1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>TableGen Fundamentals</title>
6  <link rel="stylesheet" href="llvm.css" type="text/css">
7</head>
8<body>
9
10<h1>TableGen Fundamentals</h1>
11
12<div>
13<ul>
14  <li><a href="#introduction">Introduction</a>
15  <ol>
16    <li><a href="#concepts">Basic concepts</a></li>
17    <li><a href="#example">An example record</a></li>
18    <li><a href="#running">Running TableGen</a></li>
19  </ol></li>
20  <li><a href="#syntax">TableGen syntax</a>
21  <ol>
22    <li><a href="#primitives">TableGen primitives</a>
23    <ol>
24      <li><a href="#comments">TableGen comments</a></li>
25      <li><a href="#types">The TableGen type system</a></li>
26      <li><a href="#values">TableGen values and expressions</a></li>
27    </ol></li>
28    <li><a href="#classesdefs">Classes and definitions</a>
29    <ol>
30      <li><a href="#valuedef">Value definitions</a></li>
31      <li><a href="#recordlet">'let' expressions</a></li>
32      <li><a href="#templateargs">Class template arguments</a></li>
33      <li><a href="#multiclass">Multiclass definitions and instances</a></li>
34    </ol></li>
35    <li><a href="#filescope">File scope entities</a>
36    <ol>
37      <li><a href="#include">File inclusion</a></li>
38      <li><a href="#globallet">'let' expressions</a></li>
39    </ol></li>
40  </ol></li>
41  <li><a href="#backends">TableGen backends</a>
42  <ol>
43    <li><a href="#">todo</a></li>
44  </ol></li>
45</ul>
46</div>
47
48<div class="doc_author">
49  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
50</div>
51
52<!-- *********************************************************************** -->
53<h2><a name="introduction">Introduction</a></h2>
54<!-- *********************************************************************** -->
55
56<div>
57
58<p>TableGen's purpose is to help a human develop and maintain records of
59domain-specific information.  Because there may be a large number of these
60records, it is specifically designed to allow writing flexible descriptions and
61for common features of these records to be factored out.  This reduces the
62amount of duplication in the description, reduces the chance of error, and
63makes it easier to structure domain specific information.</p>
64
65<p>The core part of TableGen <a href="#syntax">parses a file</a>, instantiates
66the declarations, and hands the result off to a domain-specific "<a
67href="#backends">TableGen backend</a>" for processing.  The current major user
68of TableGen is the <a href="CodeGenerator.html">LLVM code generator</a>.</p>
69
70<p>Note that if you work on TableGen much, and use emacs or vim, that you can
71find an emacs "TableGen mode" and a vim language file in the
72<tt>llvm/utils/emacs</tt> and <tt>llvm/utils/vim</tt> directories of your LLVM
73distribution, respectively.</p>
74
75<!-- ======================================================================= -->
76<h3><a name="concepts">Basic concepts</a></h3>
77
78<div>
79
80<p>TableGen files consist of two key parts: 'classes' and 'definitions', both
81of which are considered 'records'.</p>
82
83<p><b>TableGen records</b> have a unique name, a list of values, and a list of
84superclasses.  The list of values is the main data that TableGen builds for each
85record; it is this that holds the domain specific information for the
86application.  The interpretation of this data is left to a specific <a
87href="#backends">TableGen backend</a>, but the structure and format rules are
88taken care of and are fixed by TableGen.</p>
89
90<p><b>TableGen definitions</b> are the concrete form of 'records'.  These
91generally do not have any undefined values, and are marked with the
92'<tt>def</tt>' keyword.</p>
93
94<p><b>TableGen classes</b> are abstract records that are used to build and
95describe other records.  These 'classes' allow the end-user to build
96abstractions for either the domain they are targeting (such as "Register",
97"RegisterClass", and "Instruction" in the LLVM code generator) or for the
98implementor to help factor out common properties of records (such as "FPInst",
99which is used to represent floating point instructions in the X86 backend).
