1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM Alias Analysis Infrastructure</title>
6  <link rel="stylesheet" href="llvm.css" type="text/css">
7</head>
8<body>
9
10<h1>
11  LLVM Alias Analysis Infrastructure
12</h1>
13
14<ol>
15  <li><a href="#introduction">Introduction</a></li>
16
17  <li><a href="#overview"><tt>AliasAnalysis</tt> Class Overview</a>
18    <ul>
19    <li><a href="#pointers">Representation of Pointers</a></li>
20    <li><a href="#alias">The <tt>alias</tt> method</a></li>
21    <li><a href="#ModRefInfo">The <tt>getModRefInfo</tt> methods</a></li>
22    <li><a href="#OtherItfs">Other useful <tt>AliasAnalysis</tt> methods</a></li>
23    </ul>
24  </li>
25
26  <li><a href="#writingnew">Writing a new <tt>AliasAnalysis</tt> Implementation</a>
27    <ul>
28    <li><a href="#passsubclasses">Different Pass styles</a></li>
29    <li><a href="#requiredcalls">Required initialization calls</a></li>
30    <li><a href="#interfaces">Interfaces which may be specified</a></li>
31    <li><a href="#chaining"><tt>AliasAnalysis</tt> chaining behavior</a></li>
32    <li><a href="#updating">Updating analysis results for transformations</a></li>
33    <li><a href="#implefficiency">Efficiency Issues</a></li>
34    <li><a href="#limitations">Limitations</a></li>
35    </ul>
36  </li>
37
38  <li><a href="#using">Using alias analysis results</a>
39    <ul>
40    <li><a href="#memdep">Using the <tt>MemoryDependenceAnalysis</tt> Pass</a></li>
41    <li><a href="#ast">Using the <tt>AliasSetTracker</tt> class</a></li>
42    <li><a href="#direct">Using the <tt>AliasAnalysis</tt> interface directly</a></li>
43    </ul>
44  </li>
45
46  <li><a href="#exist">Existing alias analysis implementations and clients</a>
47    <ul>
48    <li><a href="#impls">Available <tt>AliasAnalysis</tt> implementations</a></li>
49    <li><a href="#aliasanalysis-xforms">Alias analysis driven transformations</a></li>
50    <li><a href="#aliasanalysis-debug">Clients for debugging and evaluation of
51    implementations</a></li>
52    </ul>
53  </li>
54  <li><a href="#memdep">Memory Dependence Analysis</a></li>
55</ol>
56
57<div class="doc_author">
58  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
59</div>
60
61<!-- *********************************************************************** -->
62<h2>
63  <a name="introduction">Introduction</a>
64</h2>
65<!-- *********************************************************************** -->
66
67<div>
68
69<p>Alias Analysis (aka Pointer Analysis) is a class of techniques which attempt
70to determine whether or not two pointers ever can point to the same object in
71memory.  There are many different algorithms for alias analysis and many
72different ways of classifying them: flow-sensitive vs flow-insensitive,
73context-sensitive vs context-insensitive, field-sensitive vs field-insensitive,
74unification-based vs subset-based, etc.  Traditionally, alias analyses respond
75to a query with a <a href="#MustMayNo">Must, May, or No</a> alias response,
76indicating that two pointers always point to the same object, might point to the
77same object, or are known to never point to the same object.</p>
78
79<p>The LLVM <a
80href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
81class is the primary interface used by clients and implementations of alias
82analyses in the LLVM system.  This class is the common interface between clients
83of alias analysis information and the implementations providing it, and is
84designed to support a wide range of implementations and clients (but currently
85all clients are assumed to be flow-insensitive).  In addition to simple alias
86analysis information, this class exposes Mod/Ref information from those
87implementations which can provide it, allowing for powerful analyses and
88transformations to work well together.</p>
89
90<p>This document contains information necessary to successfully implement this
91interface, use it, and to test both sides.  It also explains some of the finer
92points about what exactly results mean.  If you feel that something is unclear
93or should be added, please <a href="mailto:sabre@nondot.org">let me
94know</a>.</p>
95
96</div>
97
98<!-- *********************************************************************** -->
99<h2>
100  <a name="overview"><tt>AliasAnalysis</tt> Class Overview</a>
101</h2>
102<!-- *********************************************************************** -->
103
104<div>
105
106<p>The <a
107href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
108class defines the interface that the various alias analysis implementations
109should support.  This class exports two important enums: <tt>AliasResult</tt>
110and <tt>ModRefResult</tt> which represent the result of an alias query or a
111mod/ref query, respectively.</p>
112
113<p>The <tt>AliasAnalysis</tt> interface exposes information about memory,
114represented in several different ways.  In particular, memory objects are
115represented as a starting address and size, and function calls are represented
116as the actual <tt>call</tt> or <tt>invoke</tt> instructions that performs the
117call.  The <tt>AliasAnalysis</tt> interface also exposes some helper methods
118which allow you to get mod/ref information for arbitrary instructions.</p>
119
120<p>All <tt>AliasAnalysis</tt> interfaces require that in queries involving
121multiple values, values which are not
