1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>Extending LLVM: Adding instructions, intrinsics, types, etc.</title>
6  <link rel="stylesheet" href="llvm.css" type="text/css">
7</head>
8
9<body>
10
11<h1>
12  Extending LLVM: Adding instructions, intrinsics, types, etc.
13</h1>
14
15<ol>
16  <li><a href="#introduction">Introduction and Warning</a></li>
17  <li><a href="#intrinsic">Adding a new intrinsic function</a></li>
18  <li><a href="#instruction">Adding a new instruction</a></li>
19  <li><a href="#sdnode">Adding a new SelectionDAG node</a></li>
20  <li><a href="#type">Adding a new type</a>
21  <ol>
22    <li><a href="#fund_type">Adding a new fundamental type</a></li>
23    <li><a href="#derived_type">Adding a new derived type</a></li>
24  </ol></li>
25</ol>
26
27<div class="doc_author">
28  <p>Written by <a href="http://misha.brukman.net">Misha Brukman</a>,
29  Brad Jones, Nate Begeman,
30  and <a href="http://nondot.org/sabre">Chris Lattner</a></p>
31</div>
32
33<!-- *********************************************************************** -->
34<h2>
35  <a name="introduction">Introduction and Warning</a>
36</h2>
37<!-- *********************************************************************** -->
38
39<div>
40
41<p>During the course of using LLVM, you may wish to customize it for your
42research project or for experimentation. At this point, you may realize that
43you need to add something to LLVM, whether it be a new fundamental type, a new
44intrinsic function, or a whole new instruction.</p>
45
46<p>When you come to this realization, stop and think. Do you really need to
47extend LLVM? Is it a new fundamental capability that LLVM does not support at
48its current incarnation or can it be synthesized from already pre-existing LLVM
49elements? If you are not sure, ask on the <a
50href="http://mail.cs.uiuc.edu/mailman/listinfo/llvmdev">LLVM-dev</a> list. The
51reason is that extending LLVM will get involved as you need to update all the
52different passes that you intend to use with your extension, and there are
53<em>many</em> LLVM analyses and transformations, so it may be quite a bit of
54work.</p>
55
56<p>Adding an <a href="#intrinsic">intrinsic function</a> is far easier than
57adding an instruction, and is transparent to optimization passes.  If your added
58functionality can be expressed as a
59function call, an intrinsic function is the method of choice for LLVM
60extension.</p>
61
62<p>Before you invest a significant amount of effort into a non-trivial
63extension, <span class="doc_warning">ask on the list</span> if what you are
64looking to do can be done with already-existing infrastructure, or if maybe
65someone else is already working on it. You will save yourself a lot of time and
66effort by doing so.</p>
67
68</div>
69
70<!-- *********************************************************************** -->
71<h2>
72  <a name="intrinsic">Adding a new intrinsic function</a>
73</h2>
74<!-- *********************************************************************** -->
75
76<div>
77
78<p>Adding a new intrinsic function to LLVM is much easier than adding a new
79instruction.  Almost all extensions to LLVM should start as an intrinsic
80function and then be turned into an instruction if warranted.</p>
81
82<ol>
83<li><tt>llvm/docs/LangRef.html</tt>:
84    Document the intrinsic.  Decide whether it is code generator specific and
85    what the restrictions are.  Talk to other people about it so that you are
86    sure it's a good idea.</li>
87
88<li><tt>llvm/include/llvm/Intrinsics*.td</tt>:
89    Add an entry for your intrinsic.  Describe its memory access characteristics
90    for optimization (this controls whether it will be DCE'd, CSE'd, etc). Note
91    that any intrinsic using the <tt>llvm_int_ty</tt> type for an argument will
92    be deemed by <tt>tblgen</tt> as overloaded and the corresponding suffix
93    will be required on the intrinsic's name.</li>
94
95<li><tt>llvm/lib/Analysis/ConstantFolding.cpp</tt>: If it is possible to
96    constant fold your intrinsic, add support to it in the
97    <tt>canConstantFoldCallTo</tt> and <tt>ConstantFoldCall</tt> functions.</li>
98
99<li><tt>llvm/test/Regression/*</tt>: Add test cases for your test cases to the
100    test suite</li>
101</ol>
102
103<p>Once the intrinsic has been added to the system, you must add code generator
104support for it.  Generally you must do the following steps:</p>
105
106<dl>
107<dt>Add support to the C backend in <tt>lib/Target/CBackend/</tt></dt>
108
109<dd>Depending on the intrinsic, there are a few ways to implement this.  For
110    most intrinsics, it makes sense to add code to lower your intrinsic in
111    <tt>LowerIntrinsicCall</tt> in <tt>lib/CodeGen/IntrinsicLowering.cpp</tt>.