100TableGen keeps track of all of the classes that are used to build up a
101definition, so the backend can find all definitions of a particular class, such
102as "Instruction".</p>
103
104<p><b>TableGen multiclasses</b> are groups of abstract records that are
105instantiated all at once.  Each instantiation can result in multiple
106TableGen definitions.  If a multiclass inherits from another multiclass,
107the definitions in the sub-multiclass become part of the current
108multiclass, as if they were declared in the current multiclass.</p>
109
110</div>
111
112<!-- ======================================================================= -->
113<h3><a name="example">An example record</a></h3>
114
115<div>
116
117<p>With no other arguments, TableGen parses the specified file and prints out
118all of the classes, then all of the definitions.  This is a good way to see what
119the various definitions expand to fully.  Running this on the <tt>X86.td</tt>
120file prints this (at the time of this writing):</p>
121
122<div class="doc_code">
123<pre>
124...
125<b>def</b> ADD32rr {   <i>// Instruction X86Inst I</i>
126  <b>string</b> Namespace = "X86";
127  <b>dag</b> OutOperandList = (outs GR32:$dst);
128  <b>dag</b> InOperandList = (ins GR32:$src1, GR32:$src2);
129  <b>string</b> AsmString = "add{l}\t{$src2, $dst|$dst, $src2}";
130  <b>list</b>&lt;dag&gt; Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))];
131  <b>list</b>&lt;Register&gt; Uses = [];
132  <b>list</b>&lt;Register&gt; Defs = [EFLAGS];
133  <b>list</b>&lt;Predicate&gt; Predicates = [];
134  <b>int</b> CodeSize = 3;
135  <b>int</b> AddedComplexity = 0;
136  <b>bit</b> isReturn = 0;
137  <b>bit</b> isBranch = 0;
138  <b>bit</b> isIndirectBranch = 0;
139  <b>bit</b> isBarrier = 0;
140  <b>bit</b> isCall = 0;
141  <b>bit</b> canFoldAsLoad = 0;
142  <b>bit</b> mayLoad = 0;
143  <b>bit</b> mayStore = 0;
144  <b>bit</b> isImplicitDef = 0;
145  <b>bit</b> isConvertibleToThreeAddress = 1;
146  <b>bit</b> isCommutable = 1;
147  <b>bit</b> isTerminator = 0;
148  <b>bit</b> isReMaterializable = 0;
149  <b>bit</b> isPredicable = 0;
150  <b>bit</b> hasDelaySlot = 0;
151  <b>bit</b> usesCustomInserter = 0;
152  <b>bit</b> hasCtrlDep = 0;
153  <b>bit</b> isNotDuplicable = 0;
154  <b>bit</b> hasSideEffects = 0;
155  <b>bit</b> neverHasSideEffects = 0;
156  InstrItinClass Itinerary = NoItinerary;
157  <b>string</b> Constraints = "";
158  <b>string</b> DisableEncoding = "";
159  <b>bits</b>&lt;8&gt; Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
160  Format Form = MRMDestReg;
161  <b>bits</b>&lt;6&gt; FormBits = { 0, 0, 0, 0, 1, 1 };
162  ImmType ImmT = NoImm;
163  <b>bits</b>&lt;3&gt; ImmTypeBits = { 0, 0, 0 };
164  <b>bit</b> hasOpSizePrefix = 0;
165  <b>bit</b> hasAdSizePrefix = 0;
166  <b>bits</b>&lt;4&gt; Prefix = { 0, 0, 0, 0 };
167  <b>bit</b> hasREX_WPrefix = 0;
168  FPFormat FPForm = ?;
169  <b>bits</b>&lt;3&gt; FPFormBits = { 0, 0, 0 };
170}
171...
