1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkPatchUtils.h"
9 
10 #include "SkColorData.h"
11 #include "SkGeometry.h"
12 #include "SkPM4f.h"
13 
14 namespace {
15     enum CubicCtrlPts {
16         kTopP0_CubicCtrlPts = 0,
17         kTopP1_CubicCtrlPts = 1,
18         kTopP2_CubicCtrlPts = 2,
19         kTopP3_CubicCtrlPts = 3,
20 
21         kRightP0_CubicCtrlPts = 3,
22         kRightP1_CubicCtrlPts = 4,
23         kRightP2_CubicCtrlPts = 5,
24         kRightP3_CubicCtrlPts = 6,
25 
26         kBottomP0_CubicCtrlPts = 9,
27         kBottomP1_CubicCtrlPts = 8,
28         kBottomP2_CubicCtrlPts = 7,
29         kBottomP3_CubicCtrlPts = 6,
30 
31         kLeftP0_CubicCtrlPts = 0,
32         kLeftP1_CubicCtrlPts = 11,
33         kLeftP2_CubicCtrlPts = 10,
34         kLeftP3_CubicCtrlPts = 9,
35     };
36 
37     // Enum for corner also clockwise.
38     enum Corner {
39         kTopLeft_Corner = 0,
40         kTopRight_Corner,
41         kBottomRight_Corner,
42         kBottomLeft_Corner
43     };
44 }
45 
46 /**
47  * Evaluator to sample the values of a cubic bezier using forward differences.
48  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
49  * adding precalculated values.
50  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
51  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
52  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
53  * obtaining this value (mh) we could just add this constant step to our first sampled point
54  * to compute the next one.
55  *
56  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
57  * apply again forward differences and get linear function to which we can apply again forward
58  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
59  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
60  * difference values.
61  */
62 
63 class FwDCubicEvaluator {
64 
65 public:
66 
67     /**
68      * Receives the 4 control points of the cubic bezier.
69      */
70 
71     explicit FwDCubicEvaluator(const SkPoint points[4])
72             : fCoefs(points) {
73         memcpy(fPoints, points, 4 * sizeof(SkPoint));
74 
75         this->restart(1);
76     }
77 
78     /**
79      * Restarts the forward differences evaluator to the first value of t = 0.
80      */
81     void restart(int divisions)  {
82         fDivisions = divisions;
83         fCurrent    = 0;
84         fMax        = fDivisions + 1;
85         Sk2s h  = Sk2s(1.f / fDivisions);
86         Sk2s h2 = h * h;
87         Sk2s h3 = h2 * h;
88         Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3;
89         fFwDiff[3] = to_point(fwDiff3);
90         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
91         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
92         fFwDiff[0] = to_point(fCoefs.fD);
93     }
94 
95     /**
96      * Check if the evaluator is still within the range of 0<=t<=1
97      */
98     bool done() const {
99         return fCurrent > fMax;
100     }
101 
102     /**
103      * Call next to obtain the SkPoint sampled and move to the next one.
104      */
105     SkPoint next() {
106         SkPoint point = fFwDiff[0];
107         fFwDiff[0]    += fFwDiff[1];
108         fFwDiff[1]    += fFwDiff[2];
109         fFwDiff[2]    += fFwDiff[3];
110         fCurrent++;
111         return point;
112     }
113 
114     const SkPoint* getCtrlPoints() const {
115         return fPoints;
116     }
117 
118 private:
119     SkCubicCoeff fCoefs;
120     int fMax, fCurrent, fDivisions;
121     SkPoint fFwDiff[4], fPoints[4];
122 };
123 
124 ////////////////////////////////////////////////////////////////////////////////
125 
126 // size in pixels of each partition per axis, adjust this knob
127 static const int kPartitionSize = 10;
128 
129 /**
130  * Calculate the approximate arc length given a bezier curve's control points.
