1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkSLIRGenerator.h"
9 
10 #include "limits.h"
11 #include <unordered_set>
12 
13 #include "SkSLCompiler.h"
14 #include "SkSLParser.h"
15 #include "ast/SkSLASTBoolLiteral.h"
16 #include "ast/SkSLASTFieldSuffix.h"
17 #include "ast/SkSLASTFloatLiteral.h"
18 #include "ast/SkSLASTIndexSuffix.h"
19 #include "ast/SkSLASTIntLiteral.h"
20 #include "ir/SkSLBinaryExpression.h"
21 #include "ir/SkSLBoolLiteral.h"
22 #include "ir/SkSLBreakStatement.h"
23 #include "ir/SkSLConstructor.h"
24 #include "ir/SkSLContinueStatement.h"
25 #include "ir/SkSLDiscardStatement.h"
26 #include "ir/SkSLDoStatement.h"
27 #include "ir/SkSLEnum.h"
28 #include "ir/SkSLExpressionStatement.h"
29 #include "ir/SkSLField.h"
30 #include "ir/SkSLFieldAccess.h"
31 #include "ir/SkSLFloatLiteral.h"
32 #include "ir/SkSLForStatement.h"
33 #include "ir/SkSLFunctionCall.h"
34 #include "ir/SkSLFunctionDeclaration.h"
35 #include "ir/SkSLFunctionDefinition.h"
36 #include "ir/SkSLFunctionReference.h"
37 #include "ir/SkSLIfStatement.h"
38 #include "ir/SkSLIndexExpression.h"
39 #include "ir/SkSLInterfaceBlock.h"
40 #include "ir/SkSLIntLiteral.h"
41 #include "ir/SkSLLayout.h"
42 #include "ir/SkSLPostfixExpression.h"
43 #include "ir/SkSLPrefixExpression.h"
44 #include "ir/SkSLReturnStatement.h"
45 #include "ir/SkSLSetting.h"
46 #include "ir/SkSLSwitchCase.h"
47 #include "ir/SkSLSwitchStatement.h"
48 #include "ir/SkSLSwizzle.h"
49 #include "ir/SkSLTernaryExpression.h"
50 #include "ir/SkSLUnresolvedFunction.h"
51 #include "ir/SkSLVariable.h"
52 #include "ir/SkSLVarDeclarations.h"
53 #include "ir/SkSLVarDeclarationsStatement.h"
54 #include "ir/SkSLVariableReference.h"
55 #include "ir/SkSLWhileStatement.h"
56 
57 namespace SkSL {
58 
59 class AutoSymbolTable {
60 public:
AutoSymbolTable(IRGenerator * ir)61     AutoSymbolTable(IRGenerator* ir)
62     : fIR(ir)
63     , fPrevious(fIR->fSymbolTable) {
64         fIR->pushSymbolTable();
65     }
66 
~AutoSymbolTable()67     ~AutoSymbolTable() {
68         fIR->popSymbolTable();
69         ASSERT(fPrevious == fIR->fSymbolTable);
70     }
71 
72     IRGenerator* fIR;
73     std::shared_ptr<SymbolTable> fPrevious;
74 };
75 
76 class AutoLoopLevel {
77 public:
AutoLoopLevel(IRGenerator * ir)78     AutoLoopLevel(IRGenerator* ir)
79     : fIR(ir) {
80         fIR->fLoopLevel++;
81     }
82 
~AutoLoopLevel()83     ~AutoLoopLevel() {
84         fIR->fLoopLevel--;
85     }
86 
87     IRGenerator* fIR;
88 };
89 
90 class AutoSwitchLevel {
91 public:
AutoSwitchLevel(IRGenerator * ir)92     AutoSwitchLevel(IRGenerator* ir)
93     : fIR(ir) {
94         fIR->fSwitchLevel++;
95     }
96 
~AutoSwitchLevel()97     ~AutoSwitchLevel() {
98         fIR->fSwitchLevel--;
99     }
100 
101     IRGenerator* fIR;
102 };
103 
IRGenerator(const Context * context,std::shared_ptr<SymbolTable> symbolTable,ErrorReporter & errorReporter)104 IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable,
105                          ErrorReporter& errorReporter)
106 : fContext(*context)
107 , fCurrentFunction(nullptr)
108 , fRootSymbolTable(symbolTable)
109 , fSymbolTable(symbolTable)
110 , fLoopLevel(0)
111 , fSwitchLevel(0)
112 , fTmpCount(0)
113 , fErrors(errorReporter) {}
114 
pushSymbolTable()115 void IRGenerator::pushSymbolTable() {
116     fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), &fErrors));
117 }
118 
popSymbolTable()119 void IRGenerator::popSymbolTable() {
120     fSymbolTable = fSymbolTable->fParent;
121 }
122 
fill_caps(const SKSL_CAPS_CLASS & caps,std::unordered_map<String,Program::Settings::Value> * capsMap)123 static void fill_caps(const SKSL_CAPS_CLASS& caps,
124                       std::unordered_map<String, Program::Settings::Value>* capsMap) {
125 #define CAP(name) capsMap->insert(std::make_pair(String(#name), \
126                                   Program::Settings::Value(caps.name())));
127     CAP(fbFetchSupport);
128     CAP(fbFetchNeedsCustomOutput);
129     CAP(dropsTileOnZeroDivide);
130     CAP(flatInterpolationSupport);
131     CAP(noperspectiveInterpolationSupport);
132     CAP(externalTextureSupport);
133     CAP(texelFetchSupport);
134     CAP(imageLoadStoreSupport);
135     CAP(mustEnableAdvBlendEqs);
136     CAP(mustEnableSpecificAdvBlendEqs);
137     CAP(mustDeclareFragmentShaderOutput);
138     CAP(canUseAnyFunctionInShader);
139     CAP(floatIs32Bits);
140     CAP(integerSupport);
141 #undef CAP
142 }
143 
start(const Program::Settings * settings)144 void IRGenerator::start(const Program::Settings* settings) {
145     fSettings = settings;
146     fCapsMap.clear();
147     if (settings->fCaps) {
148         fill_caps(*settings->fCaps, &fCapsMap);
149     }
150     this->pushSymbolTable();
151     fInvocations = -1;
152     fInputs.reset();
153     fSkPerVertex = nullptr;
154     fRTAdjust = nullptr;
155     fRTAdjustInterfaceBlock = nullptr;
156 }
157 
finish()158 void IRGenerator::finish() {
159     this->popSymbolTable();
160     fSettings = nullptr;
161 }
162 
convertExtension(const ASTExtension & extension)163 std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& extension) {
164     return std::unique_ptr<Extension>(new Extension(extension.fOffset, extension.fName));
165 }
166 
convertStatement(const ASTStatement & statement)167 std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& statement) {
168     switch (statement.fKind) {
169         case ASTStatement::kBlock_Kind:
170             return this->convertBlock((ASTBlock&) statement);
171         case ASTStatement::kVarDeclaration_Kind:
172             return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement);
173         case ASTStatement::kExpression_Kind: {
174             std::unique_ptr<Statement> result =
175                               this->convertExpressionStatement((ASTExpressionStatement&) statement);
176             if (fRTAdjust && Program::kGeometry_Kind == fKind) {
177                 ASSERT(result->fKind == Statement::kExpression_Kind);
178                 Expression& expr = *((ExpressionStatement&) *result).fExpression;
179                 if (expr.fKind == Expression::kFunctionCall_Kind) {
180                     FunctionCall& fc = (FunctionCall&) expr;
181                     if (fc.fFunction.fBuiltin && fc.fFunction.fName == "EmitVertex") {
182                         std::vector<std::unique_ptr<Statement>> statements;
183                         statements.push_back(getNormalizeSkPositionCode());
184                         statements.push_back(std::move(result));
185                         return std::unique_ptr<Block>(new Block(statement.fOffset,
186                                                                 std::move(statements),
187                                                                 fSymbolTable));
188                     }
189                 }
190             }
191             return result;
192         }
193         case ASTStatement::kIf_Kind:
194             return this->convertIf((ASTIfStatement&) statement);
195         case ASTStatement::kFor_Kind:
196             return this->convertFor((ASTForStatement&) statement);
197         case ASTStatement::kWhile_Kind:
198             return this->convertWhile((ASTWhileStatement&) statement);
199         case ASTStatement::kDo_Kind:
200             return this->convertDo((ASTDoStatement&) statement);
201         case ASTStatement::kSwitch_Kind:
202             return this->convertSwitch((ASTSwitchStatement&) statement);
203         case ASTStatement::kReturn_Kind:
204             return this->convertReturn((ASTReturnStatement&) statement);
205         case ASTStatement::kBreak_Kind:
206             return this->convertBreak((ASTBreakStatement&) statement);
207         case ASTStatement::kContinue_Kind:
208             return this->convertContinue((ASTContinueStatement&) statement);
209         case ASTStatement::kDiscard_Kind:
210             return this->convertDiscard((ASTDiscardStatement&) statement);
211         default:
212             ABORT("unsupported statement type: %d\n", statement.fKind);
213     }
214 }
215 
convertBlock(const ASTBlock & block)216 std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) {
217     AutoSymbolTable table(this);
218     std::vector<std::unique_ptr<Statement>> statements;
219     for (size_t i = 0; i < block.fStatements.size(); i++) {
220         std::unique_ptr<Statement> statement = this->convertStatement(*block.fStatements[i]);
221         if (!statement) {
222             return nullptr;
223         }
224         statements.push_back(std::move(statement));
225     }
226     return std::unique_ptr<Block>(new Block(block.fOffset, std::move(statements), fSymbolTable));
227 }
228 
convertVarDeclarationStatement(const ASTVarDeclarationStatement & s)229 std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(
230                                                               const ASTVarDeclarationStatement& s) {
231     auto decl = this->convertVarDeclarations(*s.fDeclarations, Variable::kLocal_Storage);
232     if (!decl) {
233         return nullptr;
234     }
235     return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl)));
236 }
237 
convertVarDeclarations(const ASTVarDeclarations & decl,Variable::Storage storage)238 std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTVarDeclarations& decl,
239                                                                      Variable::Storage storage) {
240     std::vector<std::unique_ptr<VarDeclaration>> variables;
241     const Type* baseType = this->convertType(*decl.fType);
242     if (!baseType) {
243         return nullptr;
244     }
245     for (const auto& varDecl : decl.fVars) {
246         const Type* type = baseType;
247         std::vector<std::unique_ptr<Expression>> sizes;
248         for (const auto& rawSize : varDecl.fSizes) {
249             if (rawSize) {
250                 auto size = this->coerce(this->convertExpression(*rawSize), *fContext.fInt_Type);
251                 if (!size) {
252                     return nullptr;
253                 }
254                 String name(type->fName);
255                 int64_t count;
256                 if (size->fKind == Expression::kIntLiteral_Kind) {
257                     count = ((IntLiteral&) *size).fValue;
258                     if (count <= 0) {
259                         fErrors.error(size->fOffset, "array size must be positive");
260                     }
261                     name += "[" + to_string(count) + "]";
262                 } else {
263                     count = -1;
264                     name += "[]";
265                 }
266                 type = new Type(name, Type::kArray_Kind, *type, (int) count);
267                 fSymbolTable->takeOwnership((Type*) type);
268                 sizes.push_back(std::move(size));
269             } else {