172</pre>
173</div>
174
175<p>This definition corresponds to a 32-bit register-register add instruction in
176the X86.  The string after the '<tt>def</tt>' string indicates the name of the
177record&mdash;"<tt>ADD32rr</tt>" in this case&mdash;and the comment at the end of
178the line indicates the superclasses of the definition.  The body of the record
179contains all of the data that TableGen assembled for the record, indicating that
180the instruction is part of the "X86" namespace, the pattern indicating how the
181the instruction should be emitted into the assembly file, that it is a
182two-address instruction, has a particular encoding, etc.  The contents and
183semantics of the information in the record is specific to the needs of the X86
184backend, and is only shown as an example.</p>
185
186<p>As you can see, a lot of information is needed for every instruction
187supported by the code generator, and specifying it all manually would be
188unmaintainable, prone to bugs, and tiring to do in the first place.  Because we
189are using TableGen, all of the information was derived from the following
190definition:</p>
191
192<div class="doc_code">
193<pre>
194let Defs = [EFLAGS],
195    isCommutable = 1,                  <i>// X = ADD Y,Z --&gt; X = ADD Z,Y</i>
196    isConvertibleToThreeAddress = 1 <b>in</b> <i>// Can transform into LEA.</i>
197def ADD32rr  : I&lt;0x01, MRMDestReg, (outs GR32:$dst),
198                                   (ins GR32:$src1, GR32:$src2),
199                 "add{l}\t{$src2, $dst|$dst, $src2}",
200                 [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]&gt;;
201</pre>
202</div>
203
204<p>This definition makes use of the custom class <tt>I</tt> (extended from the
205custom class <tt>X86Inst</tt>), which is defined in the X86-specific TableGen
206file, to factor out the common features that instructions of its class share.  A
207key feature of TableGen is that it allows the end-user to define the
208abstractions they prefer to use when describing their information.</p>
209
210</div>
211
212<!-- ======================================================================= -->
213<h3><a name="running">Running TableGen</a></h3>
214
215<div>
216
217<p>TableGen runs just like any other LLVM tool.  The first (optional) argument
218specifies the file to read.  If a filename is not specified, <tt>tblgen</tt>
219reads from standard input.</p>
220
221<p>To be useful, one of the <a href="#backends">TableGen backends</a> must be
222used.  These backends are selectable on the command line (type '<tt>tblgen
223-help</tt>' for a list).  For example, to get a list of all of the definitions
224that subclass a particular type (which can be useful for building up an enum
225list of these records), use the <tt>-print-enums</tt> option:</p>
226
227<div class="doc_code">
228<pre>
229$ tblgen X86.td -print-enums -class=Register
230AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX,
231ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP,
232MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D,
233R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15,
234R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI,
235RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
236XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5,
237XMM6, XMM7, XMM8, XMM9,
238
239$ tblgen X86.td -print-enums -class=Instruction
240ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri,
241ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8,
242ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm,
243ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr,
244ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ...
245</pre>
246</div>
247
248<p>The default backend prints out all of the records, as described <a
249href="#example">above</a>.</p>
250
251<p>If you plan to use TableGen, you will most likely have to <a
252href="#backends">write a backend</a> that extracts the information specific to
253what you need and formats it in the appropriate way.</p>
254
255</div>
256
257</div>
258
259<!-- *********************************************************************** -->
260<h2><a name="syntax">TableGen syntax</a></h2>
261<!-- *********************************************************************** -->
262
263<div>
264
265<p>TableGen doesn't care about the meaning of data (that is up to the backend to
266define), but it does care about syntax, and it enforces a simple type system.
267This section describes the syntax and the constructs allowed in a TableGen file.
268</p>
269
270<!-- ======================================================================= -->
271<h3><a name="primitives">TableGen primitives</a></h3>
272
273<div>
274
275<!-- -------------------------------------------------------------------------->
276<h4><a name="comments">TableGen comments</a></h4>
277
278<div>
279
280<p>TableGen supports BCPL style "<tt>//</tt>" comments, which run to the end of
281the line, and it also supports <b>nestable</b> "<tt>/* */</tt>" comments.</p>
282
283</div>
284
285<!-- -------------------------------------------------------------------------->
286<h4>
287  <a name="types">The TableGen type system</a>
288</h4>
289
290<div>
291
292<p>TableGen files are strongly typed, in a simple (but complete) type-system.