131  */
132 static SkScalar approx_arc_length(SkPoint* points, int count) {
133     if (count < 2) {
134         return 0;
135     }
136     SkScalar arcLength = 0;
137     for (int i = 0; i < count - 1; i++) {
138         arcLength += SkPoint::Distance(points[i], points[i + 1]);
139     }
140     return arcLength;
141 }
142 
143 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
144                        SkScalar c11) {
145     SkScalar a = c00 * (1.f - tx) + c10 * tx;
146     SkScalar b = c01 * (1.f - tx) + c11 * tx;
147     return a * (1.f - ty) + b * ty;
148 }
149 
150 static Sk4f bilerp(SkScalar tx, SkScalar ty,
151                    const Sk4f& c00, const Sk4f& c10, const Sk4f& c01, const Sk4f& c11) {
152     Sk4f a = c00 * (1.f - tx) + c10 * tx;
153     Sk4f b = c01 * (1.f - tx) + c11 * tx;
154     return a * (1.f - ty) + b * ty;
155 }
156 
157 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
158 
159     // Approximate length of each cubic.
160     SkPoint pts[kNumPtsCubic];
161     SkPatchUtils::GetTopCubic(cubics, pts);
162     matrix->mapPoints(pts, kNumPtsCubic);
163     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
164 
165     SkPatchUtils::GetBottomCubic(cubics, pts);
166     matrix->mapPoints(pts, kNumPtsCubic);
167     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
168 
169     SkPatchUtils::GetLeftCubic(cubics, pts);
170     matrix->mapPoints(pts, kNumPtsCubic);
171     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
172 
173     SkPatchUtils::GetRightCubic(cubics, pts);
174     matrix->mapPoints(pts, kNumPtsCubic);
175     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
176 
177     // Level of detail per axis, based on the larger side between top and bottom or left and right
178     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
179     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
180 
181     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
182 }
183 
184 void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
185     points[0] = cubics[kTopP0_CubicCtrlPts];
186     points[1] = cubics[kTopP1_CubicCtrlPts];
187     points[2] = cubics[kTopP2_CubicCtrlPts];
188     points[3] = cubics[kTopP3_CubicCtrlPts];
189 }
190 
191 void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
192     points[0] = cubics[kBottomP0_CubicCtrlPts];
193     points[1] = cubics[kBottomP1_CubicCtrlPts];
194     points[2] = cubics[kBottomP2_CubicCtrlPts];
195     points[3] = cubics[kBottomP3_CubicCtrlPts];
196 }
197 
198 void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
199     points[0] = cubics[kLeftP0_CubicCtrlPts];
200     points[1] = cubics[kLeftP1_CubicCtrlPts];
201     points[2] = cubics[kLeftP2_CubicCtrlPts];
202     points[3] = cubics[kLeftP3_CubicCtrlPts];
203 }
204 
205 void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
206     points[0] = cubics[kRightP0_CubicCtrlPts];
207     points[1] = cubics[kRightP1_CubicCtrlPts];
208     points[2] = cubics[kRightP2_CubicCtrlPts];
209     points[3] = cubics[kRightP3_CubicCtrlPts];
210 }
211 
212 #include "SkPM4fPriv.h"
213 #include "SkColorSpaceXform.h"
214 
215 struct SkRGBAf {
216     float fVec[4];
217 
218     static SkRGBAf From4f(const Sk4f& x) {
219         SkRGBAf c;
220         x.store(c.fVec);
221         return c;
222     }
223 
224     static SkRGBAf FromBGRA32(SkColor c) {
225         return From4f(swizzle_rb(SkNx_cast<float>(Sk4b::Load(&c)) * (1/255.0f)));
226     }
227 
228     Sk4f to4f() const {
229         return Sk4f::Load(fVec);
230     }
231 
232     SkColor toBGRA32() const {
233         SkColor color;
234         SkNx_cast<uint8_t>(swizzle_rb(this->to4f()) * Sk4f(255) + Sk4f(0.5f)).store(&color);
235         return color;
236     }
237 
238     SkRGBAf premul() const {
239         float a = fVec[3];
240         return From4f(this->to4f() * Sk4f(a, a, a, 1));
241     }
242 
243     SkRGBAf unpremul() const {
244         float a = fVec[3];
245         float inv = a ? 1/a : 0;