122<a href="LangRef.html#constants">constants</a> are all defined within the
123same function.</p>
124
125<!-- ======================================================================= -->
126<h3>
127  <a name="pointers">Representation of Pointers</a>
128</h3>
129
130<div>
131
132<p>Most importantly, the <tt>AliasAnalysis</tt> class provides several methods
133which are used to query whether or not two memory objects alias, whether
134function calls can modify or read a memory object, etc.  For all of these
135queries, memory objects are represented as a pair of their starting address (a
136symbolic LLVM <tt>Value*</tt>) and a static size.</p>
137
138<p>Representing memory objects as a starting address and a size is critically
139important for correct Alias Analyses.  For example, consider this (silly, but
140possible) C code:</p>
141
142<div class="doc_code">
143<pre>
144int i;
145char C[2];
146char A[10];
147/* ... */
148for (i = 0; i != 10; ++i) {
149  C[0] = A[i];          /* One byte store */
150  C[1] = A[9-i];        /* One byte store */
151}
152</pre>
153</div>
154
155<p>In this case, the <tt>basicaa</tt> pass will disambiguate the stores to
156<tt>C[0]</tt> and <tt>C[1]</tt> because they are accesses to two distinct
157locations one byte apart, and the accesses are each one byte.  In this case, the
158LICM pass can use store motion to remove the stores from the loop.  In
159constrast, the following code:</p>
160
161<div class="doc_code">
162<pre>
163int i;
164char C[2];
165char A[10];
166/* ... */
167for (i = 0; i != 10; ++i) {
168  ((short*)C)[0] = A[i];  /* Two byte store! */
169  C[1] = A[9-i];          /* One byte store */
170}
171</pre>
172</div>
173
174<p>In this case, the two stores to C do alias each other, because the access to
175the <tt>&amp;C[0]</tt> element is a two byte access.  If size information wasn't
176available in the query, even the first case would have to conservatively assume
177that the accesses alias.</p>
178
179</div>
180
181<!-- ======================================================================= -->
182<h3>
183  <a name="alias">The <tt>alias</tt> method</a>
184</h3>
185
186<div>
187<p>The <tt>alias</tt> method is the primary interface used to determine whether
188or not two memory objects alias each other.  It takes two memory objects as
189input and returns MustAlias, PartialAlias, MayAlias, or NoAlias as
190appropriate.</p>
191
192<p>Like all <tt>AliasAnalysis</tt> interfaces, the <tt>alias</tt> method requires
193that either the two pointer values be defined within the same function, or at
194least one of the values is a <a href="LangRef.html#constants">constant</a>.</p>
195
196<!-- _______________________________________________________________________ -->
197<h4>
198  <a name="MustMayNo">Must, May, and No Alias Responses</a>
199</h4>
200
201<div>
202<p>The NoAlias response may be used when there is never an immediate dependence
203between any memory reference <i>based</i> on one pointer and any memory
204reference <i>based</i> the other. The most obvious example is when the two
205pointers point to non-overlapping memory ranges. Another is when the two
206pointers are only ever used for reading memory. Another is when the memory is
207freed and reallocated between accesses through one pointer and accesses through
208the other -- in this case, there is a dependence, but it's mediated by the free
209and reallocation.</p>
210
211<p>As an exception to this is with the
212<a href="LangRef.html#noalias"><tt>noalias</tt></a> keyword; the "irrelevant"
213dependencies are ignored.</p>
214
215<p>The MayAlias response is used whenever the two pointers might refer to the
216same object.</p>
217
218<p>The PartialAlias response is used when the two memory objects are known
219to be overlapping in some way, but do not start at the same address.</p>
220
221<p>The MustAlias response may only be returned if the two memory objects are
222guaranteed to always start at exactly the same location. A MustAlias response
223implies that the pointers compare equal.</p>
224
225</div>
226
227</div>
228
229<!-- ======================================================================= -->
230<h3>
231  <a name="ModRefInfo">The <tt>getModRefInfo</tt> methods</a>
232</h3>
233
234<div>
235
236<p>The <tt>getModRefInfo</tt> methods return information about whether the
237execution of an instruction can read or modify a memory location.  Mod/Ref
238information is always conservative: if an instruction <b>might</b> read or write
239a location, ModRef is returned.</p>
240
241<p>The <tt>AliasAnalysis</tt> class also provides a <tt>getModRefInfo</tt>
242method for testing dependencies between function calls.  This method takes two
243call sites (CS1 &amp; CS2), returns NoModRef if neither call writes to memory
244read or written by the other, Ref if CS1 reads memory written by CS2, Mod if CS1
245writes to memory read or written by CS2, or ModRef if CS1 might read or write
246memory written to by CS2.  Note that this relation is not commutative.</p>
247
248</div>
249
250
251<!-- ======================================================================= -->
252<h3>
253  <a name="OtherItfs">Other useful <tt>AliasAnalysis</tt> methods</a>
254</h3>
255
256<div>
257
258<p>
259Several other tidbits of information are often collected by various alias
260analysis implementations and can be put to good use by various clients.
