1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include <cmath>
9 #include "SkRRect.h"
10 #include "SkScopeExit.h"
11 #include "SkBuffer.h"
12 #include "SkMalloc.h"
13 #include "SkMatrix.h"
14 #include "SkScaleToSides.h"
15 
16 ///////////////////////////////////////////////////////////////////////////////
17 
setRectXY(const SkRect & rect,SkScalar xRad,SkScalar yRad)18 void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
19     if (!this->initializeRect(rect)) {
20         return;
21     }
22 
23     if (!SkScalarsAreFinite(xRad, yRad)) {
24         xRad = yRad = 0;    // devolve into a simple rect
25     }
26     if (xRad <= 0 || yRad <= 0) {
27         // all corners are square in this case
28         this->setRect(rect);
29         return;
30     }
31 
32     if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) {
33         SkScalar scale = SkMinScalar(fRect.width() / (xRad + xRad), fRect.height() / (yRad + yRad));
34         SkASSERT(scale < SK_Scalar1);
35         xRad *= scale;
36         yRad *= scale;
37     }
38 
39     for (int i = 0; i < 4; ++i) {
40         fRadii[i].set(xRad, yRad);
41     }
42     fType = kSimple_Type;
43     if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
44         fType = kOval_Type;
45         // TODO: assert that all the x&y radii are already W/2 & H/2
46     }
47 
48     SkASSERT(this->isValid());
49 }
50 
setNinePatch(const SkRect & rect,SkScalar leftRad,SkScalar topRad,SkScalar rightRad,SkScalar bottomRad)51 void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
52                            SkScalar rightRad, SkScalar bottomRad) {
53     if (!this->initializeRect(rect)) {
54         return;
55     }
56 
57     const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
58     if (!SkScalarsAreFinite(array, 4)) {
59         this->setRect(rect);    // devolve into a simple rect
60         return;
61     }
62 
63     leftRad = SkMaxScalar(leftRad, 0);
64     topRad = SkMaxScalar(topRad, 0);
65     rightRad = SkMaxScalar(rightRad, 0);
66     bottomRad = SkMaxScalar(bottomRad, 0);
67 
68     SkScalar scale = SK_Scalar1;
69     if (leftRad + rightRad > fRect.width()) {
70         scale = fRect.width() / (leftRad + rightRad);
71     }
72     if (topRad + bottomRad > fRect.height()) {
73         scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad));
74     }
75 
76     if (scale < SK_Scalar1) {
77         leftRad *= scale;
78         topRad *= scale;
79         rightRad *= scale;
80         bottomRad *= scale;
81     }
82 
83     if (leftRad == rightRad && topRad == bottomRad) {
84         if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) {
85             fType = kOval_Type;
86         } else if (0 == leftRad || 0 == topRad) {
87             // If the left and (by equality check above) right radii are zero then it is a rect.
88             // Same goes for top/bottom.
89             fType = kRect_Type;
90             leftRad = 0;
91             topRad = 0;
92             rightRad = 0;
93             bottomRad = 0;
94         } else {
95             fType = kSimple_Type;
96         }
97     } else {
98         fType = kNinePatch_Type;
99     }
100 
101     fRadii[kUpperLeft_Corner].set(leftRad, topRad);
102     fRadii[kUpperRight_Corner].set(rightRad, topRad);
103     fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
104     fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);
105 
106     SkASSERT(this->isValid());
107 }
108 
109 // These parameters intentionally double. Apropos crbug.com/463920, if one of the
110 // radii is huge while the other is small, single precision math can completely
111 // miss the fact that a scale is required.
compute_min_scale(double rad1,double rad2,double limit,double curMin)112 static double compute_min_scale(double rad1, double rad2, double limit, double curMin) {
113     if ((rad1 + rad2) > limit) {
114         return SkTMin(curMin, limit / (rad1 + rad2));
115     }
116     return curMin;
117 }
118 
setRectRadii(const SkRect & rect,const SkVector radii[4])119 void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
120     if (!this->initializeRect(rect)) {
121         return;
122     }
123 
124     if (!SkScalarsAreFinite(&radii[0].fX, 8)) {
125         this->setRect(rect);    // devolve into a simple rect
126         return;
127     }
128 
129     memcpy(fRadii, radii, sizeof(fRadii));
130 
131     bool allCornersSquare = true;
132 
133     // Clamp negative radii to zero
134     for (int i = 0; i < 4; ++i) {
135         if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) {
136             // In this case we are being a little fast & loose. Since one of
137             // the radii is 0 the corner is square. However, the other radii
138             // could still be non-zero and play in the global scale factor
139             // computation.