246         return From4f(this->to4f() * Sk4f(inv, inv, inv, 1));
247     }
248 };
249 
250 static void skcolor_to_linear(SkRGBAf dst[], const SkColor src[], int count, SkColorSpace* cs,
251                               bool doPremul) {
252     if (cs) {
253         auto srcCS = SkColorSpace::MakeSRGB();
254         auto dstCS = cs->makeLinearGamma();
255         auto op = doPremul ? SkColorSpaceXform::kPremul_AlphaOp
256                            : SkColorSpaceXform::kPreserve_AlphaOp;
257         SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat,  dst,
258                                  srcCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, src,
259                                  count, op);
260     } else {
261         for (int i = 0; i < count; ++i) {
262             dst[i] = SkRGBAf::FromBGRA32(src[i]);
263             if (doPremul) {
264                 dst[i] = dst[i].premul();
265             }
266         }
267     }
268 }
269 
270 static void linear_to_skcolor(SkColor dst[], const SkRGBAf src[], int count, SkColorSpace* cs) {
271     if (cs) {
272         auto srcCS = cs->makeLinearGamma();
273         auto dstCS = SkColorSpace::MakeSRGB();
274         SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, dst,
275                                  srcCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat,  src,
276                                  count, SkColorSpaceXform::kPreserve_AlphaOp);
277     } else {
278         for (int i = 0; i < count; ++i) {
279             dst[i] = src[i].toBGRA32();
280         }
281     }
282 }
283 
284 static void unpremul(SkRGBAf array[], int count) {
285     for (int i = 0; i < count; ++i) {
286         array[i] = array[i].unpremul();
287     }
288 }
289 
290 sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
291                                              const SkPoint srcTexCoords[4], int lodX, int lodY,
292                                              bool interpColorsLinearly) {
293     if (lodX < 1 || lodY < 1 || nullptr == cubics) {
294         return nullptr;
295     }
296 
297     // check for overflow in multiplication
298     const int64_t lodX64 = (lodX + 1),
299     lodY64 = (lodY + 1),
300     mult64 = lodX64 * lodY64;
301     if (mult64 > SK_MaxS32) {
302         return nullptr;
303     }
304 
305     int vertexCount = SkToS32(mult64);
306     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
307     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
308     if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
309         float weightX = static_cast<float>(lodX) / (lodX + lodY);
310         float weightY = static_cast<float>(lodY) / (lodX + lodY);
311 
312         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
313         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
314         lodX = static_cast<int>(weightX * 200);
315         lodY = static_cast<int>(weightY * 200);
316         vertexCount = (lodX + 1) * (lodY + 1);
317     }
318     const int indexCount = lodX * lodY * 6;
319     uint32_t flags = 0;
320     if (srcTexCoords) {
321         flags |= SkVertices::kHasTexCoords_BuilderFlag;
322     }
323     if (srcColors) {
324         flags |= SkVertices::kHasColors_BuilderFlag;
325     }
326 
327     SkSTArenaAlloc<2048> alloc;
328     SkRGBAf* cornerColors = srcColors ? alloc.makeArray<SkRGBAf>(4) : nullptr;
329     SkRGBAf* tmpColors = srcColors ? alloc.makeArray<SkRGBAf>(vertexCount) : nullptr;
330     auto convertCS = interpColorsLinearly ? SkColorSpace::MakeSRGB() : nullptr;
331 
332     SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
333     SkPoint* pos = builder.positions();
334     SkPoint* texs = builder.texCoords();
335     uint16_t* indices = builder.indices();
336     bool is_opaque = false;
337 
338     /*
339      *  1. Should we offer this as a runtime choice, as we do in gradients?
340      *  2. Since drawing the vertices wants premul, shoudl we extend SkVertices to store
341      *     premul colors (as floats, w/ a colorspace)?