293These types are used to perform automatic conversions, check for errors, and to
294help interface designers constrain the input that they allow.  Every <a
295href="#valuedef">value definition</a> is required to have an associated type.
296</p>
297
298<p>TableGen supports a mixture of very low-level types (such as <tt>bit</tt>)
299and very high-level types (such as <tt>dag</tt>).  This flexibility is what
300allows it to describe a wide range of information conveniently and compactly.
301The TableGen types are:</p>
302
303<dl>
304<dt><tt><b>bit</b></tt></dt>
305  <dd>A 'bit' is a boolean value that can hold either 0 or 1.</dd>
306
307<dt><tt><b>int</b></tt></dt>
308  <dd>The 'int' type represents a simple 32-bit integer value, such as 5.</dd>
309
310<dt><tt><b>string</b></tt></dt>
311  <dd>The 'string' type represents an ordered sequence of characters of
312  arbitrary length.</dd>
313
314<dt><tt><b>bits</b>&lt;n&gt;</tt></dt>
315  <dd>A 'bits' type is an arbitrary, but fixed, size integer that is broken up
316  into individual bits.  This type is useful because it can handle some bits
317  being defined while others are undefined.</dd>
318
319<dt><tt><b>list</b>&lt;ty&gt;</tt></dt>
320  <dd>This type represents a list whose elements are some other type.  The
321  contained type is arbitrary: it can even be another list type.</dd>
322
323<dt>Class type</dt>
324  <dd>Specifying a class name in a type context means that the defined value
325  must be a subclass of the specified class.  This is useful in conjunction with
326  the <b><tt>list</tt></b> type, for example, to constrain the elements of the
327  list to a common base class (e.g., a <tt><b>list</b>&lt;Register&gt;</tt> can
328  only contain definitions derived from the "<tt>Register</tt>" class).</dd>
329
330<dt><tt><b>dag</b></tt></dt>
331  <dd>This type represents a nestable directed graph of elements.</dd>
332
333<dt><tt><b>code</b></tt></dt>
334  <dd>This represents a big hunk of text.  This is lexically distinct from
335  string values because it doesn't require escapeing double quotes and other
336  common characters that occur in code.</dd>
337</dl>
338
339<p>To date, these types have been sufficient for describing things that
340TableGen has been used for, but it is straight-forward to extend this list if
341needed.</p>
342
343</div>
344
345<!-- -------------------------------------------------------------------------->
346<h4>
347  <a name="values">TableGen values and expressions</a>
348</h4>
349
350<div>
351
352<p>TableGen allows for a pretty reasonable number of different expression forms
353when building up values.  These forms allow the TableGen file to be written in a
354natural syntax and flavor for the application.  The current expression forms
355supported include:</p>
356
357<dl>
358<dt><tt>?</tt></dt>
359  <dd>uninitialized field</dd>
360<dt><tt>0b1001011</tt></dt>
361  <dd>binary integer value</dd>
362<dt><tt>07654321</tt></dt>
363  <dd>octal integer value (indicated by a leading 0)</dd>
364<dt><tt>7</tt></dt>
365  <dd>decimal integer value</dd>
366<dt><tt>0x7F</tt></dt>
367  <dd>hexadecimal integer value</dd>
368<dt><tt>"foo"</tt></dt>
369  <dd>string value</dd>
370<dt><tt>[{ ... }]</tt></dt>
371  <dd>code fragment</dd>
372<dt><tt>[ X, Y, Z ]&lt;type&gt;</tt></dt>
373  <dd>list value.  &lt;type&gt; is the type of the list
374element and is usually optional.  In rare cases,
375TableGen is unable to deduce the element type in
376which case the user must specify it explicitly.</dd>
377<dt><tt>{ a, b, c }</tt></dt>
378  <dd>initializer for a "bits&lt;3&gt;" value</dd>
379<dt><tt>value</tt></dt>
380  <dd>value reference</dd>
381<dt><tt>value{17}</tt></dt>
382  <dd>access to one bit of a value</dd>
383<dt><tt>value{15-17}</tt></dt>
384  <dd>access to multiple bits of a value</dd>
385<dt><tt>DEF</tt></dt>
386  <dd>reference to a record definition</dd>
387<dt><tt>CLASS&lt;val list&gt;</tt></dt>
388  <dd>reference to a new anonymous definition of CLASS with the specified
389      template arguments.</dd>
390<dt><tt>X.Y</tt></dt>
391  <dd>reference to the subfield of a value</dd>
392<dt><tt>list[4-7,17,2-3]</tt></dt>
393  <dd>A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from