270                 type = new Type(type->name() + "[]", Type::kArray_Kind, *type, -1);
271                 fSymbolTable->takeOwnership((Type*) type);
272                 sizes.push_back(nullptr);
273             }
274         }
275         auto var = std::unique_ptr<Variable>(new Variable(decl.fOffset, decl.fModifiers,
276                                                           varDecl.fName, *type, storage));
277         if (var->fName == Compiler::RTADJUST_NAME) {
278             ASSERT(!fRTAdjust);
279             ASSERT(var->fType == *fContext.fFloat4_Type);
280             fRTAdjust = var.get();
281         }
282         std::unique_ptr<Expression> value;
283         if (varDecl.fValue) {
284             value = this->convertExpression(*varDecl.fValue);
285             if (!value) {
286                 return nullptr;
287             }
288             value = this->coerce(std::move(value), *type);
289             if (!value) {
290                 return nullptr;
291             }
292             var->fWriteCount = 1;
293             var->fInitialValue = value.get();
294         }
295         if (storage == Variable::kGlobal_Storage && varDecl.fName == "sk_FragColor" &&
296             (*fSymbolTable)[varDecl.fName]) {
297             // already defined, ignore
298         } else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[varDecl.fName] &&
299                    (*fSymbolTable)[varDecl.fName]->fKind == Symbol::kVariable_Kind &&
300                    ((Variable*) (*fSymbolTable)[varDecl.fName])->fModifiers.fLayout.fBuiltin >= 0) {
301             // already defined, just update the modifiers
302             Variable* old = (Variable*) (*fSymbolTable)[varDecl.fName];
303             old->fModifiers = var->fModifiers;
304         } else {
305             variables.emplace_back(new VarDeclaration(var.get(), std::move(sizes),
306                                                       std::move(value)));
307             fSymbolTable->add(varDecl.fName, std::move(var));
308         }
309     }
310     return std::unique_ptr<VarDeclarations>(new VarDeclarations(decl.fOffset,
311                                                                 baseType,
312                                                                 std::move(variables)));
313 }
314 
convertModifiersDeclaration(const ASTModifiersDeclaration & m)315 std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(
316                                                                  const ASTModifiersDeclaration& m) {
317     Modifiers modifiers = m.fModifiers;
318     if (modifiers.fLayout.fInvocations != -1) {
319         fInvocations = modifiers.fLayout.fInvocations;
320         if (fSettings->fCaps && !fSettings->fCaps->gsInvocationsSupport()) {
321             modifiers.fLayout.fInvocations = -1;
322             Variable* invocationId = (Variable*) (*fSymbolTable)["sk_InvocationID"];
323             ASSERT(invocationId);
324             invocationId->fModifiers.fLayout.fBuiltin = -1;
325             if (modifiers.fLayout.description() == "") {
326                 return nullptr;
327             }
328         }
329     }
330     if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fSettings->fCaps &&
331         !fSettings->fCaps->gsInvocationsSupport()) {
332         modifiers.fLayout.fMaxVertices *= fInvocations;
333     }
334     return std::unique_ptr<ModifiersDeclaration>(new ModifiersDeclaration(modifiers));
335 }
336 
convertIf(const ASTIfStatement & s)337 std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) {
338     std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.fTest),
339                                                     *fContext.fBool_Type);
340     if (!test) {
341         return nullptr;
342     }
343     std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue);
344     if (!ifTrue) {
345         return nullptr;
346     }
347     std::unique_ptr<Statement> ifFalse;
348     if (s.fIfFalse) {
349         ifFalse = this->convertStatement(*s.fIfFalse);
350         if (!ifFalse) {
351             return nullptr;
352         }
353     }
354     if (test->fKind == Expression::kBoolLiteral_Kind) {
355         // static boolean value, fold down to a single branch
356         if (((BoolLiteral&) *test).fValue) {
357             return ifTrue;
358         } else if (s.fIfFalse) {
359             return ifFalse;
360         } else {
361             // False & no else clause. Not an error, so don't return null!
362             std::vector<std::unique_ptr<Statement>> empty;
363             return std::unique_ptr<Statement>(new Block(s.fOffset, std::move(empty),
364                                                         fSymbolTable));
365         }
366     }
367     return std::unique_ptr<Statement>(new IfStatement(s.fOffset, s.fIsStatic, std::move(test),
368                                                       std::move(ifTrue), std::move(ifFalse)));
369 }
370 
convertFor(const ASTForStatement & f)371 std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) {
372     AutoLoopLevel level(this);
373     AutoSymbolTable table(this);
374     std::unique_ptr<Statement> initializer;
375     if (f.fInitializer) {
376         initializer = this->convertStatement(*f.fInitializer);
377         if (!initializer) {
378             return nullptr;
379         }
380     }
381     std::unique_ptr<Expression> test;
382     if (f.fTest) {
383         test = this->coerce(this->convertExpression(*f.fTest), *fContext.fBool_Type);
384         if (!test) {
385             return nullptr;
386         }
387     }
388     std::unique_ptr<Expression> next;
389     if (f.fNext) {
390         next = this->convertExpression(*f.fNext);
391         if (!next) {
392             return nullptr;
393         }
394         this->checkValid(*next);
395     }
396     std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement);
397     if (!statement) {
398         return nullptr;
399     }
400     return std::unique_ptr<Statement>(new ForStatement(f.fOffset, std::move(initializer),
401                                                        std::move(test), std::move(next),
402                                                        std::move(statement), fSymbolTable));
403 }
404 
convertWhile(const ASTWhileStatement & w)405 std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) {
406     AutoLoopLevel level(this);
407     std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.fTest),
408                                                     *fContext.fBool_Type);
409     if (!test) {
410         return nullptr;
411     }
412     std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement);
413     if (!statement) {
414         return nullptr;
415     }
416     return std::unique_ptr<Statement>(new WhileStatement(w.fOffset, std::move(test),
417                                                          std::move(statement)));
418 }
419 
convertDo(const ASTDoStatement & d)420 std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) {
421     AutoLoopLevel level(this);
422     std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.fTest),
423                                                     *fContext.fBool_Type);
424     if (!test) {
425         return nullptr;
426     }
427     std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement);
428     if (!statement) {
429         return nullptr;
430     }
431     return std::unique_ptr<Statement>(new DoStatement(d.fOffset, std::move(statement),
432                                                       std::move(test)));
433 }
434 
convertSwitch(const ASTSwitchStatement & s)435 std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTSwitchStatement& s) {
436     AutoSwitchLevel level(this);
437     std::unique_ptr<Expression> value = this->convertExpression(*s.fValue);
438     if (!value) {
439         return nullptr;
440     }
441     if (value->fType != *fContext.fUInt_Type && value->fType.kind() != Type::kEnum_Kind) {
442         value = this->coerce(std::move(value), *fContext.fInt_Type);
443         if (!value) {
444             return nullptr;
445         }
446     }
447     AutoSymbolTable table(this);
448     std::unordered_set<int> caseValues;
449     std::vector<std::unique_ptr<SwitchCase>> cases;
450     for (const auto& c : s.fCases) {
451         std::unique_ptr<Expression> caseValue;
452         if (c->fValue) {
453             caseValue = this->convertExpression(*c->fValue);
454             if (!caseValue) {
455                 return nullptr;
456             }
457             caseValue = this->coerce(std::move(caseValue), value->fType);
458             if (!caseValue) {
459                 return nullptr;
460             }
461             if (!caseValue->isConstant()) {
462                 fErrors.error(caseValue->fOffset, "case value must be a constant");
463                 return nullptr;
464             }
465             int64_t v;
466             this->getConstantInt(*caseValue, &v);
467             if (caseValues.find(v) != caseValues.end()) {
468                 fErrors.error(caseValue->fOffset, "duplicate case value");
469             }
470             caseValues.insert(v);
471         }
472         std::vector<std::unique_ptr<Statement>> statements;
473         for (const auto& s : c->fStatements) {
474             std::unique_ptr<Statement> converted = this->convertStatement(*s);
475             if (!converted) {
476                 return nullptr;
477             }
478             statements.push_back(std::move(converted));
479         }
480         cases.emplace_back(new SwitchCase(c->fOffset, std::move(caseValue),
481                                           std::move(statements)));
482     }
483     return std::unique_ptr<Statement>(new SwitchStatement(s.fOffset, s.fIsStatic,
484                                                           std::move(value), std::move(cases),
485                                                           fSymbolTable));
486 }
487 
convertExpressionStatement(const ASTExpressionStatement & s)488 std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(
489                                                                   const ASTExpressionStatement& s) {
490     std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression);
491     if (!e) {
492         return nullptr;
493     }
494     this->checkValid(*e);
495     return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
496 }
497 
convertReturn(const ASTReturnStatement & r)498 std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) {
499     ASSERT(fCurrentFunction);
500     // early returns from a vertex main function will bypass the sk_Position normalization, so
501     // assert that we aren't doing that. It is of course possible to fix this by adding a
502     // normalization before each return, but it will probably never actually be necessary.