261</p>
262
263<!-- _______________________________________________________________________ -->
264<h4>
265  The <tt>pointsToConstantMemory</tt> method
266</h4>
267
268<div>
269
270<p>The <tt>pointsToConstantMemory</tt> method returns true if and only if the
271analysis can prove that the pointer only points to unchanging memory locations
272(functions, constant global variables, and the null pointer).  This information
273can be used to refine mod/ref information: it is impossible for an unchanging
274memory location to be modified.</p>
275
276</div>
277
278<!-- _______________________________________________________________________ -->
279<h4>
280  <a name="simplemodref">The <tt>doesNotAccessMemory</tt> and
281  <tt>onlyReadsMemory</tt> methods</a>
282</h4>
283
284<div>
285
286<p>These methods are used to provide very simple mod/ref information for
287function calls.  The <tt>doesNotAccessMemory</tt> method returns true for a
288function if the analysis can prove that the function never reads or writes to
289memory, or if the function only reads from constant memory.  Functions with this
290property are side-effect free and only depend on their input arguments, allowing
291them to be eliminated if they form common subexpressions or be hoisted out of
292loops.  Many common functions behave this way (e.g., <tt>sin</tt> and
293<tt>cos</tt>) but many others do not (e.g., <tt>acos</tt>, which modifies the
294<tt>errno</tt> variable).</p>
295
296<p>The <tt>onlyReadsMemory</tt> method returns true for a function if analysis
297can prove that (at most) the function only reads from non-volatile memory.
298Functions with this property are side-effect free, only depending on their input
299arguments and the state of memory when they are called.  This property allows
300calls to these functions to be eliminated and moved around, as long as there is
301no store instruction that changes the contents of memory.  Note that all
302functions that satisfy the <tt>doesNotAccessMemory</tt> method also satisfies
303<tt>onlyReadsMemory</tt>.</p>
304
305</div>
306
307</div>
308
309</div>
310
311<!-- *********************************************************************** -->
312<h2>
313  <a name="writingnew">Writing a new <tt>AliasAnalysis</tt> Implementation</a>
314</h2>
315<!-- *********************************************************************** -->
316
317<div>
318
319<p>Writing a new alias analysis implementation for LLVM is quite
320straight-forward.  There are already several implementations that you can use
321for examples, and the following information should help fill in any details.
322For a examples, take a look at the <a href="#impls">various alias analysis
323implementations</a> included with LLVM.</p>
324
325<!-- ======================================================================= -->
326<h3>
327  <a name="passsubclasses">Different Pass styles</a>
328</h3>
329
330<div>
331
332<p>The first step to determining what type of <a
333href="WritingAnLLVMPass.html">LLVM pass</a> you need to use for your Alias
334Analysis.  As is the case with most other analyses and transformations, the
335answer should be fairly obvious from what type of problem you are trying to
336solve:</p>
337
338<ol>
339  <li>If you require interprocedural analysis, it should be a
340      <tt>Pass</tt>.</li>
341  <li>If you are a function-local analysis, subclass <tt>FunctionPass</tt>.</li>
342  <li>If you don't need to look at the program at all, subclass
343      <tt>ImmutablePass</tt>.</li>
344</ol>
345
346<p>In addition to the pass that you subclass, you should also inherit from the
347<tt>AliasAnalysis</tt> interface, of course, and use the
348<tt>RegisterAnalysisGroup</tt> template to register as an implementation of
349<tt>AliasAnalysis</tt>.</p>
350
351</div>
352
353<!-- ======================================================================= -->
354<h3>
355  <a name="requiredcalls">Required initialization calls</a>
356</h3>
357
358<div>
359
360<p>Your subclass of <tt>AliasAnalysis</tt> is required to invoke two methods on
361the <tt>AliasAnalysis</tt> base class: <tt>getAnalysisUsage</tt> and
362<tt>InitializeAliasAnalysis</tt>.  In particular, your implementation of
363<tt>getAnalysisUsage</tt> should explicitly call into the
364<tt>AliasAnalysis::getAnalysisUsage</tt> method in addition to doing any
365declaring any pass dependencies your pass has.  Thus you should have something
366like this:</p>
367
368<div class="doc_code">
369<pre>
370void getAnalysisUsage(AnalysisUsage &amp;AU) const {
371  AliasAnalysis::getAnalysisUsage(AU);
372  <i>// declare your dependencies here.</i>
373}
374</pre>
375</div>
376
377<p>Additionally, your must invoke the <tt>InitializeAliasAnalysis</tt> method
378from your analysis run method (<tt>run</tt> for a <tt>Pass</tt>,
379<tt>runOnFunction</tt> for a <tt>FunctionPass</tt>, or <tt>InitializePass</tt>
380for an <tt>ImmutablePass</tt>).  For example (as part of a <tt>Pass</tt>):</p>
381
382<div class="doc_code">
383<pre>
384bool run(Module &amp;M) {
385  InitializeAliasAnalysis(this);