112    Second, if it makes sense to lower the intrinsic to an expanded sequence of
113    C code in all cases, just emit the expansion in <tt>visitCallInst</tt> in
114    <tt>Writer.cpp</tt>.  If the intrinsic has some way to express it with GCC
115    (or any other compiler) extensions, it can be conditionally supported based
116    on the compiler compiling the CBE output (see <tt>llvm.prefetch</tt> for an
117    example).  Third, if the intrinsic really has no way to be lowered, just
118    have the code generator emit code that prints an error message and calls
119    abort if executed.</dd>
120
121<dt>Add support to the .td file for the target(s) of your choice in
122   <tt>lib/Target/*/*.td</tt>.</dt>
123
124<dd>This is usually a matter of adding a pattern to the .td file that matches
125    the intrinsic, though it may obviously require adding the instructions you
126    want to generate as well.  There are lots of examples in the PowerPC and X86
127    backend to follow.</dd>
128</dl>
129
130</div>
131
132<!-- *********************************************************************** -->
133<h2>
134  <a name="sdnode">Adding a new SelectionDAG node</a>
135</h2>
136<!-- *********************************************************************** -->
137
138<div>
139
140<p>As with intrinsics, adding a new SelectionDAG node to LLVM is much easier
141than adding a new instruction.  New nodes are often added to help represent
142instructions common to many targets.  These nodes often map to an LLVM
143instruction (add, sub) or intrinsic (byteswap, population count).  In other
144cases, new nodes have been added to allow many targets to perform a common task
145(converting between floating point and integer representation) or capture more
146complicated behavior in a single node (rotate).</p>
147
148<ol>
149<li><tt>include/llvm/CodeGen/ISDOpcodes.h</tt>:
150    Add an enum value for the new SelectionDAG node.</li>
151<li><tt>lib/CodeGen/SelectionDAG/SelectionDAG.cpp</tt>:
152    Add code to print the node to <tt>getOperationName</tt>.  If your new node
153    can be evaluated at compile time when given constant arguments (such as an
154    add of a constant with another constant), find the <tt>getNode</tt> method
155    that takes the appropriate number of arguments, and add a case for your node
156    to the switch statement that performs constant folding for nodes that take
157    the same number of arguments as your new node.</li>
158<li><tt>lib/CodeGen/SelectionDAG/LegalizeDAG.cpp</tt>:
159    Add code to <a href="CodeGenerator.html#selectiondag_legalize">legalize,
160    promote, and expand</a> the node as necessary.  At a minimum, you will need
161    to add a case statement for your node in <tt>LegalizeOp</tt> which calls
162    LegalizeOp on the node's operands, and returns a new node if any of the
163    operands changed as a result of being legalized.  It is likely that not all
164    targets supported by the SelectionDAG framework will natively support the
165    new node.  In this case, you must also add code in your node's case
166    statement in <tt>LegalizeOp</tt> to Expand your node into simpler, legal
167    operations.  The case for <tt>ISD::UREM</tt> for expanding a remainder into
168    a divide, multiply, and a subtract is a good example.</li>
169<li><tt>lib/CodeGen/SelectionDAG/LegalizeDAG.cpp</tt>:
170    If targets may support the new node being added only at certain sizes, you
171    will also need to add code to your node's case statement in
172    <tt>LegalizeOp</tt> to Promote your node's operands to a larger size, and
173    perform the correct operation.  You will also need to add code to
174    <tt>PromoteOp</tt> to do this as well.  For a good example, see
175    <tt>ISD::BSWAP</tt>,
176    which promotes its operand to a wider size, performs the byteswap, and then
177    shifts the correct bytes right to emulate the narrower byteswap in the
178    wider type.</li>
179<li><tt>lib/CodeGen/SelectionDAG/LegalizeDAG.cpp</tt>:
180    Add a case for your node in <tt>ExpandOp</tt> to teach the legalizer how to
181    perform the action represented by the new node on a value that has been
182    split into high and low halves.  This case will be used to support your
183    node with a 64 bit operand on a 32 bit target.</li>
184<li><tt>lib/CodeGen/SelectionDAG/DAGCombiner.cpp</tt>:
185    If your node can be combined with itself, or other existing nodes in a
186    peephole-like fashion, add a visit function for it, and call that function
187    from <tt></tt>.  There are several good examples for simple combines you
188    can do; <tt>visitFABS</tt> and <tt>visitSRL</tt> are good starting places.