140             fRadii[i].fX = 0;
141             fRadii[i].fY = 0;
142         } else {
143             allCornersSquare = false;
144         }
145     }
146 
147     if (allCornersSquare) {
148         this->setRect(rect);
149         return;
150     }
151 
152     this->scaleRadii();
153 }
154 
initializeRect(const SkRect & rect)155 bool SkRRect::initializeRect(const SkRect& rect) {
156     // Check this before sorting because sorting can hide nans.
157     if (!rect.isFinite()) {
158         *this = SkRRect();
159         return false;
160     }
161     fRect = rect.makeSorted();
162     if (fRect.isEmpty()) {
163         memset(fRadii, 0, sizeof(fRadii));
164         fType = kEmpty_Type;
165         return false;
166     }
167     return true;
168 }
169 
scaleRadii()170 void SkRRect::scaleRadii() {
171 
172     // Proportionally scale down all radii to fit. Find the minimum ratio
173     // of a side and the radii on that side (for all four sides) and use
174     // that to scale down _all_ the radii. This algorithm is from the
175     // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
176     // Curves:
177     // "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
178     //   Si is the sum of the two corresponding radii of the corners on side i,
179     //   and Ltop = Lbottom = the width of the box,
180     //   and Lleft = Lright = the height of the box.
181     // If f < 1, then all corner radii are reduced by multiplying them by f."
182     double scale = 1.0;
183 
184     // The sides of the rectangle may be larger than a float.
185     double width = (double)fRect.fRight - (double)fRect.fLeft;
186     double height = (double)fRect.fBottom - (double)fRect.fTop;
187     scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width,  scale);
188     scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale);
189     scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width,  scale);
190     scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale);
191 
192     if (scale < 1.0) {
193         SkScaleToSides::AdjustRadii(width,  scale, &fRadii[0].fX, &fRadii[1].fX);
194         SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY);
195         SkScaleToSides::AdjustRadii(width,  scale, &fRadii[2].fX, &fRadii[3].fX);
196         SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY);
197     }
198 
199     // At this point we're either oval, simple, or complex (not empty or rect).
200     this->computeType();
201 
202     SkASSERT(this->isValid());
203 }
204 
205 // This method determines if a point known to be inside the RRect's bounds is
206 // inside all the corners.
checkCornerContainment(SkScalar x,SkScalar y) const207 bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const {
208     SkPoint canonicalPt; // (x,y) translated to one of the quadrants
209     int index;
210 
211     if (kOval_Type == this->type()) {
212         canonicalPt.set(x - fRect.centerX(), y - fRect.centerY());
213         index = kUpperLeft_Corner;  // any corner will do in this case
214     } else {
215         if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX &&
216             y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) {
217             // UL corner
218             index = kUpperLeft_Corner;
219             canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX),
220                             y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY));
221             SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0);
222         } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX &&
223                    y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) {
224             // LL corner
225             index = kLowerLeft_Corner;
226             canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX),
227                             y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY));
228             SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0);
229         } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX &&
230                    y < fRect.fTop + fRadii[kUpperRight_Corner].fY) {
231             // UR corner
232             index = kUpperRight_Corner;
233             canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX),
234                             y - (fRect.fTop + fRadii[kUpperRight_Corner].fY));
235             SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0);
236         } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX &&
237                    y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) {
238             // LR corner
239             index = kLowerRight_Corner;
240             canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX),