386  <i>// Perform analysis here...</i>
387  return false;
388}
389</pre>
390</div>
391
392</div>
393
394<!-- ======================================================================= -->
395<h3>
396  <a name="interfaces">Interfaces which may be specified</a>
397</h3>
398
399<div>
400
401<p>All of the <a
402href="/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
403virtual methods default to providing <a href="#chaining">chaining</a> to another
404alias analysis implementation, which ends up returning conservatively correct
405information (returning "May" Alias and "Mod/Ref" for alias and mod/ref queries
406respectively).  Depending on the capabilities of the analysis you are
407implementing, you just override the interfaces you can improve.</p>
408
409</div>
410
411
412
413<!-- ======================================================================= -->
414<h3>
415  <a name="chaining"><tt>AliasAnalysis</tt> chaining behavior</a>
416</h3>
417
418<div>
419
420<p>With only two special exceptions (the <tt><a
421href="#basic-aa">basicaa</a></tt> and <a href="#no-aa"><tt>no-aa</tt></a>
422passes) every alias analysis pass chains to another alias analysis
423implementation (for example, the user can specify "<tt>-basicaa -ds-aa
424-licm</tt>" to get the maximum benefit from both alias
425analyses).  The alias analysis class automatically takes care of most of this
426for methods that you don't override.  For methods that you do override, in code
427paths that return a conservative MayAlias or Mod/Ref result, simply return
428whatever the superclass computes.  For example:</p>
429
430<div class="doc_code">
431<pre>
432AliasAnalysis::AliasResult alias(const Value *V1, unsigned V1Size,
433                                 const Value *V2, unsigned V2Size) {
434  if (...)
435    return NoAlias;
436  ...
437
438  <i>// Couldn't determine a must or no-alias result.</i>
439  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
440}
441</pre>
442</div>
443
444<p>In addition to analysis queries, you must make sure to unconditionally pass
445LLVM <a href="#updating">update notification</a> methods to the superclass as
446well if you override them, which allows all alias analyses in a change to be
447updated.</p>
448
449</div>
450
451
452<!-- ======================================================================= -->
453<h3>
454  <a name="updating">Updating analysis results for transformations</a>
455</h3>
456
457<div>
458<p>
459Alias analysis information is initially computed for a static snapshot of the
460program, but clients will use this information to make transformations to the
461code.  All but the most trivial forms of alias analysis will need to have their
462analysis results updated to reflect the changes made by these transformations.
463</p>
464
465<p>
466The <tt>AliasAnalysis</tt> interface exposes four methods which are used to
467communicate program changes from the clients to the analysis implementations.
468Various alias analysis implementations should use these methods to ensure that
469their internal data structures are kept up-to-date as the program changes (for
470example, when an instruction is deleted), and clients of alias analysis must be
471sure to call these interfaces appropriately.
472</p>
473
474<!-- _______________________________________________________________________ -->
475<h4>The <tt>deleteValue</tt> method</h4>
476
477<div>
478The <tt>deleteValue</tt> method is called by transformations when they remove an
479instruction or any other value from the program (including values that do not
480use pointers).  Typically alias analyses keep data structures that have entries
481for each value in the program.  When this method is called, they should remove
482any entries for the specified value, if they exist.
483</div>
484
485<!-- _______________________________________________________________________ -->
486<h4>The <tt>copyValue</tt> method</h4>
487
488<div>
489The <tt>copyValue</tt> method is used when a new value is introduced into the
490program.  There is no way to introduce a value into the program that did not
491exist before (this doesn't make sense for a safe compiler transformation), so
492this is the only way to introduce a new value.  This method indicates that the
493new value has exactly the same properties as the value being copied.
494</div>
495
496<!-- _______________________________________________________________________ -->
497<h4>The <tt>replaceWithNewValue</tt> method</h4>
498
499<div>
500This method is a simple helper method that is provided to make clients easier to
501use.  It is implemented by copying the old analysis information to the new
502value, then deleting the old value.  This method cannot be overridden by alias
503analysis implementations.
504</div>
505
506<!-- _______________________________________________________________________ -->
507<h4>The <tt>addEscapingUse</tt> method</h4>
508
509<div>
510<p>The <tt>addEscapingUse</tt> method is used when the uses of a pointer
511value have changed in ways that may invalidate precomputed analysis information.