189    </li>
190<li><tt>lib/Target/PowerPC/PPCISelLowering.cpp</tt>:
191    Each target has an implementation of the <tt>TargetLowering</tt> class,
192    usually in its own file (although some targets include it in the same
193    file as the DAGToDAGISel).  The default behavior for a target is to
194    assume that your new node is legal for all types that are legal for
195    that target.  If this target does not natively support your node, then
196    tell the target to either Promote it (if it is supported at a larger
197    type) or Expand it.  This will cause the code you wrote in
198    <tt>LegalizeOp</tt> above to decompose your new node into other legal
199    nodes for this target.</li>
200<li><tt>lib/Target/TargetSelectionDAG.td</tt>:
201    Most current targets supported by LLVM generate code using the DAGToDAG
202    method, where SelectionDAG nodes are pattern matched to target-specific
203    nodes, which represent individual instructions.  In order for the targets
204    to match an instruction to your new node, you must add a def for that node
205    to the list in this file, with the appropriate type constraints. Look at
206    <tt>add</tt>, <tt>bswap</tt>, and <tt>fadd</tt> for examples.</li>
207<li><tt>lib/Target/PowerPC/PPCInstrInfo.td</tt>:
208    Each target has a tablegen file that describes the target's instruction
209    set.  For targets that use the DAGToDAG instruction selection framework,
210    add a pattern for your new node that uses one or more target nodes.
211    Documentation for this is a bit sparse right now, but there are several
212    decent examples.  See the patterns for <tt>rotl</tt> in
213    <tt>PPCInstrInfo.td</tt>.</li>
214<li>TODO: document complex patterns.</li>
215<li><tt>llvm/test/Regression/CodeGen/*</tt>: Add test cases for your new node
216    to the test suite.  <tt>llvm/test/Regression/CodeGen/X86/bswap.ll</tt> is
217    a good example.</li>
218</ol>
219
220</div>
221
222<!-- *********************************************************************** -->
223<h2>
224  <a name="instruction">Adding a new instruction</a>
225</h2>
226<!-- *********************************************************************** -->
227
228<div>
229
230<p><span class="doc_warning">WARNING: adding instructions changes the bitcode
231format, and it will take some effort to maintain compatibility with
232the previous version.</span> Only add an instruction if it is absolutely
233necessary.</p>
234
235<ol>
236
237<li><tt>llvm/include/llvm/Instruction.def</tt>:
238    add a number for your instruction and an enum name</li>
239
240<li><tt>llvm/include/llvm/Instructions.h</tt>:
241    add a definition for the class that will represent your instruction</li>
242
243<li><tt>llvm/include/llvm/Support/InstVisitor.h</tt>:
244    add a prototype for a visitor to your new instruction type</li>
245
246<li><tt>llvm/lib/AsmParser/Lexer.l</tt>:
247    add a new token to parse your instruction from assembly text file</li>
248
249<li><tt>llvm/lib/AsmParser/llvmAsmParser.y</tt>:
250    add the grammar on how your instruction can be read and what it will
251    construct as a result</li>
252
253<li><tt>llvm/lib/Bitcode/Reader/Reader.cpp</tt>:
254    add a case for your instruction and how it will be parsed from bitcode</li>
255
256<li><tt>llvm/lib/VMCore/Instruction.cpp</tt>:
257    add a case for how your instruction will be printed out to assembly</li>
258
259<li><tt>llvm/lib/VMCore/Instructions.cpp</tt>:
260    implement the class you defined in
261    <tt>llvm/include/llvm/Instructions.h</tt></li>
262
263<li>Test your instruction</li>
264
265<li><tt>llvm/lib/Target/*</tt>:
266    Add support for your instruction to code generators, or add a lowering
267    pass.</li>
268