394  it.  Elements may be included multiple times.</dd>
395<dt><tt>(DEF a, b)</tt></dt>
396  <dd>a dag value.  The first element is required to be a record definition, the
397  remaining elements in the list may be arbitrary other values, including nested
398  `<tt>dag</tt>' values.</dd>
399<dt><tt>!strconcat(a, b)</tt></dt>
400  <dd>A string value that is the result of concatenating the 'a' and 'b'
401  strings.</dd>
402<dt><tt>!cast&lt;type&gt;(a)</tt></dt>
403  <dd>A symbol of type <em>type</em> obtained by looking up the string 'a' in
404the symbol table.  If the type of 'a' does not match <em>type</em>, TableGen
405aborts with an error. !cast&lt;string&gt; is a special case in that the argument must
406be an object defined by a 'def' construct.</dd>
407<dt><tt>!subst(a, b, c)</tt></dt>
408  <dd>If 'a' and 'b' are of string type or are symbol references, substitute
409'b' for 'a' in 'c.'  This operation is analogous to $(subst) in GNU make.</dd>
410<dt><tt>!foreach(a, b, c)</tt></dt>
411  <dd>For each member 'b' of dag or list 'a' apply operator 'c.'  'b' is a
412dummy variable that should be declared as a member variable of an instantiated
413class.  This operation is analogous to $(foreach) in GNU make.</dd>
414<dt><tt>!head(a)</tt></dt>
415  <dd>The first element of list 'a.'</dd>
416<dt><tt>!tail(a)</tt></dt>
417  <dd>The 2nd-N elements of list 'a.'</dd>
418<dt><tt>!empty(a)</tt></dt>
419  <dd>An integer {0,1} indicating whether list 'a' is empty.</dd>
420<dt><tt>!if(a,b,c)</tt></dt>
421  <dd>'b' if the result of 'int' or 'bit' operator 'a' is nonzero,
422      'c' otherwise.</dd>
423<dt><tt>!eq(a,b)</tt></dt>
424  <dd>'bit 1' if string a is equal to string b, 0 otherwise.  This
425      only operates on string, int and bit objects.  Use !cast&lt;string&gt; to
426      compare other types of objects.</dd>
427</dl>
428
429<p>Note that all of the values have rules specifying how they convert to values
430for different types.  These rules allow you to assign a value like "<tt>7</tt>"
431to a "<tt>bits&lt;4&gt;</tt>" value, for example.</p>
432
433</div>
434
435</div>
436
437<!-- ======================================================================= -->
438<h3>
439  <a name="classesdefs">Classes and definitions</a>
440</h3>
441
442<div>
443
444<p>As mentioned in the <a href="#concepts">intro</a>, classes and definitions
445(collectively known as 'records') in TableGen are the main high-level unit of
446information that TableGen collects.  Records are defined with a <tt>def</tt> or
447<tt>class</tt> keyword, the record name, and an optional list of "<a
448href="#templateargs">template arguments</a>".  If the record has superclasses,
449they are specified as a comma separated list that starts with a colon character
450("<tt>:</tt>").  If <a href="#valuedef">value definitions</a> or <a
451href="#recordlet">let expressions</a> are needed for the class, they are
452enclosed in curly braces ("<tt>{}</tt>"); otherwise, the record ends with a
453semicolon.</p>
454
455<p>Here is a simple TableGen file:</p>
456
457<div class="doc_code">
458<pre>
459<b>class</b> C { <b>bit</b> V = 1; }
460<b>def</b> X : C;
461<b>def</b> Y : C {
462  <b>string</b> Greeting = "hello";
463}
464</pre>
465</div>
466
467<p>This example defines two definitions, <tt>X</tt> and <tt>Y</tt>, both of
468which derive from the <tt>C</tt> class.  Because of this, they both get the
469<tt>V</tt> bit value.  The <tt>Y</tt> definition also gets the Greeting member
470as well.</p>
471
472<p>In general, classes are useful for collecting together the commonality
473between a group of records and isolating it in a single place.  Also, classes
474permit the specification of default values for their subclasses, allowing the
475subclasses to override them as they wish.</p>
476
477<!---------------------------------------------------------------------------->
478<h4>
479  <a name="valuedef">Value definitions</a>
480</h4>
481
482<div>
483
484<p>Value definitions define named entries in records.  A value must be defined
485before it can be referred to as the operand for another value definition or
486before the value is reset with a <a href="#recordlet">let expression</a>.  A
487value is defined by specifying a <a href="#types">TableGen type</a> and a name.
