT: Thread-safety -------------------------
50 
51 // Weak pointers may be passed safely between threads, but must always be
52 // dereferenced and invalidated on the same SequencedTaskRunner otherwise
53 // checking the pointer would be racey.
54 //
55 // To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
56 // is dereferenced, the factory and its WeakPtrs become bound to the calling
57 // thread or current SequencedWorkerPool token, and cannot be dereferenced or
58 // invalidated on any other task runner. Bound WeakPtrs can still be handed
59 // off to other task runners, e.g. to use to post tasks back to object on the
60 // bound sequence.
61 //
62 // If all WeakPtr objects are destroyed or invalidated then the factory is
63 // unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
64 // destroyed, or new WeakPtr objects may be used, from a different sequence.
65 //
66 // Thus, at least one WeakPtr object must exist and have been dereferenced on
67 // the correct thread to enforce that other WeakPtr objects will enforce they
68 // are used on the desired thread.
69 
70 #ifndef BASE_MEMORY_WEAK_PTR_H_
71 #define BASE_MEMORY_WEAK_PTR_H_
72 
73 #include <cstddef>
74 #include <type_traits>
75 
76 #include "base/base_export.h"
77 #include "base/logging.h"
78 #include "base/macros.h"
79 #include "base/memory/ref_counted.h"
80 #include "base/sequence_checker.h"
81 
82 namespace base {
83 
84 template <typename T> class SupportsWeakPtr;
85 template <typename T> class WeakPtr;
86 
87 namespace internal {
88 // These classes are part of the WeakPtr implementation.
89 // DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
90 
91 class BASE_EXPORT WeakReference {
92  public:
93   // Although Flag is bound to a specific SequencedTaskRunner, it may be
94   // deleted from another via base::WeakPtr::~WeakPtr().
95   class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
96    public:
97     Flag();
98 
99     void Invalidate();
100     bool IsValid() const;
101 
102    private:
103     friend class base::RefCountedThreadSafe<Flag>;
104 
105     ~Flag();
106 
107     SequenceChecker sequence_checker_;
108     bool is_valid_;
109   };
110 
111   WeakReference();
112   explicit WeakReference(const Flag* flag);
113   ~WeakReference();
114 
115   WeakReference(WeakReference&& other);
116   WeakReference(const WeakReference& other);
117   WeakReference& operator=(WeakReference&& other) = default;
118   WeakReference& operator=(const WeakReference& other) = default;
119 
120   bool is_valid() const;
121 
122  private:
123   scoped_refptr<const Flag> flag_;
124 };
125 
126 class BASE_EXPORT WeakReferenceOwner {
127  public:
128   WeakReferenceOwner();
129   ~WeakReferenceOwner();
130 
131   WeakReference GetRef() const;
132 
HasRefs()133   bool HasRefs() const {
134     return flag_.get() && !flag_->HasOneRef();
135   }
136 
137   void Invalidate();
138 
139  private:
140   mutable scoped_refptr<WeakReference::Flag> flag_;
141 };
142 
143 // This class simplifies the implementation of WeakPtr's type conversion
144 // constructor by avoiding the need for a public accessor for ref_.  A
145 // WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
146 // base class gives us a way to access ref_ in a protected fashion.
147 class BASE_EXPORT WeakPtrBase {
148  public:
149   WeakPtrBase();
150   ~WeakPtrBase();
151 
152   WeakPtrBase(const WeakPtrBase& other) = default;
153   WeakPtrBase(WeakPtrBase&& other) = default;
154   WeakPtrBase& operator=(const WeakPtrBase& other) = default;
155   WeakPtrBase& operator=(WeakPtrBase&& other) = default;
156 
157  protected:
158   explicit WeakPtrBase(const WeakReference& ref);
159 
160   WeakReference ref_;
161 };
162 
163 // This class provides a common implementation of common functions that would
164 // otherwise get instantiated separately for each distinct instantiation of
165 // SupportsWeakPtr<>.
166 class SupportsWeakPtrBase {
167  public:
168   // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
169   // conversion will only compile if there is exists a Base which inherits
170   // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
171   // function that makes calling this easier.
172   template<typename Derived>
StaticAsWeakPtr(Derived * t)173   static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
174     static_assert(
175         std::is_base_of<internal::SupportsWeakPtrBase, Derived>::value,
176         "AsWeakPtr argument must inherit from SupportsWeakPtr");
177     return AsWeakPtrImpl<Derived>(t, *t);
178   }
179 
180  private:
181   // This template function uses type inference to find a Base of Derived
182   // which is an instance of SupportsWeakPtr<Base>. We can then safely
183   // static_cast the Base* to a Derived*.
184   template <typename Derived, typename Base>
AsWeakPtrImpl(Derived * t,const SupportsWeakPtr<Base> &)185   static WeakPtr<Derived> AsWeakPtrImpl(
186       Derived* t, const SupportsWeakPtr<Base>&) {
187     WeakPtr<Base> ptr = t->Base::AsWeakPtr();
188     return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
189   }
190 };
191 
192 }  // namespace internal
193 
194 template <typename T> class WeakPtrFactory;
195 
196 // The WeakPtr class holds a weak reference to |T*|.
197 //
198 // This class is designed to be used like a normal pointer.  You should always
199 // null-test an object of this class before using it or invoking a method that
200 // may result in the underlying object being destroyed.
