1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkAnalyticEdge_DEFINED
9 #define SkAnalyticEdge_DEFINED
10 
11 #include "SkEdge.h"
12 
13 struct SkAnalyticEdge {
14     // Similar to SkEdge, the conic edges will be converted to quadratic edges
15     enum Type {
16         kLine_Type,
17         kQuad_Type,
18         kCubic_Type
19     };
20 
21     SkAnalyticEdge* fNext;
22     SkAnalyticEdge* fPrev;
23 
24     // During aaa_walk_edges, if this edge is a left edge,
25     // then fRiteE is its corresponding right edge. Otherwise it's nullptr.
26     SkAnalyticEdge* fRiteE;
27 
28     SkFixed fX;
29     SkFixed fDX;
30     SkFixed fUpperX;        // The x value when y = fUpperY
31     SkFixed fY;             // The current y
32     SkFixed fUpperY;        // The upper bound of y (our edge is from y = fUpperY to y = fLowerY)
33     SkFixed fLowerY;        // The lower bound of y (our edge is from y = fUpperY to y = fLowerY)
34     SkFixed fDY;            // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0.
35                             // fDY is only used for blitting trapezoids.
36 
37     SkFixed fSavedX;        // For deferred blitting
38     SkFixed fSavedY;        // For deferred blitting
39     SkFixed fSavedDY;       // For deferred blitting
40 
41     int8_t  fCurveCount;    // only used by kQuad(+) and kCubic(-)
42     uint8_t fCurveShift;    // appled to all Dx/DDx/DDDx except for fCubicDShift exception
43     uint8_t fCubicDShift;   // applied to fCDx and fCDy only in cubic
44     int8_t  fWinding;       // 1 or -1
45 
46     static const int kDefaultAccuracy = 2; // default accuracy for snapping
47 
48     static inline SkFixed SnapY(SkFixed y) {
49         const int accuracy = kDefaultAccuracy;
50         // This approach is safer than left shift, round, then right shift
51         return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy);
52     }
53 
54     // Update fX, fY of this edge so fY = y
55     inline void goY(SkFixed y) {
56         if (y == fY + SK_Fixed1) {
57             fX = fX + fDX;
58             fY = y;
59         } else if (y != fY) {
60             // Drop lower digits as our alpha only has 8 bits
61             // (fDX and y - fUpperY may be greater than SK_Fixed1)
62             fX = fUpperX + SkFixedMul(fDX, y - fUpperY);
63             fY = y;
64         }
65     }
66 
67     inline void goY(SkFixed y, int yShift) {
68         SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy);
69         SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift);
70         fY = y;
71         fX += fDX >> yShift;
72     }
73 
74     inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) {
75         fSavedX = x;
76         fSavedY = y;
77         fSavedDY = dY;
78     }
79 
80     inline bool setLine(const SkPoint& p0, const SkPoint& p1);
81     inline bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope);
82 
83     // return true if we're NOT done with this edge
84     bool update(SkFixed last_y, bool sortY = true);
85 
86 #ifdef SK_DEBUG
87     void dump() const {
88         SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n",
89                  fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX),
90                  SkFixedToFloat(fDX), fWinding);
91     }
92 
93     void validate() const {
94          SkASSERT(fPrev && fNext);
95          SkASSERT(fPrev->fNext == this);
96          SkASSERT(fNext->fPrev == this);
97 
98          SkASSERT(fUpperY < fLowerY);
99          SkASSERT(SkAbs32(fWinding) == 1);
100     }
101 #endif
102 };
103 
104 struct SkAnalyticQuadraticEdge : public SkAnalyticEdge {
105     SkQuadraticEdge fQEdge;
106 
107     // snap y to integer points in the middle of the curve to accelerate AAA path filling
108     SkFixed fSnappedX, fSnappedY;
109 
110     bool setQuadratic(const SkPoint pts[3]);
111     bool updateQuadratic();
112     inline void keepContinuous() {
113         // We use fX as the starting x to ensure the continuouty.
114         // Without it, we may break the sorted edge list.
115         SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1);
116         SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump
117         fSnappedX = fX;
118         fSnappedY = fY;
119     }
120 };
121 
122 struct SkAnalyticCubicEdge : public SkAnalyticEdge {
123     SkCubicEdge fCEdge;
124 
125     SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping
126 
127     bool setCubic(const SkPoint pts[4], bool sortY = true);
128     bool updateCubic(bool sortY = true);
129     inline void keepContinuous() {
130         SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1);
131         fCEdge.fCx = fX;
132         fSnappedY = fY;
133     }
134 };
135 
136 bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1) {
137     fRiteE = nullptr;
138 
139     // We must set X/Y using the same way (e.g., times 4, to FDot6, then to Fixed) as Quads/Cubics.