488If an initial value is available, it may be specified after the type with an
489equal sign.  Value definitions require terminating semicolons.</p>
490
491</div>
492
493<!-- -------------------------------------------------------------------------->
494<h4>
495  <a name="recordlet">'let' expressions</a>
496</h4>
497
498<div>
499
500<p>A record-level let expression is used to change the value of a value
501definition in a record.  This is primarily useful when a superclass defines a
502value that a derived class or definition wants to override.  Let expressions
503consist of the '<tt>let</tt>' keyword followed by a value name, an equal sign
504("<tt>=</tt>"), and a new value.  For example, a new class could be added to the
505example above, redefining the <tt>V</tt> field for all of its subclasses:</p>
506
507<div class="doc_code">
508<pre>
509<b>class</b> D : C { let V = 0; }
510<b>def</b> Z : D;
511</pre>
512</div>
513
514<p>In this case, the <tt>Z</tt> definition will have a zero value for its "V"
515value, despite the fact that it derives (indirectly) from the <tt>C</tt> class,
516because the <tt>D</tt> class overrode its value.</p>
517
518</div>
519
520<!-- -------------------------------------------------------------------------->
521<h4>
522  <a name="templateargs">Class template arguments</a>
523</h4>
524
525<div>
526
527<p>TableGen permits the definition of parameterized classes as well as normal
528concrete classes.  Parameterized TableGen classes specify a list of variable
529bindings (which may optionally have defaults) that are bound when used.  Here is
530a simple example:</p>
531
532<div class="doc_code">
533<pre>
534<b>class</b> FPFormat&lt;<b>bits</b>&lt;3&gt; val&gt; {
535  <b>bits</b>&lt;3&gt; Value = val;
536}
537<b>def</b> NotFP      : FPFormat&lt;0&gt;;
538<b>def</b> ZeroArgFP  : FPFormat&lt;1&gt;;
539<b>def</b> OneArgFP   : FPFormat&lt;2&gt;;
540<b>def</b> OneArgFPRW : FPFormat&lt;3&gt;;
541<b>def</b> TwoArgFP   : FPFormat&lt;4&gt;;
542<b>def</b> CompareFP  : FPFormat&lt;5&gt;;
543<b>def</b> CondMovFP  : FPFormat&lt;6&gt;;
544<b>def</b> SpecialFP  : FPFormat&lt;7&gt;;
545</pre>
546</div>
547
548<p>In this case, template arguments are used as a space efficient way to specify
549a list of "enumeration values", each with a "<tt>Value</tt>" field set to the
550specified integer.</p>
551
552<p>The more esoteric forms of <a href="#values">TableGen expressions</a> are
553useful in conjunction with template arguments.  As an example:</p>
554
555<div class="doc_code">
556<pre>
557<b>class</b> ModRefVal&lt;<b>bits</b>&lt;2&gt; val&gt; {
558  <b>bits</b>&lt;2&gt; Value = val;
559}
560
561<b>def</b> None   : ModRefVal&lt;0&gt;;
562<b>def</b> Mod    : ModRefVal&lt;1&gt;;
563<b>def</b> Ref    : ModRefVal&lt;2&gt;;
564<b>def</b> ModRef : ModRefVal&lt;3&gt;;
565
566<b>class</b> Value&lt;ModRefVal MR&gt; {
567  <i>// Decode some information into a more convenient format, while providing
568  // a nice interface to the user of the "Value" class.</i>
569  <b>bit</b> isMod = MR.Value{0};
570  <b>bit</b> isRef = MR.Value{1};
571
572  <i>// other stuff...</i>
573}
574
575<i>// Example uses</i>
576<b>def</b> bork : Value&lt;Mod&gt;;
577<b>def</b> zork : Value&lt;Ref&gt;;
578<b>def</b> hork : Value&lt;ModRef&gt;;
579</pre>
580</div>
581
582<p>This is obviously a contrived example, but it shows how template arguments
583can be used to decouple the interface provided to the user of the class from the
584actual internal data representation expected by the class.  In this case,
585running <tt>tblgen</tt> on the example prints the following definitions:</p>