503     ASSERT(Program::kVertex_Kind != fKind || !fRTAdjust || "main" != fCurrentFunction->fName);
504     if (r.fExpression) {
505         std::unique_ptr<Expression> result = this->convertExpression(*r.fExpression);
506         if (!result) {
507             return nullptr;
508         }
509         if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) {
510             fErrors.error(result->fOffset, "may not return a value from a void function");
511         } else {
512             result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
513             if (!result) {
514                 return nullptr;
515             }
516         }
517         return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
518     } else {
519         if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) {
520             fErrors.error(r.fOffset, "expected function to return '" +
521                                      fCurrentFunction->fReturnType.description() + "'");
522         }
523         return std::unique_ptr<Statement>(new ReturnStatement(r.fOffset));
524     }
525 }
526 
convertBreak(const ASTBreakStatement & b)527 std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) {
528     if (fLoopLevel > 0 || fSwitchLevel > 0) {
529         return std::unique_ptr<Statement>(new BreakStatement(b.fOffset));
530     } else {
531         fErrors.error(b.fOffset, "break statement must be inside a loop or switch");
532         return nullptr;
533     }
534 }
535 
convertContinue(const ASTContinueStatement & c)536 std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStatement& c) {
537     if (fLoopLevel > 0) {
538         return std::unique_ptr<Statement>(new ContinueStatement(c.fOffset));
539     } else {
540         fErrors.error(c.fOffset, "continue statement must be inside a loop");
541         return nullptr;
542     }
543 }
544 
convertDiscard(const ASTDiscardStatement & d)545 std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement& d) {
546     return std::unique_ptr<Statement>(new DiscardStatement(d.fOffset));
547 }
548 
applyInvocationIDWorkaround(std::unique_ptr<Block> main)549 std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
550     Layout invokeLayout;
551     Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
552     FunctionDeclaration* invokeDecl = new FunctionDeclaration(-1,
553                                                               invokeModifiers,
554                                                               "_invoke",
555                                                               std::vector<const Variable*>(),
556                                                               *fContext.fVoid_Type);
557     fProgramElements->push_back(std::unique_ptr<ProgramElement>(
558                                          new FunctionDefinition(-1, *invokeDecl, std::move(main))));
559     fSymbolTable->add(invokeDecl->fName, std::unique_ptr<FunctionDeclaration>(invokeDecl));
560 
561     std::vector<std::unique_ptr<VarDeclaration>> variables;
562     Variable* loopIdx = (Variable*) (*fSymbolTable)["sk_InvocationID"];
563     ASSERT(loopIdx);
564     std::unique_ptr<Expression> test(new BinaryExpression(-1,
565                     std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
566                     Token::LT,
567                     std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, fInvocations)),
568                     *fContext.fBool_Type));
569     std::unique_ptr<Expression> next(new PostfixExpression(
570                 std::unique_ptr<Expression>(
571                                       new VariableReference(-1,
572                                                             *loopIdx,
573                                                             VariableReference::kReadWrite_RefKind)),
574                 Token::PLUSPLUS));
575     ASTIdentifier endPrimitiveID = ASTIdentifier(-1, "EndPrimitive");
576     std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
577     ASSERT(endPrimitive);
578 
579     std::vector<std::unique_ptr<Statement>> loopBody;
580     std::vector<std::unique_ptr<Expression>> invokeArgs;
581     loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
582                                           this->call(-1,
583                                                      *invokeDecl,
584                                                      std::vector<std::unique_ptr<Expression>>()))));
585     loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
586                                           this->call(-1,
587                                                      std::move(endPrimitive),
588                                                      std::vector<std::unique_ptr<Expression>>()))));
589     std::unique_ptr<Expression> assignment(new BinaryExpression(-1,
590                     std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
591                     Token::EQ,
592                     std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, 0)),
593                     *fContext.fInt_Type));
594     std::unique_ptr<Statement> initializer(new ExpressionStatement(std::move(assignment)));
595     std::unique_ptr<Statement> loop = std::unique_ptr<Statement>(
596                 new ForStatement(-1,
597                                  std::move(initializer),
598                                  std::move(test),
599                                  std::move(next),
600                                  std::unique_ptr<Block>(new Block(-1, std::move(loopBody))),
601                                  fSymbolTable));
602     std::vector<std::unique_ptr<Statement>> children;
603     children.push_back(std::move(loop));
604     return std::unique_ptr<Block>(new Block(-1, std::move(children)));
605 }
606 
getNormalizeSkPositionCode()607 std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
608     // sk_Position = float4(sk_Position.x * rtAdjust.x + sk_Position.w * rtAdjust.y,
609     //                      sk_Position.y * rtAdjust.z + sk_Position.w * rtAdjust.w,
610     //                      0,
611     //                      sk_Position.w);
612     ASSERT(fSkPerVertex && fRTAdjust);
613     #define REF(var) std::unique_ptr<Expression>(\
614                                   new VariableReference(-1, *var, VariableReference::kRead_RefKind))
615     #define FIELD(var, idx) std::unique_ptr<Expression>(\
616                     new FieldAccess(REF(var), idx, FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
617     #define POS std::unique_ptr<Expression>(new FieldAccess(REF(fSkPerVertex), 0, \
618                                                    FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
619     #define ADJUST (fRTAdjustInterfaceBlock ? \
620                     FIELD(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) : \
621                     REF(fRTAdjust))
622     #define SWIZZLE(expr, field) std::unique_ptr<Expression>(new Swizzle(fContext, expr, { field }))
623     #define OP(left, op, right) std::unique_ptr<Expression>(\
624                                    new BinaryExpression(-1, left, op, right, *fContext.fFloat_Type))
625     std::vector<std::unique_ptr<Expression>> children;
626     children.push_back(OP(OP(SWIZZLE(POS, 0), Token::STAR, SWIZZLE(ADJUST, 0)),
627                           Token::PLUS,
628                           OP(SWIZZLE(POS, 3), Token::STAR, SWIZZLE(ADJUST, 1))));
629     children.push_back(OP(OP(SWIZZLE(POS, 1), Token::STAR, SWIZZLE(ADJUST, 2)),
630                           Token::PLUS,
631                           OP(SWIZZLE(POS, 3), Token::STAR, SWIZZLE(ADJUST, 3))));
632     children.push_back(std::unique_ptr<Expression>(new FloatLiteral(fContext, -1, 0.0)));
633     children.push_back(SWIZZLE(POS, 3));
634     std::unique_ptr<Expression> result = OP(POS, Token::EQ,
635                                  std::unique_ptr<Expression>(new Constructor(-1,
636                                                                              *fContext.fFloat4_Type,
637                                                                              std::move(children))));
638     return std::unique_ptr<Statement>(new ExpressionStatement(std::move(result)));
639 }
640 
convertFunction(const ASTFunction & f)641 void IRGenerator::convertFunction(const ASTFunction& f) {
642     const Type* returnType = this->convertType(*f.fReturnType);
643     if (!returnType) {
644         return;
645     }
646     std::vector<const Variable*> parameters;
647     for (const auto& param : f.fParameters) {
648         const Type* type = this->convertType(*param->fType);
649         if (!type) {
650             return;
651         }
652         for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) {
653             int size = param->fSizes[j];
654             String name = type->name() + "[" + to_string(size) + "]";
655             Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size);
656             fSymbolTable->takeOwnership(newType);
657             type = newType;
658         }
659         StringFragment name = param->fName;
660         Variable* var = new Variable(param->fOffset, param->fModifiers, name, *type,
661                                      Variable::kParameter_Storage);
662         fSymbolTable->takeOwnership(var);
663         parameters.push_back(var);
664     }
665 
666     // find existing declaration
667     const FunctionDeclaration* decl = nullptr;
668     auto entry = (*fSymbolTable)[f.fName];
669     if (entry) {
670         std::vector<const FunctionDeclaration*> functions;
671         switch (entry->fKind) {
672             case Symbol::kUnresolvedFunction_Kind:
673                 functions = ((UnresolvedFunction*) entry)->fFunctions;
674                 break;
675             case Symbol::kFunctionDeclaration_Kind:
676                 functions.push_back((FunctionDeclaration*) entry);
677                 break;
678             default:
679                 fErrors.error(f.fOffset, "symbol '" + f.fName + "' was already defined");
680                 return;
681         }
682         for (const auto& other : functions) {
683             ASSERT(other->fName == f.fName);
684             if (parameters.size() == other->fParameters.size()) {
685                 bool match = true;
686                 for (size_t i = 0; i < parameters.size(); i++) {
687                     if (parameters[i]->fType != other->fParameters[i]->fType) {
688                         match = false;
689                         break;
690                     }
691                 }
692                 if (match) {
693                     if (*returnType != other->fReturnType) {
694                         FunctionDeclaration newDecl(f.fOffset, f.fModifiers, f.fName, parameters,
695                                                     *returnType);
696                         fErrors.error(f.fOffset, "functions '" + newDecl.description() +
697                                                  "' and '" + other->description() +
698                                                  "' differ only in return type");
699                         return;
700                     }
701                     decl = other;
702                     for (size_t i = 0; i < parameters.size(); i++) {
703                         if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
704                             fErrors.error(f.fOffset, "modifiers on parameter " +
705                                                      to_string((uint64_t) i + 1) +
706                                                      " differ between declaration and "
707                                                      "definition");
708                             return;
709                         }
710                     }
711                     if (other->fDefined) {
712                         fErrors.error(f.fOffset, "duplicate definition of " +
713                                                  other->description());
714                     }
715                     break;
716                 }
717             }
718         }
719     }
720     if (!decl) {
721         // couldn't find an existing declaration
722         auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDeclaration(f.fOffset,
723                                                                                     f.fModifiers,
724                                                                                     f.fName,
725                                                                                     parameters,
726                                                                                     *returnType));
727         decl = newDecl.get();
728         fSymbolTable->add(decl->fName, std::move(newDecl));
729     }
730     if (f.fBody) {
731         ASSERT(!fCurrentFunction);
732         fCurrentFunction = decl;
733         decl->fDefined = true;
734         std::shared_ptr<SymbolTable> old = fSymbolTable;
735         AutoSymbolTable table(this);
736         for (size_t i = 0; i < parameters.size(); i++) {
737             fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]);
738         }
739         bool needInvocationIDWorkaround = fInvocations != -1 && f.fName == "main" &&
740                                           fSettings->fCaps &&
741                                           !fSettings->fCaps->gsInvocationsSupport();
742         ASSERT(!fExtraVars.size());
743         std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
744         for (auto& v : fExtraVars) {
745             body->fStatements.insert(body->fStatements.begin(), std::move(v));
746         }
747         fExtraVars.clear();
748         fCurrentFunction = nullptr;
749         if (!body) {
750             return;
751         }
752         if (needInvocationIDWorkaround) {
753             body = this->applyInvocationIDWorkaround(std::move(body));
754         }
755         // conservatively assume all user-defined functions have side effects
756         ((Modifiers&) decl->fModifiers).fFlags |= Modifiers::kHasSideEffects_Flag;
757         if (Program::kVertex_Kind == fKind && f.fName == "main" && fRTAdjust) {
758             body->fStatements.insert(body->fStatements.end(), this->getNormalizeSkPositionCode());
759         }
760         fProgramElements->push_back(std::unique_ptr<FunctionDefinition>(
761                                         new FunctionDefinition(f.fOffset, *decl, std::move(body))));
762     }
763 }
764 
convertInterfaceBlock(const ASTInterfaceBlock & intf)765 std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) {
766     std::shared_ptr<SymbolTable> old = fSymbolTable;
767     this->pushSymbolTable();
768     std::shared_ptr<SymbolTable> symbols = fSymbolTable;
769     std::vector<Type::Field> fields;
770     bool haveRuntimeArray = false;
771     bool foundRTAdjust = false;
772     for (size_t i = 0; i < intf.fDeclarations.size(); i++) {