269<li><tt>llvm/test/Regression/*</tt>: add your test cases to the test suite.</li>
270
271</ol>
272
273<p>Also, you need to implement (or modify) any analyses or passes that you want
274to understand this new instruction.</p>
275
276</div>
277
278
279<!-- *********************************************************************** -->
280<h2>
281  <a name="type">Adding a new type</a>
282</h2>
283<!-- *********************************************************************** -->
284
285<div>
286
287<p><span class="doc_warning">WARNING: adding new types changes the bitcode
288format, and will break compatibility with currently-existing LLVM
289installations.</span> Only add new types if it is absolutely necessary.</p>
290
291<!-- ======================================================================= -->
292<h3>
293  <a name="fund_type">Adding a fundamental type</a>
294</h3>
295
296<div>
297
298<ol>
299
300<li><tt>llvm/include/llvm/Type.h</tt>:
301    add enum for the new type; add static <tt>Type*</tt> for this type</li>
302
303<li><tt>llvm/lib/VMCore/Type.cpp</tt>:
304    add mapping from <tt>TypeID</tt> =&gt; <tt>Type*</tt>;
305    initialize the static <tt>Type*</tt></li>
306
307<li><tt>llvm/lib/AsmReader/Lexer.l</tt>:
308    add ability to parse in the type from text assembly</li>
309
310<li><tt>llvm/lib/AsmReader/llvmAsmParser.y</tt>:
311    add a token for that type</li>
312
313</ol>
314
315</div>
316
317<!-- ======================================================================= -->
318<h3>
319  <a name="derived_type">Adding a derived type</a>
320</h3>
321
322<div>
323
324<ol>
325<li><tt>llvm/include/llvm/Type.h</tt>:
326    add enum for the new type; add a forward declaration of the type
327    also</li>
328
329<li><tt>llvm/include/llvm/DerivedTypes.h</tt>:
330    add new class to represent new class in the hierarchy; add forward
331    declaration to the TypeMap value type</li>
332
333<li><tt>llvm/lib/VMCore/Type.cpp</tt>:
334    add support for derived type to:
335<div class="doc_code">
336<pre>
337std::string getTypeDescription(const Type &amp;Ty,
338  std::vector&lt;const Type*&gt; &amp;TypeStack)
339bool TypesEqual(const Type *Ty, const Type *Ty2,
340  std::map&lt;const Type*, const Type*&gt; &amp; EqTypes)
341</pre>
342</div>
343    add necessary member functions for type, and factory methods</li>
344
345<li><tt>llvm/lib/AsmReader/Lexer.l</tt>:
346    add ability to parse in the type from text assembly</li>
347
348<li><tt>llvm/lib/BitCode/Writer/Writer.cpp</tt>:
349    modify <tt>void BitcodeWriter::outputType(const Type *T)</tt> to serialize
350    your type</li>
351
352<li><tt>llvm/lib/BitCode/Reader/Reader.cpp</tt>:
353    modify <tt>const Type *BitcodeReader::ParseType()</tt> to read your data
354    type</li>
355
356<li><tt>llvm/lib/VMCore/AsmWriter.cpp</tt>:
357    modify
358<div class="doc_code">
359<pre>
360void calcTypeName(const Type *Ty,
361                  std::vector&lt;const Type*&gt; &amp;TypeStack,
362                  std::map&lt;const Type*,std::string&gt; &amp;TypeNames,
363                  std::string &amp; Result)
364</pre>
365</div>
366    to output the new derived type
367</li>
368
369
370</ol>
371
372</div>
373
374</div>
375
376<!-- *********************************************************************** -->
377
378<hr>
379<address>
380  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
381  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
382  <a href="http://validator.w3.org/check/referer"><img
383  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
384
385  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a>
386  <br>
387  Last modified: $Date: 2011-06-30 02:37:07 -0400 (Thu, 30 Jun 2011) $
388</address>
389
390</body>
391</html>
392