512Implementations may either use this callback to provide conservative responses
513for points whose uses have change since analysis time, or may recompute some
514or all of their internal state to continue providing accurate responses.</p>
515
516<p>In general, any new use of a pointer value is considered an escaping use,
517and must be reported through this callback, <em>except</em> for the
518uses below:</p>
519
520<ul>
521  <li>A <tt>bitcast</tt> or <tt>getelementptr</tt> of the pointer</li>
522  <li>A <tt>store</tt> through the pointer (but not a <tt>store</tt>
523      <em>of</em> the pointer)</li>
524  <li>A <tt>load</tt> through the pointer</li>
525</ul>
526</div>
527
528</div>
529
530<!-- ======================================================================= -->
531<h3>
532  <a name="implefficiency">Efficiency Issues</a>
533</h3>
534
535<div>
536
537<p>From the LLVM perspective, the only thing you need to do to provide an
538efficient alias analysis is to make sure that alias analysis <b>queries</b> are
539serviced quickly.  The actual calculation of the alias analysis results (the
540"run" method) is only performed once, but many (perhaps duplicate) queries may
541be performed.  Because of this, try to move as much computation to the run
542method as possible (within reason).</p>
543
544</div>
545
546<!-- ======================================================================= -->
547<h3>
548  <a name="limitations">Limitations</a>
549</h3>
550
551<div>
552
553<p>The AliasAnalysis infrastructure has several limitations which make
554writing a new <tt>AliasAnalysis</tt> implementation difficult.</p>
555
556<p>There is no way to override the default alias analysis. It would
557be very useful to be able to do something like "opt -my-aa -O2" and
558have it use -my-aa for all passes which need AliasAnalysis, but there
559is currently no support for that, short of changing the source code
560and recompiling. Similarly, there is also no way of setting a chain
561of analyses as the default.</p>
562
563<p>There is no way for transform passes to declare that they preserve
564<tt>AliasAnalysis</tt> implementations. The <tt>AliasAnalysis</tt>
565interface includes <tt>deleteValue</tt> and <tt>copyValue</tt> methods
566which are intended to allow a pass to keep an AliasAnalysis consistent,
567however there's no way for a pass to declare in its
568<tt>getAnalysisUsage</tt> that it does so. Some passes attempt to use
569<tt>AU.addPreserved&lt;AliasAnalysis&gt;</tt>, however this doesn't
570actually have any effect.</p>
571
572<p><tt>AliasAnalysisCounter</tt> (<tt>-count-aa</tt>) and <tt>AliasDebugger</tt>
573(<tt>-debug-aa</tt>) are implemented as <tt>ModulePass</tt> classes, so if your
574alias analysis uses <tt>FunctionPass</tt>, it won't be able to use
575these utilities. If you try to use them, the pass manager will
576silently route alias analysis queries directly to
577<tt>BasicAliasAnalysis</tt> instead.</p>
578
579<p>Similarly, the <tt>opt -p</tt> option introduces <tt>ModulePass</tt>
580passes between each pass, which prevents the use of <tt>FunctionPass</tt>
581alias analysis passes.</p>
582
583<p>The <tt>AliasAnalysis</tt> API does have functions for notifying
584implementations when values are deleted or copied, however these
585aren't sufficient. There are many other ways that LLVM IR can be
586modified which could be relevant to <tt>AliasAnalysis</tt>
587implementations which can not be expressed.</p>
588
589<p>The <tt>AliasAnalysisDebugger</tt> utility seems to suggest that
590<tt>AliasAnalysis</tt> implementations can expect that they will be
591informed of any relevant <tt>Value</tt> before it appears in an
592alias query. However, popular clients such as <tt>GVN</tt> don't
593support this, and are known to trigger errors when run with the
594<tt>AliasAnalysisDebugger</tt>.</p>
595
596<p>Due to several of the above limitations, the most obvious use for
597the <tt>AliasAnalysisCounter</tt> utility, collecting stats on all
598alias queries in a compilation, doesn't work, even if the
599<tt>AliasAnalysis</tt> implementations don't use <tt>FunctionPass</tt>.
600There's no way to set a default, much less a default sequence,
601and there's no way to preserve it.</p>
602
603<p>The <tt>AliasSetTracker</tt> class (which is used by <tt>LICM</tt>
604makes a non-deterministic number of alias queries. This can cause stats
605collected by <tt>AliasAnalysisCounter</tt> to have fluctuations among
606identical runs, for example. Another consequence is that debugging
607techniques involving pausing execution after a predetermined number
608of queries can be unreliable.</p>
609
610<p>Many alias queries can be reformulated in terms of other alias
611queries. When multiple <tt>AliasAnalysis</tt> queries are chained together,
612it would make sense to start those queries from the beginning of the chain,
613with care taken to avoid infinite looping, however currently an
614implementation which wants to do this can only start such queries
615from itself.</p>
616
617</div>
618
619</div>
620
621<!-- *********************************************************************** -->
622<h2>
623  <a name="using">Using alias analysis results</a>
624</h2>
625<!-- *********************************************************************** -->
626
627<div>
628
629<p>There are several different ways to use alias analysis results.  In order of
630preference, these are...</p>
631
632<!-- ======================================================================= -->
633<h3>
634  <a name="memdep">Using the <tt>MemoryDependenceAnalysis</tt> Pass</a>
635</h3>
636
637<div>
638
639<p>The <tt>memdep</tt> pass uses alias analysis to provide high-level dependence
640information about memory-using instructions.  This will tell you which store
641feeds into a load, for example.  It uses caching and other techniques to be
642efficient, and is used by Dead Store Elimination, GVN, and memcpy optimizations.