773         std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations(
774                                                                          *intf.fDeclarations[i],
775                                                                          Variable::kGlobal_Storage);
776         if (!decl) {
777             return nullptr;
778         }
779         for (const auto& stmt : decl->fVars) {
780             VarDeclaration& vd = (VarDeclaration&) *stmt;
781             if (haveRuntimeArray) {
782                 fErrors.error(decl->fOffset,
783                               "only the last entry in an interface block may be a runtime-sized "
784                               "array");
785             }
786             if (vd.fVar == fRTAdjust) {
787                 foundRTAdjust = true;
788                 ASSERT(vd.fVar->fType == *fContext.fFloat4_Type);
789                 fRTAdjustFieldIndex = fields.size();
790             }
791             fields.push_back(Type::Field(vd.fVar->fModifiers, vd.fVar->fName,
792                                          &vd.fVar->fType));
793             if (vd.fValue) {
794                 fErrors.error(decl->fOffset,
795                               "initializers are not permitted on interface block fields");
796             }
797             if (vd.fVar->fModifiers.fFlags & (Modifiers::kIn_Flag |
798                                                 Modifiers::kOut_Flag |
799                                                 Modifiers::kUniform_Flag |
800                                                 Modifiers::kBuffer_Flag |
801                                                 Modifiers::kConst_Flag)) {
802                 fErrors.error(decl->fOffset,
803                               "interface block fields may not have storage qualifiers");
804             }
805             if (vd.fVar->fType.kind() == Type::kArray_Kind &&
806                 vd.fVar->fType.columns() == -1) {
807                 haveRuntimeArray = true;
808             }
809         }
810     }
811     this->popSymbolTable();
812     Type* type = new Type(intf.fOffset, intf.fTypeName, fields);
813     old->takeOwnership(type);
814     std::vector<std::unique_ptr<Expression>> sizes;
815     for (const auto& size : intf.fSizes) {
816         if (size) {
817             std::unique_ptr<Expression> converted = this->convertExpression(*size);
818             if (!converted) {
819                 return nullptr;
820             }
821             String name = type->fName;
822             int64_t count;
823             if (converted->fKind == Expression::kIntLiteral_Kind) {
824                 count = ((IntLiteral&) *converted).fValue;
825                 if (count <= 0) {
826                     fErrors.error(converted->fOffset, "array size must be positive");
827                 }
828                 name += "[" + to_string(count) + "]";
829             } else {
830                 count = -1;
831                 name += "[]";
832             }
833             type = new Type(name, Type::kArray_Kind, *type, (int) count);
834             symbols->takeOwnership((Type*) type);
835             sizes.push_back(std::move(converted));
836         } else {
837             type = new Type(type->name() + "[]", Type::kArray_Kind, *type, -1);
838             symbols->takeOwnership((Type*) type);
839             sizes.push_back(nullptr);
840         }
841     }
842     Variable* var = new Variable(intf.fOffset, intf.fModifiers,
843                                  intf.fInstanceName.fLength ? intf.fInstanceName : intf.fTypeName,
844                                  *type, Variable::kGlobal_Storage);
845     if (foundRTAdjust) {
846         fRTAdjustInterfaceBlock = var;
847     }
848     old->takeOwnership(var);
849     if (intf.fInstanceName.fLength) {
850         old->addWithoutOwnership(intf.fInstanceName, var);
851     } else {
852         for (size_t i = 0; i < fields.size(); i++) {
853             old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fOffset, *var,
854                                                                        (int) i)));
855         }
856     }
857     if (var->fName == Compiler::PERVERTEX_NAME) {
858         ASSERT(!fSkPerVertex);
859         fSkPerVertex = var;
860     }
861     return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fOffset,
862                                                               var,
863                                                               intf.fTypeName,
864                                                               intf.fInstanceName,
865                                                               std::move(sizes),
866                                                               symbols));
867 }
868 
getConstantInt(const Expression & value,int64_t * out)869 void IRGenerator::getConstantInt(const Expression& value, int64_t* out) {
870     switch (value.fKind) {
871         case Expression::kIntLiteral_Kind:
872             *out = ((const IntLiteral&) value).fValue;
873             break;
874         case Expression::kVariableReference_Kind: {
875             const Variable& var = ((VariableReference&) value).fVariable;
876             if ((var.fModifiers.fFlags & Modifiers::kConst_Flag) &&
877                 var.fInitialValue) {
878                 this->getConstantInt(*var.fInitialValue, out);
879             }
880             break;
881         }
882         default:
883             fErrors.error(value.fOffset, "expected a constant int");
884     }
885 }
886 
convertEnum(const ASTEnum & e)887 void IRGenerator::convertEnum(const ASTEnum& e) {
888     std::vector<Variable*> variables;
889     int64_t currentValue = 0;
890     Layout layout;
891     ASTType enumType(e.fOffset, e.fTypeName, ASTType::kIdentifier_Kind, {});
892     const Type* type = this->convertType(enumType);
893     Modifiers modifiers(layout, Modifiers::kConst_Flag);
894     std::shared_ptr<SymbolTable> symbols(new SymbolTable(fSymbolTable, &fErrors));
895     fSymbolTable = symbols;
896     for (size_t i = 0; i < e.fNames.size(); i++) {
897         std::unique_ptr<Expression> value;
898         if (e.fValues[i]) {
899             value = this->convertExpression(*e.fValues[i]);
900             if (!value) {
901                 fSymbolTable = symbols->fParent;
902                 return;
903             }
904             this->getConstantInt(*value, &currentValue);
905         }
906         value = std::unique_ptr<Expression>(new IntLiteral(fContext, e.fOffset, currentValue));
907         ++currentValue;
908         auto var = std::unique_ptr<Variable>(new Variable(e.fOffset, modifiers, e.fNames[i],
909                                                           *type, Variable::kGlobal_Storage,
910                                                           value.get()));
911         variables.push_back(var.get());
912         symbols->add(e.fNames[i], std::move(var));
913         symbols->takeOwnership(value.release());
914     }
915     fProgramElements->push_back(std::unique_ptr<ProgramElement>(new Enum(e.fOffset, e.fTypeName,
916                                                                          symbols)));
917     fSymbolTable = symbols->fParent;
918 }
919 
convertType(const ASTType & type)920 const Type* IRGenerator::convertType(const ASTType& type) {
921     const Symbol* result = (*fSymbolTable)[type.fName];
922     if (result && result->fKind == Symbol::kType_Kind) {
923         for (int size : type.fSizes) {
924             String name(result->fName);
925             name += "[";
926             if (size != -1) {
927                 name += to_string(size);
928             }
929             name += "]";
930             result = new Type(name, Type::kArray_Kind, (const Type&) *result, size);
931             fSymbolTable->takeOwnership((Type*) result);
932         }
933         return (const Type*) result;
934     }
935     fErrors.error(type.fOffset, "unknown type '" + type.fName + "'");
936     return nullptr;
937 }
938 
convertExpression(const ASTExpression & expr)939 std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) {
940     switch (expr.fKind) {
941         case ASTExpression::kIdentifier_Kind:
942             return this->convertIdentifier((ASTIdentifier&) expr);
943         case ASTExpression::kBool_Kind:
944             return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset,
945                                                                ((ASTBoolLiteral&) expr).fValue));
946         case ASTExpression::kInt_Kind:
947             return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset,
948                                                               ((ASTIntLiteral&) expr).fValue));
949         case ASTExpression::kFloat_Kind:
950             return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset,
951                                                                 ((ASTFloatLiteral&) expr).fValue));
952         case ASTExpression::kBinary_Kind:
953             return this->convertBinaryExpression((ASTBinaryExpression&) expr);
954         case ASTExpression::kPrefix_Kind:
955             return this->convertPrefixExpression((ASTPrefixExpression&) expr);
956         case ASTExpression::kSuffix_Kind:
957             return this->convertSuffixExpression((ASTSuffixExpression&) expr);
958         case ASTExpression::kTernary_Kind:
959             return this->convertTernaryExpression((ASTTernaryExpression&) expr);
960         default:
961             ABORT("unsupported expression type: %d\n", expr.fKind);
962     }
963 }
964 
convertIdentifier(const ASTIdentifier & identifier)965 std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) {
966     const Symbol* result = (*fSymbolTable)[identifier.fText];
967     if (!result) {
968         fErrors.error(identifier.fOffset, "unknown identifier '" + identifier.fText + "'");
969         return nullptr;
970     }
971     switch (result->fKind) {
972         case Symbol::kFunctionDeclaration_Kind: {
973             std::vector<const FunctionDeclaration*> f = {
974                 (const FunctionDeclaration*) result
975             };
976             return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
977                                                                             identifier.fOffset,
978                                                                             f));
979         }
980         case Symbol::kUnresolvedFunction_Kind: {
981             const UnresolvedFunction* f = (const UnresolvedFunction*) result;
982             return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
983                                                                             identifier.fOffset,
984                                                                             f->fFunctions));
985         }
986         case Symbol::kVariable_Kind: {
987             const Variable* var = (const Variable*) result;
988 #ifndef SKSL_STANDALONE
989             if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
990                 fInputs.fFlipY = true;
991                 if (fSettings->fFlipY &&
992                     (!fSettings->fCaps ||
993                      !fSettings->fCaps->fragCoordConventionsExtensionString())) {
994                     fInputs.fRTHeight = true;
995                 }
996             }
997 #endif
998             // default to kRead_RefKind; this will be corrected later if the variable is written to
999             return std::unique_ptr<VariableReference>(new VariableReference(
1000                                                                  identifier.fOffset,
1001                                                                  *var,
1002                                                                  VariableReference::kRead_RefKind));
1003         }
1004         case Symbol::kField_Kind: {
1005             const Field* field = (const Field*) result;
1006             VariableReference* base = new VariableReference(identifier.fOffset, field->fOwner,
1007                                                             VariableReference::kRead_RefKind);
1008             return std::unique_ptr<Expression>(new FieldAccess(
1009                                                   std::unique_ptr<Expression>(base),
1010                                                   field->fFieldIndex,
1011                                                   FieldAccess::kAnonymousInterfaceBlock_OwnerKind));
1012         }
1013         case Symbol::kType_Kind: {
1014             const Type* t = (const Type*) result;
1015             return std::unique_ptr<TypeReference>(new TypeReference(fContext, identifier.fOffset,
1016                                                                     *t));
1017         }
1018         default:
1019             ABORT("unsupported symbol type %d\n", result->fKind);
1020     }
1021 }
1022 
convertSection(const ASTSection & s)1023 std::unique_ptr<Section> IRGenerator::convertSection(const ASTSection& s) {
1024     return std::unique_ptr<Section>(new Section(s.fOffset, s.fName, s.fArgument, s.fText));
1025 }
1026 
1027 
coerce(std::unique_ptr<Expression> expr,const Type & type)1028 std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
1029                                                 const Type& type) {
1030     if (!expr) {
1031         return nullptr;
1032     }
1033     if (expr->fType == type) {
1034         return expr;
1035     }
1036     this->checkValid(*expr);
1037     if (expr->fType == *fContext.fInvalid_Type) {
1038         return nullptr;
1039     }
1040     if (expr->coercionCost(type) == INT_MAX) {
1041         fErrors.error(expr->fOffset, "expected '" + type.description() + "', but found '" +
1042                                         expr->fType.description() + "'");
1043         return nullptr;
1044     }
1045     if (type.kind() == Type::kScalar_Kind) {
1046         std::vector<std::unique_ptr<Expression>> args;
1047         args.push_back(std::move(expr));
1048         ASTIdentifier id(-1, type.fName);
1049         std::unique_ptr<Expression> ctor = this->convertIdentifier(id);
1050         ASSERT(ctor);
1051         return this->call(-1, std::move(ctor), std::move(args));
1052     }
1053     std::vector<std::unique_ptr<Expression>> args;
1054     args.push_back(std::move(expr));
1055     return std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args)));
1056 }
1057 
is_matrix_multiply(const Type & left,const Type & right)1058 static bool is_matrix_multiply(const Type& left, const Type& right) {
1059     if (left.kind() == Type::kMatrix_Kind) {
1060         return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind;
1061     }
1062     return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind;
1063 }
1064 
1065 /**
1066  * Determines the operand and result types of a binary expression. Returns true if the expression is
1067  * legal, false otherwise. If false, the values of the out parameters are undefined.