241                             y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY));
242             SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0);
243         } else {
244             // not in any of the corners
245             return true;
246         }
247     }
248 
249     // A point is in an ellipse (in standard position) if:
250     //      x^2     y^2
251     //     ----- + ----- <= 1
252     //      a^2     b^2
253     // or :
254     //     b^2*x^2 + a^2*y^2 <= (ab)^2
255     SkScalar dist =  SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) +
256                      SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX);
257     return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY);
258 }
259 
allCornersCircular(SkScalar tolerance) const260 bool SkRRect::allCornersCircular(SkScalar tolerance) const {
261     return SkScalarNearlyEqual(fRadii[0].fX, fRadii[0].fY, tolerance) &&
262            SkScalarNearlyEqual(fRadii[1].fX, fRadii[1].fY, tolerance) &&
263            SkScalarNearlyEqual(fRadii[2].fX, fRadii[2].fY, tolerance) &&
264            SkScalarNearlyEqual(fRadii[3].fX, fRadii[3].fY, tolerance);
265 }
266 
contains(const SkRect & rect) const267 bool SkRRect::contains(const SkRect& rect) const {
268     if (!this->getBounds().contains(rect)) {
269         // If 'rect' isn't contained by the RR's bounds then the
270         // RR definitely doesn't contain it
271         return false;
272     }
273 
274     if (this->isRect()) {
275         // the prior test was sufficient
276         return true;
277     }
278 
279     // At this point we know all four corners of 'rect' are inside the
280     // bounds of of this RR. Check to make sure all the corners are inside
281     // all the curves
282     return this->checkCornerContainment(rect.fLeft, rect.fTop) &&
283            this->checkCornerContainment(rect.fRight, rect.fTop) &&
284            this->checkCornerContainment(rect.fRight, rect.fBottom) &&
285            this->checkCornerContainment(rect.fLeft, rect.fBottom);
286 }
287 
radii_are_nine_patch(const SkVector radii[4])288 static bool radii_are_nine_patch(const SkVector radii[4]) {
289     return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX &&
290            radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY &&
291            radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX &&
292            radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY;
293 }
294 
295 // There is a simplified version of this method in setRectXY
computeType()296 void SkRRect::computeType() {
297     SK_AT_SCOPE_EXIT(SkASSERT(this->isValid()));
298 
299     if (fRect.isEmpty()) {
300         SkASSERT(fRect.isSorted());
301         for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) {
302             SkASSERT((fRadii[i] == SkVector{0, 0}));
303         }
304         fType = kEmpty_Type;
305         return;
306     }
307 
308     bool allRadiiEqual = true; // are all x radii equal and all y radii?
309     bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY;
310 
311     for (int i = 1; i < 4; ++i) {
312         if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
313             // if either radius is zero the corner is square so both have to
314             // be non-zero to have a rounded corner
315             allCornersSquare = false;
316         }
317         if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
318             allRadiiEqual = false;
319         }
320     }
321 
322     if (allCornersSquare) {
323         fType = kRect_Type;
324         return;
325     }
326 
327     if (allRadiiEqual) {
328         if (fRadii[0].fX >= SkScalarHalf(fRect.width()) &&
329             fRadii[0].fY >= SkScalarHalf(fRect.height())) {
330             fType = kOval_Type;
331         } else {
332             fType = kSimple_Type;
333         }
334         return;
335     }
336 
337     if (radii_are_nine_patch(fRadii)) {
338         fType = kNinePatch_Type;
339     } else {
340         fType = kComplex_Type;
341     }
342 }
343 
matrix_only_scale_and_translate(const SkMatrix & matrix)344 static bool matrix_only_scale_and_translate(const SkMatrix& matrix) {
345     const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask
346                                     | SkMatrix::kPerspective_Mask);
347     return (matrix.getType() & m) == 0;
348 }
349 
transform(const SkMatrix & matrix,SkRRect * dst) const350 bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const {
351     if (nullptr == dst) {
352         return false;
353     }
354 
355     // Assert that the caller is not trying to do this in place, which
356     // would violate const-ness. Do not return false though, so that
357     // if they know what they're doing and want to violate it they can.