201 //
202 // EXAMPLE:
203 //
204 //   class Foo { ... };
205 //   WeakPtr<Foo> foo;
206 //   if (foo)
207 //     foo->method();
208 //
209 template <typename T>
210 class WeakPtr : public internal::WeakPtrBase {
211  public:
WeakPtr()212   WeakPtr() : ptr_(nullptr) {}
213 
WeakPtr(std::nullptr_t)214   WeakPtr(std::nullptr_t) : ptr_(nullptr) {}
215 
216   // Allow conversion from U to T provided U "is a" T. Note that this
217   // is separate from the (implicit) copy and move constructors.
218   template <typename U>
WeakPtr(const WeakPtr<U> & other)219   WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
220   }
221   template <typename U>
WeakPtr(WeakPtr<U> && other)222   WeakPtr(WeakPtr<U>&& other)
223       : WeakPtrBase(std::move(other)), ptr_(other.ptr_) {}
224 
get()225   T* get() const { return ref_.is_valid() ? ptr_ : nullptr; }
226 
227   T& operator*() const {
228     DCHECK(get() != nullptr);
229     return *get();
230   }
231   T* operator->() const {
232     DCHECK(get() != nullptr);
233     return get();
234   }
235 
reset()236   void reset() {
237     ref_ = internal::WeakReference();
238     ptr_ = nullptr;
239   }
240 
241   // Allow conditionals to test validity, e.g. if (weak_ptr) {...};
242   explicit operator bool() const { return get() != nullptr; }
243 
244  private:
245   friend class internal::SupportsWeakPtrBase;
246   template <typename U> friend class WeakPtr;
247   friend class SupportsWeakPtr<T>;
248   friend class WeakPtrFactory<T>;
249 
WeakPtr(const internal::WeakReference & ref,T * ptr)250   WeakPtr(const internal::WeakReference& ref, T* ptr)
251       : WeakPtrBase(ref),
252         ptr_(ptr) {
253   }
254 
255   // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
256   // value is undefined (as opposed to nullptr).
257   T* ptr_;
258 };
259 
260 // Allow callers to compare WeakPtrs against nullptr to test validity.
261 template <class T>
262 bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
263   return !(weak_ptr == nullptr);
264 }
265 template <class T>
266 bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
267   return weak_ptr != nullptr;
268 }
269 template <class T>
270 bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
271   return weak_ptr.get() == nullptr;
272 }
273 template <class T>
274 bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
275   return weak_ptr == nullptr;
276 }
277 
278 // A class may be composed of a WeakPtrFactory and thereby
279 // control how it exposes weak pointers to itself.  This is helpful if you only
280 // need weak pointers within the implementation of a class.  This class is also
281 // useful when working with primitive types.  For example, you could have a
282 // WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
283 template <class T>
284 class WeakPtrFactory {
285  public:
WeakPtrFactory(T * ptr)286   explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
287   }
288 
~WeakPtrFactory()289   ~WeakPtrFactory() { ptr_ = nullptr; }
290 
GetWeakPtr()291   WeakPtr<T> GetWeakPtr() {
292     DCHECK(ptr_);
293     return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
294   }
295 
296   // Call this method to invalidate all existing weak pointers.
InvalidateWeakPtrs()297   void InvalidateWeakPtrs() {
298     DCHECK(ptr_);
299     weak_reference_owner_.Invalidate();
300   }
301 
302   // Call this method to determine if any weak pointers exist.
HasWeakPtrs()303   bool HasWeakPtrs() const {
304     DCHECK(ptr_);
305     return weak_reference_owner_.HasRefs();
306   }
307 
308  private:
309   internal::WeakReferenceOwner weak_reference_owner_;
310   T* ptr_;
311   DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
312 };
313 
314 // A class may extend from SupportsWeakPtr to let others take weak pointers to
315 // it. This avoids the class itself implementing boilerplate to dispense weak
316 // pointers.  However, since SupportsWeakPtr's destructor won't invalidate
317 // weak pointers to the class until after the derived class' members have been
318 // destroyed, its use can lead to subtle use-after-destroy issues.
319 template <class T>
320 class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
321  public:
SupportsWeakPtr()322   SupportsWeakPtr() {}
323 
AsWeakPtr()324   WeakPtr<T> AsWeakPtr() {
325     return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
326   }
327 
328  protected:
~SupportsWeakPtr()329   ~SupportsWeakPtr() {}
330 
331  private:
332   internal::WeakReferenceOwner weak_reference_owner_;
333   DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
334 };
335 
336 // Helper function that uses type deduction to safely return a WeakPtr<Derived>
337 // when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
338 // extends a Base that extends SupportsWeakPtr<Base>.
339 //
340 // EXAMPLE:
341 //   class Base : public base::SupportsWeakPtr<Producer> {};
342 //   class Derived : public Base {};
343 //
344 //   Derived derived;
345 //   base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
346 //
347 // Note that the following doesn't work (invalid type conversion) since
348 // Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
349 // and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
350 // the caller.
351 //
352 //   base::WeakPtr<Derived> ptr = derived.AsWeakPtr();  // Fails.
353 
354 template <typename Derived>
AsWeakPtr(Derived * t)355 WeakPtr<Derived> AsWeakPtr(Derived* t) {
356   return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
357 }
358 
359 }  // namespace base
360 
361 #endif  // BASE_MEMORY_WEAK_PTR_H_
362