1068  */
determine_binary_type(const Context & context,Token::Kind op,const Type & left,const Type & right,const Type ** outLeftType,const Type ** outRightType,const Type ** outResultType,bool tryFlipped)1069 static bool determine_binary_type(const Context& context,
1070                                   Token::Kind op,
1071                                   const Type& left,
1072                                   const Type& right,
1073                                   const Type** outLeftType,
1074                                   const Type** outRightType,
1075                                   const Type** outResultType,
1076                                   bool tryFlipped) {
1077     bool isLogical;
1078     bool validMatrixOrVectorOp;
1079     switch (op) {
1080         case Token::EQ:
1081             *outLeftType = &left;
1082             *outRightType = &left;
1083             *outResultType = &left;
1084             return right.canCoerceTo(left);
1085         case Token::EQEQ: // fall through
1086         case Token::NEQ:
1087             if (left == right) {
1088                 *outLeftType = &left;
1089                 *outRightType = &right;
1090                 *outResultType = context.fBool_Type.get();
1091                 return true;
1092             }
1093             isLogical = true;
1094             validMatrixOrVectorOp = true;
1095             break;
1096         case Token::LT:   // fall through
1097         case Token::GT:   // fall through
1098         case Token::LTEQ: // fall through
1099         case Token::GTEQ:
1100             isLogical = true;
1101             validMatrixOrVectorOp = false;
1102             break;
1103         case Token::LOGICALOR: // fall through
1104         case Token::LOGICALAND: // fall through
1105         case Token::LOGICALXOR: // fall through
1106         case Token::LOGICALOREQ: // fall through
1107         case Token::LOGICALANDEQ: // fall through
1108         case Token::LOGICALXOREQ:
1109             *outLeftType = context.fBool_Type.get();
1110             *outRightType = context.fBool_Type.get();
1111             *outResultType = context.fBool_Type.get();
1112             return left.canCoerceTo(*context.fBool_Type) &&
1113                    right.canCoerceTo(*context.fBool_Type);
1114         case Token::STAREQ:
1115             if (left.kind() == Type::kScalar_Kind) {
1116                 *outLeftType = &left;
1117                 *outRightType = &left;
1118                 *outResultType = &left;
1119                 return right.canCoerceTo(left);
1120             }
1121             // fall through
1122         case Token::STAR:
1123             if (is_matrix_multiply(left, right)) {
1124                 // determine final component type
1125                 if (determine_binary_type(context, Token::STAR, left.componentType(),
1126                                           right.componentType(), outLeftType, outRightType,
1127                                           outResultType, false)) {
1128                     *outLeftType = &(*outResultType)->toCompound(context, left.columns(),
1129                                                                  left.rows());;
1130                     *outRightType = &(*outResultType)->toCompound(context, right.columns(),
1131                                                                   right.rows());;
1132                     int leftColumns = left.columns();
1133                     int leftRows = left.rows();
1134                     int rightColumns;
1135                     int rightRows;
1136                     if (right.kind() == Type::kVector_Kind) {
1137                         // matrix * vector treats the vector as a column vector, so we need to
1138                         // transpose it
1139                         rightColumns = right.rows();
1140                         rightRows = right.columns();
1141                         ASSERT(rightColumns == 1);
1142                     } else {
1143                         rightColumns = right.columns();
1144                         rightRows = right.rows();
1145                     }
1146                     if (rightColumns > 1) {
1147                         *outResultType = &(*outResultType)->toCompound(context, rightColumns,
1148                                                                        leftRows);
1149                     } else {
1150                         // result was a column vector, transpose it back to a row
1151                         *outResultType = &(*outResultType)->toCompound(context, leftRows,
1152                                                                        rightColumns);
1153                     }
1154                     return leftColumns == rightRows;
1155                 } else {
1156                     return false;
1157                 }
1158             }
1159             isLogical = false;
1160             validMatrixOrVectorOp = true;
1161             break;
1162         case Token::PLUSEQ:
1163         case Token::MINUSEQ:
1164         case Token::SLASHEQ:
1165         case Token::PERCENTEQ:
1166         case Token::SHLEQ:
1167         case Token::SHREQ:
1168             if (left.kind() == Type::kScalar_Kind) {
1169                 *outLeftType = &left;
1170                 *outRightType = &left;
1171                 *outResultType = &left;
1172                 return right.canCoerceTo(left);
1173             }
1174             // fall through
1175         case Token::PLUS:    // fall through
1176         case Token::MINUS:   // fall through
1177         case Token::SLASH:   // fall through
1178             isLogical = false;
1179             validMatrixOrVectorOp = true;
1180             break;
1181         case Token::COMMA:
1182             *outLeftType = &left;
1183             *outRightType = &right;
1184             *outResultType = &right;
1185             return true;
1186         default:
1187             isLogical = false;
1188             validMatrixOrVectorOp = false;
1189     }
1190     bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind;
1191     if (left.kind() == Type::kScalar_Kind && right.kind() == Type::kScalar_Kind &&
1192             right.canCoerceTo(left)) {
1193         if (left.priority() > right.priority()) {
1194             *outLeftType = &left;
1195             *outRightType = &left;
1196         } else {
1197             *outLeftType = &right;
1198             *outRightType = &right;
1199         }
1200         if (isLogical) {
1201             *outResultType = context.fBool_Type.get();
1202         } else {
1203             *outResultType = &left;
1204         }
1205         return true;
1206     }
1207     if (right.canCoerceTo(left) && isVectorOrMatrix && validMatrixOrVectorOp) {
1208         *outLeftType = &left;
1209         *outRightType = &left;
1210         if (isLogical) {
1211             *outResultType = context.fBool_Type.get();
1212         } else {
1213             *outResultType = &left;
1214         }
1215         return true;
1216     }
1217     if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) &&
1218         (right.kind() == Type::kScalar_Kind)) {
1219         if (determine_binary_type(context, op, left.componentType(), right, outLeftType,
1220                                   outRightType, outResultType, false)) {
1221             *outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
1222             if (!isLogical) {
1223                 *outResultType = &(*outResultType)->toCompound(context, left.columns(),
1224                                                                left.rows());
1225             }
1226             return true;
1227         }
1228         return false;
1229     }
1230     if (tryFlipped) {
1231         return determine_binary_type(context, op, right, left, outRightType, outLeftType,
1232                                      outResultType, false);
1233     }
1234     return false;
1235 }
1236 
constantFold(const Expression & left,Token::Kind op,const Expression & right) const1237 std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left,
1238                                                       Token::Kind op,
1239                                                       const Expression& right) const {
1240     if (!left.isConstant() || !right.isConstant()) {
1241         return nullptr;
1242     }
1243     // Note that we expressly do not worry about precision and overflow here -- we use the maximum
1244     // precision to calculate the results and hope the result makes sense. The plan is to move the
1245     // Skia caps into SkSL, so we have access to all of them including the precisions of the various
1246     // types, which will let us be more intelligent about this.
1247     if (left.fKind == Expression::kBoolLiteral_Kind &&
1248         right.fKind == Expression::kBoolLiteral_Kind) {
1249         bool leftVal  = ((BoolLiteral&) left).fValue;
1250         bool rightVal = ((BoolLiteral&) right).fValue;
1251         bool result;
1252         switch (op) {
1253             case Token::LOGICALAND: result = leftVal && rightVal; break;
1254             case Token::LOGICALOR:  result = leftVal || rightVal; break;
1255             case Token::LOGICALXOR: result = leftVal ^  rightVal; break;
1256             default: return nullptr;
1257         }
1258         return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fOffset, result));
1259     }
1260     #define RESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fOffset, \
1261                                                                        leftVal op rightVal))
1262     if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) {
1263         int64_t leftVal  = ((IntLiteral&) left).fValue;
1264         int64_t rightVal = ((IntLiteral&) right).fValue;
1265         switch (op) {
1266             case Token::PLUS:       return RESULT(Int, +);
1267             case Token::MINUS:      return RESULT(Int, -);
1268             case Token::STAR:       return RESULT(Int, *);
1269             case Token::SLASH:
1270                 if (rightVal) {
1271                     return RESULT(Int, /);
1272                 }
1273                 fErrors.error(right.fOffset, "division by zero");
1274                 return nullptr;
1275             case Token::PERCENT:
1276                 if (rightVal) {
1277                     return RESULT(Int, %);
1278                 }
1279                 fErrors.error(right.fOffset, "division by zero");
1280                 return nullptr;
1281             case Token::BITWISEAND: return RESULT(Int,  &);
1282             case Token::BITWISEOR:  return RESULT(Int,  |);
1283             case Token::BITWISEXOR: return RESULT(Int,  ^);
1284             case Token::SHL:        return RESULT(Int,  <<);
1285             case Token::SHR:        return RESULT(Int,  >>);
1286             case Token::EQEQ:       return RESULT(Bool, ==);
1287             case Token::NEQ:        return RESULT(Bool, !=);
1288             case Token::GT:         return RESULT(Bool, >);
1289             case Token::GTEQ:       return RESULT(Bool, >=);
1290             case Token::LT:         return RESULT(Bool, <);
1291             case Token::LTEQ:       return RESULT(Bool, <=);
1292             default:                return nullptr;
1293         }
1294     }
1295     if (left.fKind == Expression::kFloatLiteral_Kind &&
1296         right.fKind == Expression::kFloatLiteral_Kind) {
1297         double leftVal  = ((FloatLiteral&) left).fValue;
1298         double rightVal = ((FloatLiteral&) right).fValue;
1299         switch (op) {
1300             case Token::PLUS:       return RESULT(Float, +);
1301             case Token::MINUS:      return RESULT(Float, -);
1302             case Token::STAR:       return RESULT(Float, *);
1303             case Token::SLASH:
1304                 if (rightVal) {
1305                     return RESULT(Float, /);
1306                 }
1307                 fErrors.error(right.fOffset, "division by zero");
1308                 return nullptr;
1309             case Token::EQEQ:       return RESULT(Bool, ==);
1310             case Token::NEQ:        return RESULT(Bool, !=);
1311             case Token::GT:         return RESULT(Bool, >);
1312             case Token::GTEQ:       return RESULT(Bool, >=);
1313             case Token::LT:         return RESULT(Bool, <);
