1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkGeometry_DEFINED
9 #define SkGeometry_DEFINED
10 
11 #include "SkMatrix.h"
12 #include "SkNx.h"
13 
from_point(const SkPoint & point)14 static inline Sk2s from_point(const SkPoint& point) {
15     return Sk2s::Load(&point);
16 }
17 
to_point(const Sk2s & x)18 static inline SkPoint to_point(const Sk2s& x) {
19     SkPoint point;
20     x.store(&point);
21     return point;
22 }
23 
times_2(const Sk2s & value)24 static Sk2s times_2(const Sk2s& value) {
25     return value + value;
26 }
27 
28 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
29     equation.
30 */
31 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
32 
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
36 SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
37 
38 /** Set pt to the point on the src quadratic specified by t. t must be
39     0 <= t <= 1.0
40 */
41 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr);
42 
43 /** Given a src quadratic bezier, chop it at the specified t value,
44     where 0 < t < 1, and return the two new quadratics in dst:
45     dst[0..2] and dst[2..4]
46 */
47 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
48 
49 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
50     The new quads are returned in dst[0..2] and dst[2..4]
51 */
52 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
53 
54 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
55     for extrema, and return the number of t-values that are found that represent
56     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
57     function returns 0.
58     Returned count      tValues[]
59     0                   ignored
60     1                   0 < tValues[0] < 1
61 */
62 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
63 
64 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
65     the resulting beziers are monotonic in Y. This is called by the scan converter.
66     Depending on what is returned, dst[] is treated as follows
67     0   dst[0..2] is the original quad
68     1   dst[0..2] and dst[2..4] are the two new quads
69 */
70 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
71 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
72 
73 /** Given 3 points on a quadratic bezier, if the point of maximum
74     curvature exists on the segment, returns the t value for this
75     point along the curve. Otherwise it will return a value of 0.
76 */
77 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
78 
79 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
80     if the point of maximum curvature exists on the quad segment.
81     Depending on what is returned, dst[] is treated as follows
82     1   dst[0..2] is the original quad
83     2   dst[0..2] and dst[2..4] are the two new quads
84     If dst == null, it is ignored and only the count is returned.
85 */
86 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
87 
88 /** Given 3 points on a quadratic bezier, use degree elevation to
89     convert it into the cubic fitting the same curve. The new cubic
90     curve is returned in dst[0..3].
91 */
92 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
93 
94 ///////////////////////////////////////////////////////////////////////////////
95 
96 /** Set pt to the point on the src cubic specified by t. t must be
97     0 <= t <= 1.0
98 */
99 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
100                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
101 
102 /** Given a src cubic bezier, chop it at the specified t value,
103     where 0 < t < 1, and return the two new cubics in dst:
104     dst[0..3] and dst[3..6]
105 */
106 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
107 
108 /** Given a src cubic bezier, chop it at the specified t values,
109     where 0 < t < 1, and return the new cubics in dst:
110     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
111 */
112 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
113                    int t_count);
114 
115 /** Given a src cubic bezier, chop it at the specified t == 1/2,
116     The new cubics are returned in dst[0..3] and dst[3..6]
117 */
118 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
119 
120 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
121     for extrema, and return the number of t-values that are found that represent
122     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
123     function returns 0.
124     Returned count      tValues[]
125     0                   ignored
126     1                   0 < tValues[0] < 1
127     2                   0 < tValues[0] < tValues[1] < 1
128 */
129 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
130                        SkScalar tValues[2]);
131 
132 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
133     the resulting beziers are monotonic in Y. This is called by the scan converter.
134     Depending on what is returned, dst[] is treated as follows
135     0   dst[0..3] is the original cubic
136     1   dst[0..3] and dst[3..6] are the two new cubics
137     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
138     If dst == null, it is ignored and only the count is returned.
139 */
140 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
141 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
142 
143 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
144     inflection points.
145 */
146 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
147 
148 /** Return 1 for no chop, 2 for having chopped the cubic at a single
149     inflection point, 3 for having chopped at 2 inflection points.
150     dst will hold the resulting 1, 2, or 3 cubics.
151 */
152 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
153 
154 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
155 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
156                               SkScalar tValues[3] = nullptr);
157 
158 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
159 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);
160 
161 enum class SkCubicType {
162     kSerpentine,
163     kLoop,
164     kLocalCusp,       // Cusp at a non-infinite parameter value with an inflection at t=infinity.
165     kCuspAtInfinity,  // Cusp with a cusp at t=infinity and a local inflection.