586
587<div class="doc_code">
588<pre>
589<b>def</b> bork {      <i>// Value</i>
590  <b>bit</b> isMod = 1;
591  <b>bit</b> isRef = 0;
592}
593<b>def</b> hork {      <i>// Value</i>
594  <b>bit</b> isMod = 1;
595  <b>bit</b> isRef = 1;
596}
597<b>def</b> zork {      <i>// Value</i>
598  <b>bit</b> isMod = 0;
599  <b>bit</b> isRef = 1;
600}
601</pre>
602</div>
603
604<p> This shows that TableGen was able to dig into the argument and extract a
605piece of information that was requested by the designer of the "Value" class.
606For more realistic examples, please see existing users of TableGen, such as the
607X86 backend.</p>
608
609</div>
610
611<!-- -------------------------------------------------------------------------->
612<h4>
613  <a name="multiclass">Multiclass definitions and instances</a>
614</h4>
615
616<div>
617
618<p>
619While classes with template arguments are a good way to factor commonality
620between two instances of a definition, multiclasses allow a convenient notation
621for defining multiple definitions at once (instances of implicitly constructed
622classes).  For example, consider an 3-address instruction set whose instructions
623come in two forms: "<tt>reg = reg op reg</tt>" and "<tt>reg = reg op imm</tt>"
624(e.g. SPARC). In this case, you'd like to specify in one place that this
625commonality exists, then in a separate place indicate what all the ops are.
626</p>
627
628<p>
629Here is an example TableGen fragment that shows this idea:
630</p>
631
632<div class="doc_code">
633<pre>
634<b>def</b> ops;
635<b>def</b> GPR;
636<b>def</b> Imm;
637<b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
638
639<b>multiclass</b> ri_inst&lt;<b>int</b> opc, <b>string</b> asmstr&gt; {
640  def _rr : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
641                 (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
642  def _ri : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
643                 (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
644}
645
646<i>// Instantiations of the ri_inst multiclass.</i>
647<b>defm</b> ADD : ri_inst&lt;0b111, "add"&gt;;
648<b>defm</b> SUB : ri_inst&lt;0b101, "sub"&gt;;
649<b>defm</b> MUL : ri_inst&lt;0b100, "mul"&gt;;
650...
651</pre>
652</div>
653
654<p>The name of the resultant definitions has the multidef fragment names
655   appended to them, so this defines <tt>ADD_rr</tt>, <tt>ADD_ri</tt>,
656   <tt>SUB_rr</tt>, etc.  A defm may inherit from multiple multiclasses,
657   instantiating definitions from each multiclass.  Using a multiclass
658   this way is exactly equivalent to instantiating the classes multiple
659   times yourself, e.g. by writing:</p>
660
661<div class="doc_code">
662<pre>
663<b>def</b> ops;
664<b>def</b> GPR;
665<b>def</b> Imm;
666<b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
667
668<b>class</b> rrinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
669  : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
670         (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
671
672<b>class</b> riinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
673  : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
674         (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
675
676<i>// Instantiations of the ri_inst multiclass.</i>
677<b>def</b> ADD_rr : rrinst&lt;0b111, "add"&gt;;
678<b>def</b> ADD_ri : riinst&lt;0b111, "add"&gt;;
679<b>def</b> SUB_rr : rrinst&lt;0b101, "sub"&gt;;
680<b>def</b> SUB_ri : riinst&lt;0b101, "sub"&gt;;
681<b>def</b> MUL_rr : rrinst&lt;0b100, "mul"&gt;;
682<b>def</b> MUL_ri : riinst&lt;0b100, "mul"&gt;;
683...