1314             case Token::LTEQ:       return RESULT(Bool, <=);
1315             default:                return nullptr;
1316         }
1317     }
1318     if (left.fType.kind() == Type::kVector_Kind &&
1319         left.fType.componentType() == *fContext.fFloat_Type &&
1320         left.fType == right.fType) {
1321         ASSERT(left.fKind  == Expression::kConstructor_Kind);
1322         ASSERT(right.fKind == Expression::kConstructor_Kind);
1323         std::vector<std::unique_ptr<Expression>> args;
1324         #define RETURN_VEC_COMPONENTWISE_RESULT(op)                                    \
1325             for (int i = 0; i < left.fType.columns(); i++) {                           \
1326                 float value = ((Constructor&) left).getFVecComponent(i) op             \
1327                               ((Constructor&) right).getFVecComponent(i);              \
1328                 args.emplace_back(new FloatLiteral(fContext, -1, value));              \
1329             }                                                                          \
1330             return std::unique_ptr<Expression>(new Constructor(-1, left.fType,         \
1331                                                                std::move(args)));
1332         switch (op) {
1333             case Token::EQEQ:
1334                 return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
1335                                                             left.compareConstant(fContext, right)));
1336             case Token::NEQ:
1337                 return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
1338                                                            !left.compareConstant(fContext, right)));
1339             case Token::PLUS:  RETURN_VEC_COMPONENTWISE_RESULT(+);
1340             case Token::MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-);
1341             case Token::STAR:  RETURN_VEC_COMPONENTWISE_RESULT(*);
1342             case Token::SLASH: RETURN_VEC_COMPONENTWISE_RESULT(/);
1343             default:           return nullptr;
1344         }
1345     }
1346     if (left.fType.kind() == Type::kMatrix_Kind &&
1347         right.fType.kind() == Type::kMatrix_Kind &&
1348         left.fKind == right.fKind) {
1349         switch (op) {
1350             case Token::EQEQ:
1351                 return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
1352                                                             left.compareConstant(fContext, right)));
1353             case Token::NEQ:
1354                 return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
1355                                                            !left.compareConstant(fContext, right)));
1356             default:
1357                 return nullptr;
1358         }
1359     }
1360     #undef RESULT
1361     return nullptr;
1362 }
1363 
convertBinaryExpression(const ASTBinaryExpression & expression)1364 std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
1365                                                             const ASTBinaryExpression& expression) {
1366     std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft);
1367     if (!left) {
1368         return nullptr;
1369     }
1370     std::unique_ptr<Expression> right = this->convertExpression(*expression.fRight);
1371     if (!right) {
1372         return nullptr;
1373     }
1374     const Type* leftType;
1375     const Type* rightType;
1376     const Type* resultType;
1377     const Type* rawLeftType;
1378     if (left->fKind == Expression::kIntLiteral_Kind && right->fType.isInteger()) {
1379         rawLeftType = &right->fType;
1380     } else {
1381         rawLeftType = &left->fType;
1382     }
1383     const Type* rawRightType;
1384     if (right->fKind == Expression::kIntLiteral_Kind && left->fType.isInteger()) {
1385         rawRightType = &left->fType;
1386     } else {
1387         rawRightType = &right->fType;
1388     }
1389     if (!determine_binary_type(fContext, expression.fOperator, *rawLeftType, *rawRightType,
1390                                &leftType, &rightType, &resultType,
1391                                !Compiler::IsAssignment(expression.fOperator))) {
1392         fErrors.error(expression.fOffset, String("type mismatch: '") +
1393                                           Compiler::OperatorName(expression.fOperator) +
1394                                           "' cannot operate on '" + left->fType.fName +
1395                                           "', '" + right->fType.fName + "'");
1396         return nullptr;
1397     }
1398     if (Compiler::IsAssignment(expression.fOperator)) {
1399         this->markWrittenTo(*left, expression.fOperator != Token::EQ);
1400     }
1401     left = this->coerce(std::move(left), *leftType);
1402     right = this->coerce(std::move(right), *rightType);
1403     if (!left || !right) {
1404         return nullptr;
1405     }
1406     std::unique_ptr<Expression> result = this->constantFold(*left.get(), expression.fOperator,
1407                                                             *right.get());
1408     if (!result) {
1409         result = std::unique_ptr<Expression>(new BinaryExpression(expression.fOffset,
1410                                                                   std::move(left),
1411                                                                   expression.fOperator,
1412                                                                   std::move(right),
1413                                                                   *resultType));
1414     }
1415     return result;
1416 }
1417 
convertTernaryExpression(const ASTTernaryExpression & expression)1418 std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
1419                                                            const ASTTernaryExpression& expression) {
1420     std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*expression.fTest),
1421                                                     *fContext.fBool_Type);
1422     if (!test) {
1423         return nullptr;
1424     }
1425     std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIfTrue);
1426     if (!ifTrue) {
1427         return nullptr;
1428     }
1429     std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fIfFalse);
1430     if (!ifFalse) {
1431         return nullptr;
1432     }
1433     const Type* trueType;
1434     const Type* falseType;
1435     const Type* resultType;
1436     if (!determine_binary_type(fContext, Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType,
1437                                &falseType, &resultType, true) || trueType != falseType) {
1438         fErrors.error(expression.fOffset, "ternary operator result mismatch: '" +
1439                                           ifTrue->fType.fName + "', '" +
1440                                           ifFalse->fType.fName + "'");
1441         return nullptr;
1442     }
1443     ifTrue = this->coerce(std::move(ifTrue), *trueType);
1444     if (!ifTrue) {
1445         return nullptr;
1446     }
1447     ifFalse = this->coerce(std::move(ifFalse), *falseType);
1448     if (!ifFalse) {
1449         return nullptr;
1450     }
1451     if (test->fKind == Expression::kBoolLiteral_Kind) {
1452         // static boolean test, just return one of the branches
1453         if (((BoolLiteral&) *test).fValue) {
1454             return ifTrue;
1455         } else {
1456             return ifFalse;
1457         }
1458     }
1459     return std::unique_ptr<Expression>(new TernaryExpression(expression.fOffset,
1460                                                              std::move(test),
1461                                                              std::move(ifTrue),
1462                                                              std::move(ifFalse)));
1463 }
1464 
1465 // scales the texture coordinates by the texture size for sampling rectangle textures.
1466 // For float2coordinates, implements the transformation:
1467 //     texture(sampler, coord) -> texture(sampler, textureSize(sampler) * coord)
1468 // For float3coordinates, implements the transformation:
1469 //     texture(sampler, coord) -> texture(sampler, float3textureSize(sampler), 1.0) * coord))
fixRectSampling(std::vector<std::unique_ptr<Expression>> & arguments)1470 void IRGenerator::fixRectSampling(std::vector<std::unique_ptr<Expression>>& arguments) {
1471     ASSERT(arguments.size() == 2);
1472     ASSERT(arguments[0]->fType == *fContext.fSampler2DRect_Type);
1473     ASSERT(arguments[0]->fKind == Expression::kVariableReference_Kind);
1474     const Variable& sampler = ((VariableReference&) *arguments[0]).fVariable;
1475     const Symbol* textureSizeSymbol = (*fSymbolTable)["textureSize"];
1476     ASSERT(textureSizeSymbol->fKind == Symbol::kFunctionDeclaration_Kind);
1477     const FunctionDeclaration& textureSize = (FunctionDeclaration&) *textureSizeSymbol;
1478     std::vector<std::unique_ptr<Expression>> sizeArguments;
1479     sizeArguments.emplace_back(new VariableReference(-1, sampler));
1480     std::unique_ptr<Expression> float2ize = call(-1, textureSize, std::move(sizeArguments));
1481     const Type& type = arguments[1]->fType;
1482     std::unique_ptr<Expression> scale;
1483     if (type == *fContext.fFloat2_Type) {
1484         scale = std::move(float2ize);
1485     } else {
1486         ASSERT(type == *fContext.fFloat3_Type);
1487         std::vector<std::unique_ptr<Expression>> float3rguments;
1488         float3rguments.push_back(std::move(float2ize));
1489         float3rguments.emplace_back(new FloatLiteral(fContext, -1, 1.0));
1490         scale.reset(new Constructor(-1, *fContext.fFloat3_Type, std::move(float3rguments)));
1491     }
1492     arguments[1].reset(new BinaryExpression(-1, std::move(scale), Token::STAR,
1493                                             std::move(arguments[1]), type));
1494 }
1495 
call(int offset,const FunctionDeclaration & function,std::vector<std::unique_ptr<Expression>> arguments)1496 std::unique_ptr<Expression> IRGenerator::call(int offset,
1497                                               const FunctionDeclaration& function,
1498                                               std::vector<std::unique_ptr<Expression>> arguments) {
1499     if (function.fParameters.size() != arguments.size()) {
1500         String msg = "call to '" + function.fName + "' expected " +
1501                                  to_string((uint64_t) function.fParameters.size()) +
1502                                  " argument";
1503         if (function.fParameters.size() != 1) {
1504             msg += "s";
1505         }
1506         msg += ", but found " + to_string((uint64_t) arguments.size());
1507         fErrors.error(offset, msg);
1508         return nullptr;
1509     }
1510     std::vector<const Type*> types;
1511     const Type* returnType;
1512     if (!function.determineFinalTypes(arguments, &types, &returnType)) {
1513         String msg = "no match for " + function.fName + "(";
1514         String separator;
1515         for (size_t i = 0; i < arguments.size(); i++) {
1516             msg += separator;
1517             separator = ", ";
1518             msg += arguments[i]->fType.description();
1519         }
1520         msg += ")";
1521         fErrors.error(offset, msg);
1522         return nullptr;
1523     }
1524     for (size_t i = 0; i < arguments.size(); i++) {
1525         arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
1526         if (!arguments[i]) {
1527             return nullptr;
1528         }
1529         if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) {
1530             this->markWrittenTo(*arguments[i],
1531                                 function.fParameters[i]->fModifiers.fFlags & Modifiers::kIn_Flag);
1532         }
1533     }
1534     if (function.fBuiltin && function.fName == "texture" &&
1535         arguments[0]->fType == *fContext.fSampler2DRect_Type) {
1536         this->fixRectSampling(arguments);
1537     }
1538     return std::unique_ptr<FunctionCall>(new FunctionCall(offset, *returnType, function,
1539                                                           std::move(arguments)));
1540 }
1541 
1542 /**
1543  * Determines the cost of coercing the arguments of a function to the required types. Cost has no
1544  * particular meaning other than "lower costs are preferred". Returns INT_MAX if the call is not
1545  * valid.