643</p>
644
645</div>
646
647<!-- ======================================================================= -->
648<h3>
649  <a name="ast">Using the <tt>AliasSetTracker</tt> class</a>
650</h3>
651
652<div>
653
654<p>Many transformations need information about alias <b>sets</b> that are active
655in some scope, rather than information about pairwise aliasing.  The <tt><a
656href="/doxygen/classllvm_1_1AliasSetTracker.html">AliasSetTracker</a></tt> class
657is used to efficiently build these Alias Sets from the pairwise alias analysis
658information provided by the <tt>AliasAnalysis</tt> interface.</p>
659
660<p>First you initialize the AliasSetTracker by using the "<tt>add</tt>" methods
661to add information about various potentially aliasing instructions in the scope
662you are interested in.  Once all of the alias sets are completed, your pass
663should simply iterate through the constructed alias sets, using the
664<tt>AliasSetTracker</tt> <tt>begin()</tt>/<tt>end()</tt> methods.</p>
665
666<p>The <tt>AliasSet</tt>s formed by the <tt>AliasSetTracker</tt> are guaranteed
667to be disjoint, calculate mod/ref information and volatility for the set, and
668keep track of whether or not all of the pointers in the set are Must aliases.
669The AliasSetTracker also makes sure that sets are properly folded due to call
670instructions, and can provide a list of pointers in each set.</p>
671
672<p>As an example user of this, the <a href="/doxygen/structLICM.html">Loop
673Invariant Code Motion</a> pass uses <tt>AliasSetTracker</tt>s to calculate alias
674sets for each loop nest.  If an <tt>AliasSet</tt> in a loop is not modified,
675then all load instructions from that set may be hoisted out of the loop.  If any
676alias sets are stored to <b>and</b> are must alias sets, then the stores may be
677sunk to outside of the loop, promoting the memory location to a register for the
678duration of the loop nest.  Both of these transformations only apply if the
679pointer argument is loop-invariant.</p>
680
681<!-- _______________________________________________________________________ -->
682<h4>
683  The AliasSetTracker implementation
684</h4>
685
686<div>
687
688<p>The AliasSetTracker class is implemented to be as efficient as possible.  It
689uses the union-find algorithm to efficiently merge AliasSets when a pointer is
690inserted into the AliasSetTracker that aliases multiple sets.  The primary data
691structure is a hash table mapping pointers to the AliasSet they are in.</p>
692
693<p>The AliasSetTracker class must maintain a list of all of the LLVM Value*'s
694that are in each AliasSet.  Since the hash table already has entries for each
695LLVM Value* of interest, the AliasesSets thread the linked list through these
696hash-table nodes to avoid having to allocate memory unnecessarily, and to make
697merging alias sets extremely efficient (the linked list merge is constant time).
698</p>
699
700<p>You shouldn't need to understand these details if you are just a client of
701the AliasSetTracker, but if you look at the code, hopefully this brief
702description will help make sense of why things are designed the way they
703are.</p>
704
705</div>
706
707</div>
708
709<!-- ======================================================================= -->
710<h3>
711  <a name="direct">Using the <tt>AliasAnalysis</tt> interface directly</a>
712</h3>
713
714<div>
715
716<p>If neither of these utility class are what your pass needs, you should use
717the interfaces exposed by the <tt>AliasAnalysis</tt> class directly.  Try to use
718the higher-level methods when possible (e.g., use mod/ref information instead of
719the <a href="#alias"><tt>alias</tt></a> method directly if possible) to get the
720best precision and efficiency.</p>
721
722</div>
723
724</div>
725
726<!-- *********************************************************************** -->
727<h2>
728  <a name="exist">Existing alias analysis implementations and clients</a>
729</h2>
730<!-- *********************************************************************** -->
731
732<div>
733
734<p>If you're going to be working with the LLVM alias analysis infrastructure,
735you should know what clients and implementations of alias analysis are
736available.  In particular, if you are implementing an alias analysis, you should
737be aware of the <a href="#aliasanalysis-debug">the clients</a> that are useful
738for monitoring and evaluating different implementations.</p>
739
740<!-- ======================================================================= -->
741<h3>
742  <a name="impls">Available <tt>AliasAnalysis</tt> implementations</a>
743</h3>
744
745<div>
746
747<p>This section lists the various implementations of the <tt>AliasAnalysis</tt>
748interface.  With the exception of the <a href="#no-aa"><tt>-no-aa</tt></a>
749implementation, all of these <a href="#chaining">chain</a> to other alias
750analysis implementations.</p>
751
752<!-- _______________________________________________________________________ -->
753<h4>
754  <a name="no-aa">The <tt>-no-aa</tt> pass</a>
755</h4>
756
757<div>
758
759<p>The <tt>-no-aa</tt> pass is just like what it sounds: an alias analysis that
760never returns any useful information.  This pass can be useful if you think that
761alias analysis is doing something wrong and are trying to narrow down a
762problem.</p>
763
764</div>
765
766<!-- _______________________________________________________________________ -->
767<h4>
768  <a name="basic-aa">The <tt>-basicaa</tt> pass</a>
769</h4>
770
771<div>
772
773<p>The <tt>-basicaa</tt> pass is an aggressive local analysis that "knows"
774many important facts:</p>
775
776<ul>
777<li>Distinct globals, stack allocations, and heap allocations can never
778    alias.</li>
779<li>Globals, stack allocations, and heap allocations never alias the null
780    pointer.</li>
781<li>Different fields of a structure do not alias.</li>
782<li>Indexes into arrays with statically differing subscripts cannot alias.</li>
783<li>Many common standard C library functions <a
784    href="#simplemodref">never access memory or only read memory</a>.</li>
785<li>Pointers that obviously point to constant globals
786    "<tt>pointToConstantMemory</tt>".</li>
787<li>Function calls can not modify or references stack allocations if they never
788    escape from the function that allocates them (a common case for automatic
789    arrays).</li>
790</ul>
791
792</div>
793
794<!-- _______________________________________________________________________ -->
795<h4>
796  <a name="globalsmodref">The <tt>-globalsmodref-aa</tt> pass</a>
797</h4>
798
799<div>
800
801<p>This pass implements a simple context-sensitive mod/ref and alias analysis
802for internal global variables that don't "have their address taken".  If a
803global does not have its address taken, the pass knows that no pointers alias
804the global.  This pass also keeps track of functions that it knows never access
805memory or never read memory.  This allows certain optimizations (e.g. GVN) to
806eliminate call instructions entirely.
