1 /* 2 * Copyright 2017 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "DFA.h" 9 #include "DFAState.h" 10 #include "NFA.h" 11 #include "NFAState.h" 12 13 #include <algorithm> 14 #include <climits> 15 #include <memory> 16 #include <unordered_map> 17 #include <set> 18 #include <vector> 19 20 /** 21 * Converts a nondeterministic finite automaton to a deterministic finite automaton. Since NFAs and 22 * DFAs differ only in that an NFA allows multiple states at the same time, we can find each 23 * possible combination of simultaneous NFA states and give this combination a label. These labelled 24 * nodes are our DFA nodes, since we can only be in one such unique set of NFA states at a time. 25 * 26 * As an NFA can end up in multiple accept states at the same time (for instance, the token "while" 27 * is valid for both WHILE and IDENTIFIER), we disambiguate by preferring the first matching regex 28 * (in terms of the order in which they were added to the NFA). 29 */ 30 class NFAtoDFA { 31 public: 32 static constexpr char START_CHAR = 9; 33 static constexpr char END_CHAR = 126; 34 35 NFAtoDFA(NFA* nfa) 36 : fNFA(*nfa) {} 37 38 /** 39 * Returns a DFA created from the NFA. 40 */ 41 DFA convert() { 42 // create state 0, the "reject" state 43 getState(DFAState::Label({})); 44 // create a state representing being in all of the NFA's start states at once 45 std::vector<int> startStates = fNFA.fStartStates; 46 std::sort(startStates.begin(), startStates.end()); 47 // this becomes state 1, our start state 48 DFAState* start = getState(DFAState::Label(startStates)); 49 this->scanState(start); 50 51 this->computeMappings(); 52 53 int stateCount = 0; 54 for (const auto& row : fTransitions) { 55 stateCount = std::max(stateCount, (int) row.size()); 56 } 57 return DFA(fCharMappings, fTransitions, fAccepts); 58 } 59 60 private: 61 /** 62 * Returns an existing state with the given label, or creates a new one and returns it. 63 */ 64 DFAState* getState(DFAState::Label label) { 65 auto found = fStates.find(label); 66 if (found == fStates.end()) { 67 int id = fStates.size(); 68 fStates[label] = std::unique_ptr<DFAState>(new DFAState(id, label)); 69 return fStates[label].get(); 70 } 71 return found->second.get(); 72 } 73 74 void add(int nfaState, std::vector<int>* states) { 75 NFAState state = fNFA.fStates[nfaState]; 76 if (state.fKind == NFAState::kRemapped_Kind) { 77 for (int next : state.fData) { 78 this->add(next, states); 79 } 80 } else { 81 for (int state : *states) { 82 if (nfaState == state) { 83 return; 84 } 85 } 86 states->push_back(nfaState); 87 } 88 } 89 90 void addTransition(char c, int start, int next) { 91 while (fTransitions.size() <= (size_t) c) { 92 fTransitions.push_back(std::vector<int>()); 93 } 94 std::vector<int>& row = fTransitions[c]; 95 while (row.size() <= (size_t) start) { 96 row.push_back(INVALID); 97 } 98 row[start] = next; 99 } 100 101 void scanState(DFAState* state) { 102 state->fIsScanned = true; 103 for (char c = START_CHAR; c <= END_CHAR; ++c) { 104 std::vector<int> next; 105 int bestAccept = INT_MAX; 106 for (int idx : state->fLabel.fStates) { 107 const NFAState& nfaState = fNFA.fStates[idx]; 108 if (nfaState.accept(c)) { 109 for (int nextState : nfaState.fNext) { 110 if (fNFA.fStates[nextState].fKind == NFAState::kAccept_Kind) { 111 bestAccept = std::min(bestAccept, fNFA.fStates[nextState].fData[0]); 112 } 113 this->add(nextState, &next); 114 } 115 } 116 } 117 std::sort(next.begin(), next.end()); 118 DFAState* nextState = this->getState(DFAState::Label(next)); 119 this->addTransition(c, state->fId, nextState->fId); 120 if (bestAccept != INT_MAX) { 121 while (fAccepts.size() <= (size_t) nextState->fId) { 122 fAccepts.push_back(INVALID); 123 } 124 fAccepts[nextState->fId] = bestAccept; 125 } 126 if (!nextState->fIsScanned) { 127 this->scanState(nextState); 128 } 129 } 130 } 131 132 // collapse rows with the same transitions to a single row. This is common, as each row 133 // represents a character and often there are many characters for which all transitions are 134 // identical (e.g. [0-9] are treated the same way by all lexer rules) 135 void computeMappings() { 136 // mappings[<input row>] = <output row> 137 std::vector<std::vector<int>*> uniques; 138 // this could be done more efficiently, but O(n^2) is plenty fast for our purposes 139 for (size_t i = 0; i < fTransitions.size(); ++i) { 140 int found = -1; 141 for (size_t j = 0; j < uniques.size(); ++j) { 142 if (*uniques[j] == fTransitions[i]) { 143 found = j; 144 break; 145 } 146 } 147 if (found == -1) { 148 found = (int) uniques.size(); 149 uniques.push_back(&fTransitions[i]); 150 } 151 fCharMappings.push_back(found); 152 } 153 std::vector<std::vector<int>> newTransitions; 154 for (std::vector<int>* row : uniques) { 155 newTransitions.push_back(*row); 156 } 157 fTransitions = newTransitions; 158 } 159 160 const NFA& fNFA; 161 std::unordered_map<DFAState::Label, std::unique_ptr<DFAState>> fStates; 162 std::vector<std::vector<int>> fTransitions; 163 std::vector<int> fCharMappings; 164 std::vector<int> fAccepts; 165 }; 166