1546  */
callCost(const FunctionDeclaration & function,const std::vector<std::unique_ptr<Expression>> & arguments)1547 int IRGenerator::callCost(const FunctionDeclaration& function,
1548              const std::vector<std::unique_ptr<Expression>>& arguments) {
1549     if (function.fParameters.size() != arguments.size()) {
1550         return INT_MAX;
1551     }
1552     int total = 0;
1553     std::vector<const Type*> types;
1554     const Type* ignored;
1555     if (!function.determineFinalTypes(arguments, &types, &ignored)) {
1556         return INT_MAX;
1557     }
1558     for (size_t i = 0; i < arguments.size(); i++) {
1559         int cost = arguments[i]->coercionCost(*types[i]);
1560         if (cost != INT_MAX) {
1561             total += cost;
1562         } else {
1563             return INT_MAX;
1564         }
1565     }
1566     return total;
1567 }
1568 
call(int offset,std::unique_ptr<Expression> functionValue,std::vector<std::unique_ptr<Expression>> arguments)1569 std::unique_ptr<Expression> IRGenerator::call(int offset,
1570                                               std::unique_ptr<Expression> functionValue,
1571                                               std::vector<std::unique_ptr<Expression>> arguments) {
1572     if (functionValue->fKind == Expression::kTypeReference_Kind) {
1573         return this->convertConstructor(offset,
1574                                         ((TypeReference&) *functionValue).fValue,
1575                                         std::move(arguments));
1576     }
1577     if (functionValue->fKind != Expression::kFunctionReference_Kind) {
1578         fErrors.error(offset, "'" + functionValue->description() + "' is not a function");
1579         return nullptr;
1580     }
1581     FunctionReference* ref = (FunctionReference*) functionValue.get();
1582     int bestCost = INT_MAX;
1583     const FunctionDeclaration* best = nullptr;
1584     if (ref->fFunctions.size() > 1) {
1585         for (const auto& f : ref->fFunctions) {
1586             int cost = this->callCost(*f, arguments);
1587             if (cost < bestCost) {
1588                 bestCost = cost;
1589                 best = f;
1590             }
1591         }
1592         if (best) {
1593             return this->call(offset, *best, std::move(arguments));
1594         }
1595         String msg = "no match for " + ref->fFunctions[0]->fName + "(";
1596         String separator;
1597         for (size_t i = 0; i < arguments.size(); i++) {
1598             msg += separator;
1599             separator = ", ";
1600             msg += arguments[i]->fType.description();
1601         }
1602         msg += ")";
1603         fErrors.error(offset, msg);
1604         return nullptr;
1605     }
1606     return this->call(offset, *ref->fFunctions[0], std::move(arguments));
1607 }
1608 
convertNumberConstructor(int offset,const Type & type,std::vector<std::unique_ptr<Expression>> args)1609 std::unique_ptr<Expression> IRGenerator::convertNumberConstructor(
1610                                                     int offset,
1611                                                     const Type& type,
1612                                                     std::vector<std::unique_ptr<Expression>> args) {
1613     ASSERT(type.isNumber());
1614     if (args.size() != 1) {
1615         fErrors.error(offset, "invalid arguments to '" + type.description() +
1616                               "' constructor, (expected exactly 1 argument, but found " +
1617                               to_string((uint64_t) args.size()) + ")");
1618         return nullptr;
1619     }
1620     if (type == args[0]->fType) {
1621         return std::move(args[0]);
1622     }
1623     if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kFloatLiteral_Kind) {
1624         double value = ((FloatLiteral&) *args[0]).fValue;
1625         return std::unique_ptr<Expression>(new FloatLiteral(fContext, offset, value, &type));
1626     }
1627     if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kIntLiteral_Kind) {
1628         int64_t value = ((IntLiteral&) *args[0]).fValue;
1629         return std::unique_ptr<Expression>(new FloatLiteral(fContext, offset, (double) value,
1630                                                             &type));
1631     }
1632     if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type ||
1633         type == *fContext.fUInt_Type)) {
1634         return std::unique_ptr<Expression>(new IntLiteral(fContext,
1635                                                           offset,
1636                                                           ((IntLiteral&) *args[0]).fValue,
1637                                                           &type));
1638     }
1639     if (args[0]->fType == *fContext.fBool_Type) {
1640         std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, offset, 0));
1641         std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, offset, 1));
1642         return std::unique_ptr<Expression>(
1643                                      new TernaryExpression(offset, std::move(args[0]),
1644                                                            this->coerce(std::move(one), type),
1645                                                            this->coerce(std::move(zero),
1646                                                                         type)));
1647     }
1648     if (!args[0]->fType.isNumber()) {
1649         fErrors.error(offset, "invalid argument to '" + type.description() +
1650                               "' constructor (expected a number or bool, but found '" +
1651                               args[0]->fType.description() + "')");
1652         return nullptr;
1653     }
1654     return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
1655 }
1656 
component_count(const Type & type)1657 int component_count(const Type& type) {
1658     switch (type.kind()) {
1659         case Type::kVector_Kind:
1660             return type.columns();
1661         case Type::kMatrix_Kind:
1662             return type.columns() * type.rows();
1663         default:
1664             return 1;
1665     }
1666 }
1667 
convertCompoundConstructor(int offset,const Type & type,std::vector<std::unique_ptr<Expression>> args)1668 std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor(
1669                                                     int offset,
1670                                                     const Type& type,
1671                                                     std::vector<std::unique_ptr<Expression>> args) {
1672     ASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind);
1673     if (type.kind() == Type::kMatrix_Kind && args.size() == 1 &&
1674         args[0]->fType.kind() == Type::kMatrix_Kind) {
1675         // matrix from matrix is always legal
1676         return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
1677     }
1678     int actual = 0;
1679     int expected = type.rows() * type.columns();
1680     if (args.size() != 1 || expected != component_count(args[0]->fType) ||
1681         type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) {
1682         for (size_t i = 0; i < args.size(); i++) {
1683             if (args[i]->fType.kind() == Type::kVector_Kind) {
1684                 if (type.componentType().isNumber() !=
1685                     args[i]->fType.componentType().isNumber()) {
1686                     fErrors.error(offset, "'" + args[i]->fType.description() + "' is not a valid "
1687                                           "parameter to '" + type.description() +
1688                                           "' constructor");
1689                     return nullptr;
1690                 }
1691                 actual += args[i]->fType.columns();
1692             } else if (args[i]->fType.kind() == Type::kScalar_Kind) {
1693                 actual += 1;
1694                 if (type.kind() != Type::kScalar_Kind) {
1695                     args[i] = this->coerce(std::move(args[i]), type.componentType());
1696                     if (!args[i]) {
1697                         return nullptr;
1698                     }
1699                 }
1700             } else {
1701                 fErrors.error(offset, "'" + args[i]->fType.description() + "' is not a valid "
1702                                       "parameter to '" + type.description() + "' constructor");
1703                 return nullptr;
1704             }
1705         }
1706         if (actual != 1 && actual != expected) {
1707             fErrors.error(offset, "invalid arguments to '" + type.description() +
1708                                   "' constructor (expected " + to_string(expected) +
1709                                   " scalars, but found " + to_string(actual) + ")");
1710             return nullptr;
1711         }
1712     }
1713     return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
1714 }
1715 
convertConstructor(int offset,const Type & type,std::vector<std::unique_ptr<Expression>> args)1716 std::unique_ptr<Expression> IRGenerator::convertConstructor(
1717                                                     int offset,
1718                                                     const Type& type,
1719                                                     std::vector<std::unique_ptr<Expression>> args) {
1720     // FIXME: add support for structs
1721     Type::Kind kind = type.kind();
1722     if (args.size() == 1 && args[0]->fType == type) {
1723         // argument is already the right type, just return it
1724         return std::move(args[0]);
1725     }
1726     if (type.isNumber()) {
1727         return this->convertNumberConstructor(offset, type, std::move(args));
1728     } else if (kind == Type::kArray_Kind) {
1729         const Type& base = type.componentType();
1730         for (size_t i = 0; i < args.size(); i++) {
1731             args[i] = this->coerce(std::move(args[i]), base);
1732             if (!args[i]) {
1733                 return nullptr;
1734             }
1735         }
1736         return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
1737     } else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) {
1738         return this->convertCompoundConstructor(offset, type, std::move(args));
1739     } else {
1740         fErrors.error(offset, "cannot construct '" + type.description() + "'");
1741         return nullptr;
1742     }
1743 }
1744 
convertPrefixExpression(const ASTPrefixExpression & expression)1745 std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(
1746                                                             const ASTPrefixExpression& expression) {
1747     std::unique_ptr<Expression> base = this->convertExpression(*expression.fOperand);
1748     if (!base) {
1749         return nullptr;
1750     }
1751     switch (expression.fOperator) {
1752         case Token::PLUS:
1753             if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
1754                 fErrors.error(expression.fOffset,
1755                               "'+' cannot operate on '" + base->fType.description() + "'");
1756                 return nullptr;
1757             }
1758             return base;
1759         case Token::MINUS:
1760             if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
1761                 fErrors.error(expression.fOffset,
1762                               "'-' cannot operate on '" + base->fType.description() + "'");
1763                 return nullptr;
1764             }
1765             if (base->fKind == Expression::kIntLiteral_Kind) {
1766                 return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fOffset,
1767                                                                   -((IntLiteral&) *base).fValue));
1768             }
1769             if (base->fKind == Expression::kFloatLiteral_Kind) {
1770                 double value = -((FloatLiteral&) *base).fValue;
1771                 return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fOffset,
1772                                                                     value));
1773             }
1774             return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS, std::move(base)));
1775         case Token::PLUSPLUS:
1776             if (!base->fType.isNumber()) {
1777                 fErrors.error(expression.fOffset,
1778                               String("'") + Compiler::OperatorName(expression.fOperator) +
1779                               "' cannot operate on '" + base->fType.description() + "'");
1780                 return nullptr;
1781             }
1782             this->markWrittenTo(*base, true);
1783             break;
1784         case Token::MINUSMINUS:
1785             if (!base->fType.isNumber()) {
1786                 fErrors.error(expression.fOffset,
1787                               String("'") + Compiler::OperatorName(expression.fOperator) +
1788                               "' cannot operate on '" + base->fType.description() + "'");
1789                 return nullptr;
1790             }
1791             this->markWrittenTo(*base, true);
1792             break;
1793         case Token::LOGICALNOT:
1794             if (base->fType != *fContext.fBool_Type) {
1795                 fErrors.error(expression.fOffset,
1796                               String("'") + Compiler::OperatorName(expression.fOperator) +
1797                               "' cannot operate on '" + base->fType.description() + "'");
1798                 return nullptr;
1799             }
1800             if (base->fKind == Expression::kBoolLiteral_Kind) {
1801                 return std::unique_ptr<Expression>(new BoolLiteral(fContext, base->fOffset,
1802                                                                    !((BoolLiteral&) *base).fValue));
1803             }
1804             break;
1805         case Token::BITWISENOT:
1806             if (base->fType != *fContext.fInt_Type) {
1807                 fErrors.error(expression.fOffset,
1808                               String("'") + Compiler::OperatorName(expression.fOperator) +
1809                               "' cannot operate on '" + base->fType.description() + "'");
1810                 return nullptr;
1811             }
1812             break;
1813         default:
1814             ABORT("unsupported prefix operator\n");
1815     }
1816     return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator,
1817                                                             std::move(base)));
1818 }
1819 
convertIndex(std::unique_ptr<Expression> base,const ASTExpression & index)1820 std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
1821                                                       const ASTExpression& index) {
1822     if (base->fKind == Expression::kTypeReference_Kind) {
1823         if (index.fKind == ASTExpression::kInt_Kind) {
1824             const Type& oldType = ((TypeReference&) *base).fValue;
1825             int64_t size = ((const ASTIntLiteral&) index).fValue;
1826             Type* newType = new Type(oldType.name() + "[" + to_string(size) + "]",
1827                                      Type::kArray_Kind, oldType, size);
1828             fSymbolTable->takeOwnership(newType);
1829             return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset,
1830                                                                  *newType));
1831 
1832         } else {
1833             fErrors.error(base->fOffset, "array size must be a constant");
1834             return nullptr;
1835         }
1836     }
1837     if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind &&
1838             base->fType.kind() != Type::kVector_Kind) {
1839         fErrors.error(base->fOffset, "expected array, but found '" + base->fType.description() +
1840                                      "'");
1841         return nullptr;
1842     }
1843     std::unique_ptr<Expression> converted = this->convertExpression(index);
1844     if (!converted) {
1845         return nullptr;
1846     }
1847     if (converted->fType != *fContext.fUInt_Type) {