342      */
343     bool doPremul = true;
344     if (cornerColors) {
345         SkColor c = ~0;
346         for (int i = 0; i < kNumCorners; i++) {
347             c &= srcColors[i];
348         }
349         is_opaque = (SkColorGetA(c) == 0xFF);
350         if (is_opaque) {
351             doPremul = false;   // no need
352         }
353 
354         skcolor_to_linear(cornerColors, srcColors, kNumCorners, convertCS.get(), doPremul);
355     }
356 
357     SkPoint pts[kNumPtsCubic];
358     SkPatchUtils::GetBottomCubic(cubics, pts);
359     FwDCubicEvaluator fBottom(pts);
360     SkPatchUtils::GetTopCubic(cubics, pts);
361     FwDCubicEvaluator fTop(pts);
362     SkPatchUtils::GetLeftCubic(cubics, pts);
363     FwDCubicEvaluator fLeft(pts);
364     SkPatchUtils::GetRightCubic(cubics, pts);
365     FwDCubicEvaluator fRight(pts);
366 
367     fBottom.restart(lodX);
368     fTop.restart(lodX);
369 
370     SkScalar u = 0.0f;
371     int stride = lodY + 1;
372     for (int x = 0; x <= lodX; x++) {
373         SkPoint bottom = fBottom.next(), top = fTop.next();
374         fLeft.restart(lodY);
375         fRight.restart(lodY);
376         SkScalar v = 0.f;
377         for (int y = 0; y <= lodY; y++) {
378             int dataIndex = x * (lodY + 1) + y;
379 
380             SkPoint left = fLeft.next(), right = fRight.next();
381 
382             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
383                                        (1.0f - v) * top.y() + v * bottom.y());
384             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
385                                        (1.0f - u) * left.y() + u * right.y());
386             SkPoint s2 = SkPoint::Make(
387                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
388                                                      + u * fTop.getCtrlPoints()[3].x())
389                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
390                                               + u * fBottom.getCtrlPoints()[3].x()),
391                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
392                                                      + u * fTop.getCtrlPoints()[3].y())
393                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
394                                               + u * fBottom.getCtrlPoints()[3].y()));
395             pos[dataIndex] = s0 + s1 - s2;
396 
397             if (cornerColors) {
398                 bilerp(u, v, cornerColors[kTopLeft_Corner].to4f(),
399                              cornerColors[kTopRight_Corner].to4f(),
400                              cornerColors[kBottomLeft_Corner].to4f(),
401                              cornerColors[kBottomRight_Corner].to4f()).store(tmpColors[dataIndex].fVec);
402                 if (is_opaque) {
403                     tmpColors[dataIndex].fVec[3] = 1;
404                 }
405             }
406 
407             if (texs) {
408                 texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
409                                                        srcTexCoords[kTopRight_Corner].x(),
410                                                        srcTexCoords[kBottomLeft_Corner].x(),
411                                                        srcTexCoords[kBottomRight_Corner].x()),
412                                                 bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
413                                                        srcTexCoords[kTopRight_Corner].y(),
414                                                        srcTexCoords[kBottomLeft_Corner].y(),
415                                                        srcTexCoords[kBottomRight_Corner].y()));
416 
417             }
418 
419             if(x < lodX && y < lodY) {
420                 int i = 6 * (x * lodY + y);
421                 indices[i] = x * stride + y;
422                 indices[i + 1] = x * stride + 1 + y;
423                 indices[i + 2] = (x + 1) * stride + 1 + y;
424                 indices[i + 3] = indices[i];
425                 indices[i + 4] = indices[i + 2];
426                 indices[i + 5] = (x + 1) * stride + y;
427             }
428             v = SkScalarClampMax(v + 1.f / lodY, 1);
429         }
430         u = SkScalarClampMax(u + 1.f / lodX, 1);
431     }
432 
433     if (tmpColors) {
434         if (doPremul) {
435             unpremul(tmpColors, vertexCount);
436         }
437         linear_to_skcolor(builder.colors(), tmpColors, vertexCount, convertCS.get());
438     }
439     return builder.detach();
440 }
441