807</p>
808
809<p>The real power of this pass is that it provides context-sensitive mod/ref
810information for call instructions.  This allows the optimizer to know that
811calls to a function do not clobber or read the value of the global, allowing
812loads and stores to be eliminated.</p>
813
814<p>Note that this pass is somewhat limited in its scope (only support
815non-address taken globals), but is very quick analysis.</p>
816</div>
817
818<!-- _______________________________________________________________________ -->
819<h4>
820  <a name="steens-aa">The <tt>-steens-aa</tt> pass</a>
821</h4>
822
823<div>
824
825<p>The <tt>-steens-aa</tt> pass implements a variation on the well-known
826"Steensgaard's algorithm" for interprocedural alias analysis.  Steensgaard's
827algorithm is a unification-based, flow-insensitive, context-insensitive, and
828field-insensitive alias analysis that is also very scalable (effectively linear
829time).</p>
830
831<p>The LLVM <tt>-steens-aa</tt> pass implements a "speculatively
832field-<b>sensitive</b>" version of Steensgaard's algorithm using the Data
833Structure Analysis framework.  This gives it substantially more precision than
834the standard algorithm while maintaining excellent analysis scalability.</p>
835
836<p>Note that <tt>-steens-aa</tt> is available in the optional "poolalloc"
837module, it is not part of the LLVM core.</p>
838
839</div>
840
841<!-- _______________________________________________________________________ -->
842<h4>
843  <a name="ds-aa">The <tt>-ds-aa</tt> pass</a>
844</h4>
845
846<div>
847
848<p>The <tt>-ds-aa</tt> pass implements the full Data Structure Analysis
849algorithm.  Data Structure Analysis is a modular unification-based,
850flow-insensitive, context-<b>sensitive</b>, and speculatively
851field-<b>sensitive</b> alias analysis that is also quite scalable, usually at
852O(n*log(n)).</p>
853
854<p>This algorithm is capable of responding to a full variety of alias analysis
855queries, and can provide context-sensitive mod/ref information as well.  The
856only major facility not implemented so far is support for must-alias
857information.</p>
858
859<p>Note that <tt>-ds-aa</tt> is available in the optional "poolalloc"
860module, it is not part of the LLVM core.</p>
861
862</div>
863
864<!-- _______________________________________________________________________ -->
865<h4>
866  <a name="scev-aa">The <tt>-scev-aa</tt> pass</a>
867</h4>
868
869<div>
870
871<p>The <tt>-scev-aa</tt> pass implements AliasAnalysis queries by
872translating them into ScalarEvolution queries. This gives it a
873more complete understanding of <tt>getelementptr</tt> instructions
874and loop induction variables than other alias analyses have.</p>
875
876</div>
877
878</div>
879
880<!-- ======================================================================= -->
881<h3>
882  <a name="aliasanalysis-xforms">Alias analysis driven transformations</a>
883</h3>
884
885<div>
886LLVM includes several alias-analysis driven transformations which can be used
887with any of the implementations above.
