1 /*
2  * Copyright 2009 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 
9 #include "SkCubicClipper.h"
10 #include "SkGeometry.h"
11 
12 SkCubicClipper::SkCubicClipper() {
13     fClip.setEmpty();
14 }
15 
16 void SkCubicClipper::setClip(const SkIRect& clip) {
17     // conver to scalars, since that's where we'll see the points
18     fClip.set(clip);
19 }
20 
21 
22 bool SkCubicClipper::ChopMonoAtY(const SkPoint pts[4], SkScalar y, SkScalar* t) {
23     SkScalar ycrv[4];
24     ycrv[0] = pts[0].fY - y;
25     ycrv[1] = pts[1].fY - y;
26     ycrv[2] = pts[2].fY - y;
27     ycrv[3] = pts[3].fY - y;
28 
29 #ifdef NEWTON_RAPHSON    // Quadratic convergence, typically <= 3 iterations.
30     // Initial guess.
31     // TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
32     // is not only monotonic but degenerate.
33     SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
34 
35     // Newton's iterations.
36     const SkScalar tol = SK_Scalar1 / 16384;  // This leaves 2 fixed noise bits.
37     SkScalar t0;
38     const int maxiters = 5;
39     int iters = 0;
40     bool converged;
41     do {
42         t0 = t1;
43         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], t0);
44         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], t0);
45         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], t0);
46         SkScalar y012  = SkScalarInterp(y01,  y12,  t0);
47         SkScalar y123  = SkScalarInterp(y12,  y23,  t0);
48         SkScalar y0123 = SkScalarInterp(y012, y123, t0);
49         SkScalar yder  = (y123 - y012) * 3;
50         // TODO(turk): check for yder==0: horizontal.
51         t1 -= y0123 / yder;
52         converged = SkScalarAbs(t1 - t0) <= tol;  // NaN-safe
53         ++iters;
54     } while (!converged && (iters < maxiters));
55     *t = t1;                  // Return the result.
56 
57     // The result might be valid, even if outside of the range [0, 1], but
58     // we never evaluate a Bezier outside this interval, so we return false.
59     if (t1 < 0 || t1 > SK_Scalar1)
60         return false;         // This shouldn't happen, but check anyway.
61     return converged;
62 
63 #else  // BISECTION    // Linear convergence, typically 16 iterations.
64 
65     // Check that the endpoints straddle zero.
66     SkScalar tNeg, tPos;    // Negative and positive function parameters.
67     if (ycrv[0] < 0) {
68         if (ycrv[3] < 0)
69             return false;
70         tNeg = 0;
71         tPos = SK_Scalar1;
72     } else if (ycrv[0] > 0) {
73         if (ycrv[3] > 0)
74             return false;
75         tNeg = SK_Scalar1;
76         tPos = 0;
77     } else {
78         *t = 0;
79         return true;
80     }
81 
82     const SkScalar tol = SK_Scalar1 / 65536;  // 1 for fixed, 1e-5 for float.
83     int iters = 0;
84     do {
85         SkScalar tMid = (tPos + tNeg) / 2;
86         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], tMid);
87         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], tMid);
88         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], tMid);
89         SkScalar y012  = SkScalarInterp(y01,     y12,     tMid);
90         SkScalar y123  = SkScalarInterp(y12,     y23,     tMid);
91         SkScalar y0123 = SkScalarInterp(y012,    y123,    tMid);
92         if (y0123 == 0) {
93             *t = tMid;
94             return true;
95         }
96         if (y0123 < 0)  tNeg = tMid;
97         else            tPos = tMid;
98         ++iters;
99     } while (!(SkScalarAbs(tPos - tNeg) <= tol));   // Nan-safe
100 
101     *t = (tNeg + tPos) / 2;
102     return true;
103 #endif  // BISECTION
104 }
105 
106 
107 bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) {
108     bool reverse;
109 
110     // we need the data to be monotonically descending in Y
111     if (srcPts[0].fY > srcPts[3].fY) {
112         dst[0] = srcPts[3];
113         dst[1] = srcPts[2];
114         dst[2] = srcPts[1];
115         dst[3] = srcPts[0];
116         reverse = true;
117     } else {
118         memcpy(dst, srcPts, 4 * sizeof(SkPoint));
119         reverse = false;
120     }
121 
122     // are we completely above or below
123     const SkScalar ctop = fClip.fTop;
124     const SkScalar cbot = fClip.fBottom;
125     if (dst[3].fY <= ctop || dst[0].fY >= cbot) {
126         return false;
127     }
128 
129     SkScalar t;
130     SkPoint tmp[7]; // for SkChopCubicAt
131 
132     // are we partially above
133     if (dst[0].fY < ctop && ChopMonoAtY(dst, ctop, &t)) {
134         SkChopCubicAt(dst, tmp, t);
135         dst[0] = tmp[3];
136         dst[1] = tmp[4];
137         dst[2] = tmp[5];
138     }
139 
140     // are we partially below
141     if (dst[3].fY > cbot && ChopMonoAtY(dst, cbot, &t)) {
142         SkChopCubicAt(dst, tmp, t);
143         dst[1] = tmp[1];
144         dst[2] = tmp[2];
145         dst[3] = tmp[3];
146     }
147 
148     if (reverse) {
149         SkTSwap<SkPoint>(dst[0], dst[3]);
150         SkTSwap<SkPoint>(dst[1], dst[2]);
151     }
152     return true;
153 }
154