140     // Otherwise the order of the edge might be wrong due to precision limit.
141     const int accuracy = kDefaultAccuracy;
142 #ifdef SK_RASTERIZE_EVEN_ROUNDING
143     SkFixed x0 = SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fX, accuracy)) >> accuracy;
144     SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fY, accuracy)) >> accuracy);
145     SkFixed x1 = SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fX, accuracy)) >> accuracy;
146     SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fY, accuracy)) >> accuracy);
147 #else
148     const int multiplier = (1 << kDefaultAccuracy);
149     SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * multiplier)) >> accuracy;
150     SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * multiplier)) >> accuracy);
151     SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * multiplier)) >> accuracy;
152     SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * multiplier)) >> accuracy);
153 #endif
154 
155     int winding = 1;
156 
157     if (y0 > y1) {
158         SkTSwap(x0, x1);
159         SkTSwap(y0, y1);
160         winding = -1;
161     }
162 
163     // are we a zero-height line?
164     SkFDot6 dy = SkFixedToFDot6(y1 - y0);
165     if (dy == 0) {
166         return false;
167     }
168     SkFDot6 dx = SkFixedToFDot6(x1 - x0);
169     SkFixed slope = QuickSkFDot6Div(dx, dy);
170     SkFixed absSlope = SkAbs32(slope);
171 
172     fX          = x0;
173     fDX         = slope;
174     fUpperX     = x0;
175     fY          = y0;
176     fUpperY     = y0;
177     fLowerY     = y1;
178     fDY         = dx == 0 || slope == 0 ? SK_MaxS32 : absSlope < kInverseTableSize
179                                                     ? QuickFDot6Inverse::Lookup(absSlope)
180                                                     : SkAbs32(QuickSkFDot6Div(dy, dx));
181     fCurveCount = 0;
182     fWinding    = SkToS8(winding);
183     fCurveShift = 0;
184 
185     return true;
186 }
187 
188 struct SkBezier {
189     int fCount; // 2 line, 3 quad, 4 cubic
190     SkPoint fP0;
191     SkPoint fP1;
192 
193     // See if left shift, covert to SkFDot6, and round has the same top and bottom y.
194     // If so, the edge will be empty.
195     static inline bool IsEmpty(SkScalar y0, SkScalar y1, int shift = 2) {
196 #ifdef SK_RASTERIZE_EVEN_ROUNDING
197         return SkScalarRoundToFDot6(y0, shift) == SkScalarRoundToFDot6(y1, shift);
198 #else
199         SkScalar scale = (1 << (shift + 6));
200         return SkFDot6Round(int(y0 * scale)) == SkFDot6Round(int(y1 * scale));
201 #endif
202     }
203 };
204 
205 struct SkLine : public SkBezier {
206     bool set(const SkPoint pts[2]){
207         if (IsEmpty(pts[0].fY, pts[1].fY)) {
208             return false;
209         }
210         fCount = 2;
211         fP0 = pts[0];
212         fP1 = pts[1];
213         return true;
214     }
215 };
216 
217 struct SkQuad : public SkBezier {
218     SkPoint fP2;
219 
220     bool set(const SkPoint pts[3]){
221         if (IsEmpty(pts[0].fY, pts[2].fY)) {
222             return false;
223         }
224         fCount = 3;
225         fP0 = pts[0];
226         fP1 = pts[1];
227         fP2 = pts[2];
228         return true;
229     }
230 };
231 
232 struct SkCubic : public SkBezier {
233     SkPoint fP2;
234     SkPoint fP3;
235 
236     bool set(const SkPoint pts[4]){
237         // We do not chop at y extrema for cubics so pts[0], pts[1], pts[2], pts[3] may not be
238         // monotonic. Therefore, we have to check the emptiness for all three pairs, instead of just
239         // checking IsEmpty(pts[0].fY, pts[3].fY).
240         if (IsEmpty(pts[0].fY, pts[1].fY) && IsEmpty(pts[1].fY, pts[2].fY) &&
241                 IsEmpty(pts[2].fY, pts[3].fY)) {
242             return false;
243         }
244         fCount = 4;
245         fP0 = pts[0];
246         fP1 = pts[1];
247         fP2 = pts[2];
248         fP3 = pts[3];
249         return true;
250     }
251 };
252 
253 #endif
254