1848         converted = this->coerce(std::move(converted), *fContext.fInt_Type);
1849         if (!converted) {
1850             return nullptr;
1851         }
1852     }
1853     return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base),
1854                                                            std::move(converted)));
1855 }
1856 
convertField(std::unique_ptr<Expression> base,StringFragment field)1857 std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
1858                                                       StringFragment field) {
1859     auto fields = base->fType.fields();
1860     for (size_t i = 0; i < fields.size(); i++) {
1861         if (fields[i].fName == field) {
1862             return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
1863         }
1864     }
1865     fErrors.error(base->fOffset, "type '" + base->fType.description() + "' does not have a "
1866                                  "field named '" + field + "");
1867     return nullptr;
1868 }
1869 
convertSwizzle(std::unique_ptr<Expression> base,StringFragment fields)1870 std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
1871                                                         StringFragment fields) {
1872     if (base->fType.kind() != Type::kVector_Kind) {
1873         fErrors.error(base->fOffset, "cannot swizzle type '" + base->fType.description() + "'");
1874         return nullptr;
1875     }
1876     std::vector<int> swizzleComponents;
1877     for (size_t i = 0; i < fields.fLength; i++) {
1878         switch (fields[i]) {
1879             case 'x': // fall through
1880             case 'r': // fall through
1881             case 's':
1882                 swizzleComponents.push_back(0);
1883                 break;
1884             case 'y': // fall through
1885             case 'g': // fall through
1886             case 't':
1887                 if (base->fType.columns() >= 2) {
1888                     swizzleComponents.push_back(1);
1889                     break;
1890                 }
1891                 // fall through
1892             case 'z': // fall through
1893             case 'b': // fall through
1894             case 'p':
1895                 if (base->fType.columns() >= 3) {
1896                     swizzleComponents.push_back(2);
1897                     break;
1898                 }
1899                 // fall through
1900             case 'w': // fall through
1901             case 'a': // fall through
1902             case 'q':
1903                 if (base->fType.columns() >= 4) {
1904                     swizzleComponents.push_back(3);
1905                     break;
1906                 }
1907                 // fall through
1908             default:
1909                 fErrors.error(base->fOffset, String::printf("invalid swizzle component '%c'",
1910                                                             fields[i]));
1911                 return nullptr;
1912         }
1913     }
1914     ASSERT(swizzleComponents.size() > 0);
1915     if (swizzleComponents.size() > 4) {
1916         fErrors.error(base->fOffset, "too many components in swizzle mask '" + fields + "'");
1917         return nullptr;
1918     }
1919     return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents));
1920 }
1921 
getCap(int offset,String name)1922 std::unique_ptr<Expression> IRGenerator::getCap(int offset, String name) {
1923     auto found = fCapsMap.find(name);
1924     if (found == fCapsMap.end()) {
1925         fErrors.error(offset, "unknown capability flag '" + name + "'");
1926         return nullptr;
1927     }
1928     String fullName = "sk_Caps." + name;
1929     return std::unique_ptr<Expression>(new Setting(offset, fullName,
1930                                                    found->second.literal(fContext, offset)));
1931 }
1932 
getArg(int offset,String name)1933 std::unique_ptr<Expression> IRGenerator::getArg(int offset, String name) {
1934     auto found = fSettings->fArgs.find(name);
1935     if (found == fSettings->fArgs.end()) {
1936         fErrors.error(offset, "unknown argument '" + name + "'");
1937         return nullptr;
1938     }
1939     String fullName = "sk_Args." + name;
1940     return std::unique_ptr<Expression>(new Setting(offset,
1941                                                    fullName,
1942                                                    found->second.literal(fContext, offset)));
1943 }
1944 
convertTypeField(int offset,const Type & type,StringFragment field)1945 std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type,
1946                                                           StringFragment field) {
1947     std::unique_ptr<Expression> result;
1948     for (const auto& e : *fProgramElements) {
1949         if (e->fKind == ProgramElement::kEnum_Kind && type.name() == ((Enum&) *e).fTypeName) {
1950             std::shared_ptr<SymbolTable> old = fSymbolTable;
1951             fSymbolTable = ((Enum&) *e).fSymbols;
1952             result = convertIdentifier(ASTIdentifier(offset, field));
1953             fSymbolTable = old;
1954         }
1955     }
1956     if (!result) {
1957         fErrors.error(offset, "type '" + type.fName + "' does not have a field named '" + field +
1958                               "'");
1959     }
1960     return result;
1961 }
1962 
convertSuffixExpression(const ASTSuffixExpression & expression)1963 std::unique_ptr<Expression> IRGenerator::convertSuffixExpression(
1964                                                             const ASTSuffixExpression& expression) {
1965     std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase);
1966     if (!base) {
1967         return nullptr;
1968     }
1969     switch (expression.fSuffix->fKind) {
1970         case ASTSuffix::kIndex_Kind: {
1971             const ASTExpression* expr = ((ASTIndexSuffix&) *expression.fSuffix).fExpression.get();
1972             if (expr) {
1973                 return this->convertIndex(std::move(base), *expr);
1974             } else if (base->fKind == Expression::kTypeReference_Kind) {
1975                 const Type& oldType = ((TypeReference&) *base).fValue;
1976                 Type* newType = new Type(oldType.name() + "[]", Type::kArray_Kind, oldType,
1977                                          -1);
1978                 fSymbolTable->takeOwnership(newType);
1979                 return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset,
1980                                                                      *newType));
1981             } else {
1982                 fErrors.error(expression.fOffset, "'[]' must follow a type name");
1983                 return nullptr;
1984             }
1985         }
1986         case ASTSuffix::kCall_Kind: {
1987             auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments;
1988             std::vector<std::unique_ptr<Expression>> arguments;
1989             for (size_t i = 0; i < rawArguments->size(); i++) {
1990                 std::unique_ptr<Expression> converted =
1991                         this->convertExpression(*(*rawArguments)[i]);
1992                 if (!converted) {
1993                     return nullptr;
1994                 }
1995                 arguments.push_back(std::move(converted));
1996             }
1997             return this->call(expression.fOffset, std::move(base), std::move(arguments));
1998         }
1999         case ASTSuffix::kField_Kind: {
2000             StringFragment field = ((ASTFieldSuffix&) *expression.fSuffix).fField;
2001             if (base->fType == *fContext.fSkCaps_Type) {
2002                 return this->getCap(expression.fOffset, field);
2003             }
2004             if (base->fType == *fContext.fSkArgs_Type) {
2005                 return this->getArg(expression.fOffset, field);
2006             }
2007             if (base->fKind == Expression::kTypeReference_Kind) {
2008                 return this->convertTypeField(base->fOffset, ((TypeReference&) *base).fValue,
2009                                               field);
2010             }
2011             switch (base->fType.kind()) {
2012                 case Type::kVector_Kind:
2013                     return this->convertSwizzle(std::move(base), field);
2014                 case Type::kStruct_Kind:
2015                     return this->convertField(std::move(base), field);
2016                 default:
2017                     fErrors.error(base->fOffset, "cannot swizzle value of type '" +
2018                                                  base->fType.description() + "'");
2019                     return nullptr;
2020             }
2021         }
2022         case ASTSuffix::kPostIncrement_Kind:
2023             if (!base->fType.isNumber()) {
2024                 fErrors.error(expression.fOffset,
2025                               "'++' cannot operate on '" + base->fType.description() + "'");
2026                 return nullptr;
2027             }
2028             this->markWrittenTo(*base, true);
2029             return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
2030                                                                      Token::PLUSPLUS));
2031         case ASTSuffix::kPostDecrement_Kind:
2032             if (!base->fType.isNumber()) {
2033                 fErrors.error(expression.fOffset,
2034                               "'--' cannot operate on '" + base->fType.description() + "'");
2035                 return nullptr;
2036             }
2037             this->markWrittenTo(*base, true);
2038             return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
2039                                                                      Token::MINUSMINUS));
2040         default:
2041             ABORT("unsupported suffix operator");
2042     }
2043 }
2044 
checkValid(const Expression & expr)2045 void IRGenerator::checkValid(const Expression& expr) {
2046     switch (expr.fKind) {
2047         case Expression::kFunctionReference_Kind:
2048             fErrors.error(expr.fOffset, "expected '(' to begin function call");
2049             break;
2050         case Expression::kTypeReference_Kind:
2051             fErrors.error(expr.fOffset, "expected '(' to begin constructor invocation");
2052             break;
2053         default:
2054             if (expr.fType == *fContext.fInvalid_Type) {
2055                 fErrors.error(expr.fOffset, "invalid expression");
2056             }
2057     }
2058 }
2059 
has_duplicates(const Swizzle & swizzle)2060 static bool has_duplicates(const Swizzle& swizzle) {
2061     int bits = 0;
2062     for (int idx : swizzle.fComponents) {
2063         ASSERT(idx >= 0 && idx <= 3);
2064         int bit = 1 << idx;
2065         if (bits & bit) {
2066             return true;
2067         }
2068         bits |= bit;
2069     }
2070     return false;
2071 }
2072 
markWrittenTo(const Expression & expr,bool readWrite)2073 void IRGenerator::markWrittenTo(const Expression& expr, bool readWrite) {
2074     switch (expr.fKind) {
2075         case Expression::kVariableReference_Kind: {
2076             const Variable& var = ((VariableReference&) expr).fVariable;
2077             if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) {
2078                 fErrors.error(expr.fOffset,
2079                               "cannot modify immutable variable '" + var.fName + "'");
2080             }
2081             ((VariableReference&) expr).setRefKind(readWrite ? VariableReference::kReadWrite_RefKind
2082                                                              : VariableReference::kWrite_RefKind);
2083             break;
2084         }
2085         case Expression::kFieldAccess_Kind:
2086             this->markWrittenTo(*((FieldAccess&) expr).fBase, readWrite);
2087             break;
2088         case Expression::kSwizzle_Kind:
2089             if (has_duplicates((Swizzle&) expr)) {
2090                 fErrors.error(expr.fOffset,
2091                               "cannot write to the same swizzle field more than once");
2092             }
2093             this->markWrittenTo(*((Swizzle&) expr).fBase, readWrite);
2094             break;
2095         case Expression::kIndex_Kind:
2096             this->markWrittenTo(*((IndexExpression&) expr).fBase, readWrite);
2097             break;
2098         case Expression::kTernary_Kind: {
2099             TernaryExpression& t = (TernaryExpression&) expr;
2100             this->markWrittenTo(*t.fIfTrue, readWrite);
2101             this->markWrittenTo(*t.fIfFalse, readWrite);
2102             break;
2103         }
2104         default:
2105             fErrors.error(expr.fOffset, "cannot assign to '" + expr.description() + "'");
2106             break;
2107     }
2108 }
2109 
convertProgram(Program::Kind kind,const char * text,size_t length,SymbolTable & types,std::vector<std::unique_ptr<ProgramElement>> * out)2110 void IRGenerator::convertProgram(Program::Kind kind,
2111                                  const char* text,
2112                                  size_t length,
2113                                  SymbolTable& types,
2114                                  std::vector<std::unique_ptr<ProgramElement>>* out) {
2115     fKind = kind;
2116     fProgramElements = out;
2117     Parser parser(text, length, types, fErrors);
2118     std::vector<std::unique_ptr<ASTDeclaration>> parsed = parser.file();
2119     if (fErrors.errorCount()) {
2120         return;
2121     }
2122     for (size_t i = 0; i < parsed.size(); i++) {
2123         ASTDeclaration& decl = *parsed[i];
2124         switch (decl.fKind) {
2125             case ASTDeclaration::kVar_Kind: {
2126                 std::unique_ptr<VarDeclarations> s = this->convertVarDeclarations(
2127                                                                          (ASTVarDeclarations&) decl,
2128                                                                          Variable::kGlobal_Storage);
2129                 if (s) {
2130                     fProgramElements->push_back(std::move(s));
2131                 }
2132                 break;
2133             }
2134             case ASTDeclaration::kEnum_Kind: {
2135                 this->convertEnum((ASTEnum&) decl);
2136                 break;
2137             }
2138             case ASTDeclaration::kFunction_Kind: {
2139                 this->convertFunction((ASTFunction&) decl);
2140                 break;
2141             }
2142             case ASTDeclaration::kModifiers_Kind: {
2143                 std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(
2144                                                                    (ASTModifiersDeclaration&) decl);
2145                 if (f) {
2146                     fProgramElements->push_back(std::move(f));
2147                 }
2148                 break;
2149             }
2150             case ASTDeclaration::kInterfaceBlock_Kind: {
2151                 std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(
2152                                                                          (ASTInterfaceBlock&) decl);
2153                 if (i) {
2154                     fProgramElements->push_back(std::move(i));
2155                 }
2156                 break;
2157             }
2158             case ASTDeclaration::kExtension_Kind: {
2159                 std::unique_ptr<Extension> e = this->convertExtension((ASTExtension&) decl);
2160                 if (e) {
2161                     fProgramElements->push_back(std::move(e));
2162                 }
2163                 break;
2164             }
2165             case ASTDeclaration::kSection_Kind: {
2166                 std::unique_ptr<Section> s = this->convertSection((ASTSection&) decl);
2167                 if (s) {
2168                     fProgramElements->push_back(std::move(s));
2169                 }
2170                 break;
2171             }
2172             default:
2173                 ABORT("unsupported declaration: %s\n", decl.description().c_str());
2174         }
2175     }
2176 }
2177 
2178 
2179 }
2180