358     SkASSERT(dst != this);
359 
360     if (matrix.isIdentity()) {
361         *dst = *this;
362         return true;
363     }
364 
365     // If transform supported 90 degree rotations (which it could), we could
366     // use SkMatrix::rectStaysRect() to check for a valid transformation.
367     if (!matrix_only_scale_and_translate(matrix)) {
368         return false;
369     }
370 
371     SkRect newRect;
372     if (!matrix.mapRect(&newRect, fRect)) {
373         return false;
374     }
375 
376     // The matrix may have scaled us to zero (or due to float madness, we now have collapsed
377     // some dimension of the rect, so we need to check for that. Note that matrix must be
378     // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates
379     // loss of precision.
380     if (!newRect.isFinite() || newRect.isEmpty()) {
381         return false;
382     }
383 
384     // At this point, this is guaranteed to succeed, so we can modify dst.
385     dst->fRect = newRect;
386 
387     // Since the only transforms that were allowed are scale and translate, the type
388     // remains unchanged.
389     dst->fType = fType;
390 
391     if (kRect_Type == fType) {
392         SkASSERT(dst->isValid());
393         return true;
394     }
395     if (kOval_Type == fType) {
396         for (int i = 0; i < 4; ++i) {
397             dst->fRadii[i].fX = SkScalarHalf(newRect.width());
398             dst->fRadii[i].fY = SkScalarHalf(newRect.height());
399         }
400         SkASSERT(dst->isValid());
401         return true;
402     }
403 
404     // Now scale each corner
405     SkScalar xScale = matrix.getScaleX();
406     const bool flipX = xScale < 0;
407     if (flipX) {
408         xScale = -xScale;
409     }
410     SkScalar yScale = matrix.getScaleY();
411     const bool flipY = yScale < 0;
412     if (flipY) {
413         yScale = -yScale;
414     }
415 
416     // Scale the radii without respecting the flip.
417     for (int i = 0; i < 4; ++i) {
418         dst->fRadii[i].fX = fRadii[i].fX * xScale;
419         dst->fRadii[i].fY = fRadii[i].fY * yScale;
420     }
421 
422     // Now swap as necessary.
423     if (flipX) {
424         if (flipY) {
425             // Swap with opposite corners
426             SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]);
427             SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]);
428         } else {
429             // Only swap in x
430             SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]);
431             SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]);
432         }
433     } else if (flipY) {
434         // Only swap in y
435         SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]);
436         SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]);
437     }
438 
439     if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) {
440         return false;
441     }
442 
443     dst->scaleRadii();
444     dst->isValid();
445 
446     return true;
447 }
448 
449 ///////////////////////////////////////////////////////////////////////////////
450 
inset(SkScalar dx,SkScalar dy,SkRRect * dst) const451 void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
452     SkRect r = fRect.makeInset(dx, dy);
453     bool degenerate = false;
454     if (r.fRight <= r.fLeft) {
455         degenerate = true;
456         r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight);
457     }
458     if (r.fBottom <= r.fTop) {
459         degenerate = true;
460         r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom);
461     }
462     if (degenerate) {
463         dst->fRect = r;
464         memset(dst->fRadii, 0, sizeof(dst->fRadii));
465         dst->fType = kEmpty_Type;
466         return;
467     }
468     if (!r.isFinite()) {
469         *dst = SkRRect();
470         return;
471     }
472 
473     SkVector radii[4];
474     memcpy(radii, fRadii, sizeof(radii));
475     for (int i = 0; i < 4; ++i) {
476         if (radii[i].fX) {
477             radii[i].fX -= dx;
478         }
479         if (radii[i].fY) {
480             radii[i].fY -= dy;
481         }
482     }
483     dst->setRectRadii(r, radii);
484 }
485 
486 ///////////////////////////////////////////////////////////////////////////////
487 
writeToMemory(void * buffer) const488 size_t SkRRect::writeToMemory(void* buffer) const {
489     // Serialize only the rect and corners, but not the derived type tag.