166     kQuadratic,
167     kLineOrPoint
168 };
169 
SkCubicIsDegenerate(SkCubicType type)170 static inline bool SkCubicIsDegenerate(SkCubicType type) {
171     switch (type) {
172         case SkCubicType::kSerpentine:
173         case SkCubicType::kLoop:
174         case SkCubicType::kLocalCusp:
175         case SkCubicType::kCuspAtInfinity:
176             return false;
177         case SkCubicType::kQuadratic:
178         case SkCubicType::kLineOrPoint:
179             return true;
180     }
181     SK_ABORT("Invalid SkCubicType");
182     return true;
183 }
184 
SkCubicTypeName(SkCubicType type)185 static inline const char* SkCubicTypeName(SkCubicType type) {
186     switch (type) {
187         case SkCubicType::kSerpentine: return "kSerpentine";
188         case SkCubicType::kLoop: return "kLoop";
189         case SkCubicType::kLocalCusp: return "kLocalCusp";
190         case SkCubicType::kCuspAtInfinity: return "kCuspAtInfinity";
191         case SkCubicType::kQuadratic: return "kQuadratic";
192         case SkCubicType::kLineOrPoint: return "kLineOrPoint";
193     }
194     SK_ABORT("Invalid SkCubicType");
195     return "";
196 }
197 
198 /** Returns the cubic classification.
199 
200     t[],s[] are set to the two homogeneous parameter values at which points the lines L & M
201     intersect with K, sorted from smallest to largest and oriented so positive values of the
202     implicit are on the "left" side. For a serpentine curve they are the inflection points. For a
203     loop they are the double point. For a local cusp, they are both equal and denote the cusp point.
204     For a cusp at an infinite parameter value, one will be the local inflection point and the other
205     +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a
206     parameter value of +inf (t,s = 1,0).
207 
208     d[] is filled with the cubic inflection function coefficients. See "Resolution Independent
209     Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization:
210 
211     If the input points contain infinities or NaN, the return values are undefined.
212 
213     https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
214 */
215 SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr,
216                             double d[4] = nullptr);
217 
218 ///////////////////////////////////////////////////////////////////////////////
219 
220 enum SkRotationDirection {
221     kCW_SkRotationDirection,
222     kCCW_SkRotationDirection
223 };
224 
225 struct SkConic {
SkConicSkConic226     SkConic() {}
SkConicSkConic227     SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
228         fPts[0] = p0;
229         fPts[1] = p1;
230         fPts[2] = p2;
231         fW = w;
232     }
SkConicSkConic233     SkConic(const SkPoint pts[3], SkScalar w) {
234         memcpy(fPts, pts, sizeof(fPts));
235         fW = w;
236     }
237 
238     SkPoint  fPts[3];
239     SkScalar fW;
240 
setSkConic241     void set(const SkPoint pts[3], SkScalar w) {
242         memcpy(fPts, pts, 3 * sizeof(SkPoint));
243         fW = w;
244     }
245 
setSkConic246     void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
247         fPts[0] = p0;
248         fPts[1] = p1;
249         fPts[2] = p2;
250         fW = w;
251     }
252 
253     /**
254      *  Given a t-value [0...1] return its position and/or tangent.
255      *  If pos is not null, return its position at the t-value.
256      *  If tangent is not null, return its tangent at the t-value. NOTE the
257      *  tangent value's length is arbitrary, and only its direction should
258      *  be used.
259      */
260     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const;
261     bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const;
262     void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const;
263     void chop(SkConic dst[2]) const;
264 
265     SkPoint evalAt(SkScalar t) const;
266     SkVector evalTangentAt(SkScalar t) const;
267 
268     void computeAsQuadError(SkVector* err) const;
269     bool asQuadTol(SkScalar tol) const;
270 
271     /**
272      *  return the power-of-2 number of quads needed to approximate this conic
273      *  with a sequence of quads. Will be >= 0.
274      */
275     int SK_API computeQuadPOW2(SkScalar tol) const;
276 
277     /**
278      *  Chop this conic into N quads, stored continguously in pts[], where
279      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
280      */
281     int SK_API SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
282 
283     bool findXExtrema(SkScalar* t) const;
284     bool findYExtrema(SkScalar* t) const;
285     bool chopAtXExtrema(SkConic dst[2]) const;
286     bool chopAtYExtrema(SkConic dst[2]) const;
287 
288     void computeTightBounds(SkRect* bounds) const;
289     void computeFastBounds(SkRect* bounds) const;
290 
291     /** Find the parameter value where the conic takes on its maximum curvature.
292      *
293      *  @param t   output scalar for max curvature.  Will be unchanged if
294      *             max curvature outside 0..1 range.