888
889<!-- _______________________________________________________________________ -->
890<h4>
891  <a name="adce">The <tt>-adce</tt> pass</a>
892</h4>
893
894<div>
895
896<p>The <tt>-adce</tt> pass, which implements Aggressive Dead Code Elimination
897uses the <tt>AliasAnalysis</tt> interface to delete calls to functions that do
898not have side-effects and are not used.</p>
899
900</div>
901
902
903<!-- _______________________________________________________________________ -->
904<h4>
905  <a name="licm">The <tt>-licm</tt> pass</a>
906</h4>
907
908<div>
909
910<p>The <tt>-licm</tt> pass implements various Loop Invariant Code Motion related
911transformations.  It uses the <tt>AliasAnalysis</tt> interface for several
912different transformations:</p>
913
914<ul>
915<li>It uses mod/ref information to hoist or sink load instructions out of loops
916if there are no instructions in the loop that modifies the memory loaded.</li>
917
918<li>It uses mod/ref information to hoist function calls out of loops that do not
919write to memory and are loop-invariant.</li>
920
921<li>If uses alias information to promote memory objects that are loaded and
922stored to in loops to live in a register instead.  It can do this if there are
923no may aliases to the loaded/stored memory location.</li>
924</ul>
925
926</div>
927
928<!-- _______________________________________________________________________ -->
929<h4>
930  <a name="argpromotion">The <tt>-argpromotion</tt> pass</a>
931</h4>
932
933<div>
934<p>
935The <tt>-argpromotion</tt> pass promotes by-reference arguments to be passed in
936by-value instead.  In particular, if pointer arguments are only loaded from it
937passes in the value loaded instead of the address to the function.  This pass
938uses alias information to make sure that the value loaded from the argument
939pointer is not modified between the entry of the function and any load of the
940pointer.</p>
941</div>
942
943<!-- _______________________________________________________________________ -->
944<h4>
945  <a name="gvn">The <tt>-gvn</tt>, <tt>-memcpyopt</tt>, and <tt>-dse</tt>
946     passes</a>
947</h4>
948
949<div>
950
951<p>These passes use AliasAnalysis information to reason about loads and stores.
952</p>
953
954</div>
955
956</div>
957
958<!-- ======================================================================= -->
959<h3>
960  <a name="aliasanalysis-debug">Clients for debugging and evaluation of
961  implementations</a>
962</h3>
963
964<div>
965
966<p>These passes are useful for evaluating the various alias analysis
967implementations.  You can use them with commands like '<tt>opt -ds-aa
968-aa-eval foo.bc -disable-output -stats</tt>'.</p>
969
970<!-- _______________________________________________________________________ -->
971<h4>
972  <a name="print-alias-sets">The <tt>-print-alias-sets</tt> pass</a>
973</h4>
974
975<div>
976
977<p>The <tt>-print-alias-sets</tt> pass is exposed as part of the
978<tt>opt</tt> tool to print out the Alias Sets formed by the <a
979href="#ast"><tt>AliasSetTracker</tt></a> class.  This is useful if you're using
980the <tt>AliasSetTracker</tt> class.  To use it, use something like:</p>
981
982<div class="doc_code">
983<pre>
984% opt -ds-aa -print-alias-sets -disable-output
985</pre>
986</div>
987
988</div>
989
990
991<!-- _______________________________________________________________________ -->
992<h4>
993  <a name="count-aa">The <tt>-count-aa</tt> pass</a>
994</h4>
995
996<div>
997
998<p>The <tt>-count-aa</tt> pass is useful to see how many queries a particular
999pass is making and what responses are returned by the alias analysis.  As an
1000example,</p>
1001
1002<div class="doc_code">
1003<pre>
1004% opt -basicaa -count-aa -ds-aa -count-aa -licm
1005</pre>
1006</div>
1007
1008<p>will print out how many queries (and what responses are returned) by the
1009<tt>-licm</tt> pass (of the <tt>-ds-aa</tt> pass) and how many queries are made
1010of the <tt>-basicaa</tt> pass by the <tt>-ds-aa</tt> pass.  This can be useful
1011when debugging a transformation or an alias analysis implementation.</p>
1012
1013</div>
1014
1015<!-- _______________________________________________________________________ -->
1016<h4>
1017  <a name="aa-eval">The <tt>-aa-eval</tt> pass</a>
1018</h4>
1019
1020<div>
1021
1022<p>The <tt>-aa-eval</tt> pass simply iterates through all pairs of pointers in a
1023function and asks an alias analysis whether or not the pointers alias.  This
1024gives an indication of the precision of the alias analysis.  Statistics are
1025printed indicating the percent of no/may/must aliases found (a more precise
1026algorithm will have a lower number of may aliases).</p>
1027
1028</div>
1029
1030</div>
1031
1032</div>
1033
1034<!-- *********************************************************************** -->
1035<h2>
1036  <a name="memdep">Memory Dependence Analysis</a>
1037</h2>
1038<!-- *********************************************************************** -->
1039
1040<div>
1041
1042<p>If you're just looking to be a client of alias analysis information, consider
1043using the Memory Dependence Analysis interface instead.  MemDep is a lazy,
1044caching layer on top of alias analysis that is able to answer the question of
1045what preceding memory operations a given instruction depends on, either at an
1046intra- or inter-block level.  Because of its laziness and caching
1047policy, using MemDep can be a significant performance win over accessing alias
1048analysis directly.</p>
1049
1050</div>
1051
1052<!-- *********************************************************************** -->
1053
1054<hr>
1055<address>
1056  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1057  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1058  <a href="http://validator.w3.org/check/referer"><img
1059  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1060
1061  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1062  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
1063  Last modified: $Date: 2011-05-24 18:01:32 -0400 (Tue, 24 May 2011) $
1064</address>
1065
1066</body>
1067</html>
1068