490     memcpy(buffer, this, kSizeInMemory);
491     return kSizeInMemory;
492 }
493 
writeToBuffer(SkWBuffer * buffer) const494 void SkRRect::writeToBuffer(SkWBuffer* buffer) const {
495     // Serialize only the rect and corners, but not the derived type tag.
496     buffer->write(this, kSizeInMemory);
497 }
498 
readFromMemory(const void * buffer,size_t length)499 size_t SkRRect::readFromMemory(const void* buffer, size_t length) {
500     if (length < kSizeInMemory) {
501         return 0;
502     }
503 
504     SkRRect raw;
505     memcpy(&raw, buffer, kSizeInMemory);
506     this->setRectRadii(raw.fRect, raw.fRadii);
507     return kSizeInMemory;
508 }
509 
readFromBuffer(SkRBuffer * buffer)510 bool SkRRect::readFromBuffer(SkRBuffer* buffer) {
511     if (buffer->available() < kSizeInMemory) {
512         return false;
513     }
514     SkRRect storage;
515     return buffer->read(&storage, kSizeInMemory) &&
516            (this->readFromMemory(&storage, kSizeInMemory) == kSizeInMemory);
517 }
518 
519 #include "SkString.h"
520 #include "SkStringUtils.h"
521 
dump(bool asHex) const522 void SkRRect::dump(bool asHex) const {
523     SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
524 
525     fRect.dump(asHex);
526     SkString line("const SkPoint corners[] = {\n");
527     for (int i = 0; i < 4; ++i) {
528         SkString strX, strY;
529         SkAppendScalar(&strX, fRadii[i].x(), asType);
530         SkAppendScalar(&strY, fRadii[i].y(), asType);
531         line.appendf("    { %s, %s },", strX.c_str(), strY.c_str());
532         if (asHex) {
533             line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y());
534         }
535         line.append("\n");
536     }
537     line.append("};");
538     SkDebugf("%s\n", line.c_str());
539 }
540 
541 ///////////////////////////////////////////////////////////////////////////////
542 
543 /**
544  *  We need all combinations of predicates to be true to have a "safe" radius value.
545  */
are_radius_check_predicates_valid(SkScalar rad,SkScalar min,SkScalar max)546 static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) {
547     return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) &&
548            rad >= 0;
549 }
550 
isValid() const551 bool SkRRect::isValid() const {
552     if (!AreRectAndRadiiValid(fRect, fRadii)) {
553         return false;
554     }
555 
556     bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY);
557     bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY);
558     bool allRadiiSame = true;
559 
560     for (int i = 1; i < 4; ++i) {
561         if (0 != fRadii[i].fX || 0 != fRadii[i].fY) {
562             allRadiiZero = false;
563         }
564 
565         if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
566             allRadiiSame = false;
567         }
568 
569         if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
570             allCornersSquare = false;
571         }
572     }
573     bool patchesOfNine = radii_are_nine_patch(fRadii);
574 
575     if (fType < 0 || fType > kLastType) {
576         return false;
577     }
578 
579     switch (fType) {
580         case kEmpty_Type:
581             if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
582                 return false;
583             }
584             break;
585         case kRect_Type:
586             if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
587                 return false;
588             }
589             break;
590         case kOval_Type:
591             if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
592                 return false;
593             }
594 
595             for (int i = 0; i < 4; ++i) {
596                 if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) ||
597                     !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) {
598                     return false;
599                 }
600             }
601             break;
602         case kSimple_Type:
603             if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
604                 return false;
605             }
606             break;
607         case kNinePatch_Type:
608             if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
609                 !patchesOfNine) {
610                 return false;
611             }
612             break;
613         case kComplex_Type:
614             if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
615                 patchesOfNine) {
616                 return false;
617             }
618             break;
619     }
620 
621     return true;
622 }
623 
AreRectAndRadiiValid(const SkRect & rect,const SkVector radii[4])624 bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) {
625     if (!rect.isFinite() || !rect.isSorted()) {
626         return false;
627     }
628     for (int i = 0; i < 4; ++i) {
629         if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) ||
630             !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) {
631             return false;
632         }
633     }
634     return true;
635 }
636 ///////////////////////////////////////////////////////////////////////////////
637