295      *
296      *  @return  true if max curvature found inside 0..1 range, false otherwise
297      */
298 //    bool findMaxCurvature(SkScalar* t) const;  // unimplemented
299 
300     static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
301 
302     enum {
303         kMaxConicsForArc = 5
304     };
305     static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
306                             const SkMatrix*, SkConic conics[kMaxConicsForArc]);
307 };
308 
309 // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members
310 namespace {
311 
312 /**
313  *  use for : eval(t) == A * t^2 + B * t + C
314  */
315 struct SkQuadCoeff {
SkQuadCoeffSkQuadCoeff316     SkQuadCoeff() {}
317 
SkQuadCoeffSkQuadCoeff318     SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C)
319         : fA(A)
320         , fB(B)
321         , fC(C)
322     {
323     }
324 
SkQuadCoeffSkQuadCoeff325     SkQuadCoeff(const SkPoint src[3]) {
326         fC = from_point(src[0]);
327         Sk2s P1 = from_point(src[1]);
328         Sk2s P2 = from_point(src[2]);
329         fB = times_2(P1 - fC);
330         fA = P2 - times_2(P1) + fC;
331     }
332 
evalSkQuadCoeff333     Sk2s eval(SkScalar t) {
334         Sk2s tt(t);
335         return eval(tt);
336     }
337 
evalSkQuadCoeff338     Sk2s eval(const Sk2s& tt) {
339         return (fA * tt + fB) * tt + fC;
340     }
341 
342     Sk2s fA;
343     Sk2s fB;
344     Sk2s fC;
345 };
346 
347 struct SkConicCoeff {
SkConicCoeffSkConicCoeff348     SkConicCoeff(const SkConic& conic) {
349         Sk2s p0 = from_point(conic.fPts[0]);
350         Sk2s p1 = from_point(conic.fPts[1]);
351         Sk2s p2 = from_point(conic.fPts[2]);
352         Sk2s ww(conic.fW);
353 
354         Sk2s p1w = p1 * ww;
355         fNumer.fC = p0;
356         fNumer.fA = p2 - times_2(p1w) + p0;
357         fNumer.fB = times_2(p1w - p0);
358 
359         fDenom.fC = Sk2s(1);
360         fDenom.fB = times_2(ww - fDenom.fC);
361         fDenom.fA = Sk2s(0) - fDenom.fB;
362     }
363 
evalSkConicCoeff364     Sk2s eval(SkScalar t) {
365         Sk2s tt(t);
366         Sk2s numer = fNumer.eval(tt);
367         Sk2s denom = fDenom.eval(tt);
368         return numer / denom;
369     }
370 
371     SkQuadCoeff fNumer;
372     SkQuadCoeff fDenom;
373 };
374 
375 struct SkCubicCoeff {
SkCubicCoeffSkCubicCoeff376     SkCubicCoeff(const SkPoint src[4]) {
377         Sk2s P0 = from_point(src[0]);
378         Sk2s P1 = from_point(src[1]);
379         Sk2s P2 = from_point(src[2]);
380         Sk2s P3 = from_point(src[3]);
381         Sk2s three(3);
382         fA = P3 + three * (P1 - P2) - P0;
383         fB = three * (P2 - times_2(P1) + P0);
384         fC = three * (P1 - P0);
385         fD = P0;
386     }
387 
evalSkCubicCoeff388     Sk2s eval(SkScalar t) {
389         Sk2s tt(t);
390         return eval(tt);
391     }
392 
evalSkCubicCoeff393     Sk2s eval(const Sk2s& t) {
394         return ((fA * t + fB) * t + fC) * t + fD;
395     }
396 
397     Sk2s fA;
398     Sk2s fB;
399     Sk2s fC;
400     Sk2s fD;
401 };
402 
403 }
404 
405 #include "SkTemplates.h"
406 
407 /**
408  *  Help class to allocate storage for approximating a conic with N quads.
409  */
410 class SkAutoConicToQuads {
411 public:
SkAutoConicToQuads()412     SkAutoConicToQuads() : fQuadCount(0) {}
413 
414     /**
415      *  Given a conic and a tolerance, return the array of points for the
416      *  approximating quad(s). Call countQuads() to know the number of quads
417      *  represented in these points.
418      *
419      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
420      *  there will be 9 points allocated as follows
421      *      quad[0] == pts[0..2]
422      *      quad[1] == pts[2..4]
423      *      quad[2] == pts[4..6]
424      *      quad[3] == pts[6..8]
425      */
computeQuads(const SkConic & conic,SkScalar tol)426     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
427         int pow2 = conic.computeQuadPOW2(tol);
428         fQuadCount = 1 << pow2;
429         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
430         fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2);
431         return pts;
432     }
433 
computeQuads(const SkPoint pts[3],SkScalar weight,SkScalar tol)434     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
435                                 SkScalar tol) {
436         SkConic conic;
437         conic.set(pts, weight);
438         return computeQuads(conic, tol);
439     }
440 
countQuads()441     int countQuads() const { return fQuadCount; }
442 
443 private:
444     enum {
445         kQuadCount = 8, // should handle most conics
446         kPointCount = 1 + 2 * kQuadCount,
447     };
448     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
449     int fQuadCount; // #quads for current usage
450 };
451 
452 #endif
453