684</pre>
685</div>
686
687<p>
688A defm can also be used inside a multiclass providing several levels of
689multiclass instanciations.
690</p>
691
692<div class="doc_code">
693<pre>
694<b>class</b> Instruction&lt;bits&lt;4&gt; opc, string Name&gt; {
695  bits&lt;4&gt; opcode = opc;
696  string name = Name;
697}
698
699<b>multiclass</b> basic_r&lt;bits&lt;4&gt; opc&gt; {
700  <b>def</b> rr : Instruction&lt;opc, "rr"&gt;;
701  <b>def</b> rm : Instruction&lt;opc, "rm"&gt;;
702}
703
704<b>multiclass</b> basic_s&lt;bits&lt;4&gt; opc&gt; {
705  <b>defm</b> SS : basic_r&lt;opc&gt;;
706  <b>defm</b> SD : basic_r&lt;opc&gt;;
707  <b>def</b> X : Instruction&lt;opc, "x"&gt;;
708}
709
710<b>multiclass</b> basic_p&lt;bits&lt;4&gt; opc&gt; {
711  <b>defm</b> PS : basic_r&lt;opc&gt;;
712  <b>defm</b> PD : basic_r&lt;opc&gt;;
713  <b>def</b> Y : Instruction&lt;opc, "y"&gt;;
714}
715
716<b>defm</b> ADD : basic_s&lt;0xf&gt;, basic_p&lt;0xf&gt;;
717...
718
719<i>// Results</i>
720<b>def</b> ADDPDrm { ...
721<b>def</b> ADDPDrr { ...
722<b>def</b> ADDPSrm { ...
723<b>def</b> ADDPSrr { ...
724<b>def</b> ADDSDrm { ...
725<b>def</b> ADDSDrr { ...
726<b>def</b> ADDY { ...
727<b>def</b> ADDX { ...
728</pre>
729</div>
730
731<p>
732defm declarations can inherit from classes too, the
733rule to follow is that the class list must start after the
734last multiclass, and there must be at least one multiclass
735before them.
736</p>
737
738<div class="doc_code">
739<pre>
740<b>class</b> XD { bits&lt;4&gt; Prefix = 11; }
741<b>class</b> XS { bits&lt;4&gt; Prefix = 12; }
742
743<b>class</b> I&lt;bits<4&gt; op> {
744  bits&lt;4&gt; opcode = op;
745}
746
747<b>multiclass</b> R {
748  <b>def</b> rr : I&lt;4&gt;;
749  <b>def</b> rm : I&lt;2&gt;;
750}
751
752<b>multiclass</b> Y {
753  <b>defm</b> SS : R, XD;
754  <b>defm</b> SD : R, XS;
755}
756
757<b>defm</b> Instr : Y;
758
759<i>// Results</i>
760<b>def</b> InstrSDrm {
761  bits&lt;4&gt; opcode = { 0, 0, 1, 0 };
762  bits&lt;4&gt; Prefix = { 1, 1, 0, 0 };
763}
764...
765<b>def</b> InstrSSrr {
766  bits&lt;4&gt; opcode = { 0, 1, 0, 0 };
767  bits&lt;4&gt; Prefix = { 1, 0, 1, 1 };
768}
769</pre>
770</div>
771
772</div>
773
774</div>
775
776<!-- ======================================================================= -->
777<h3>
778  <a name="filescope">File scope entities</a>
779</h3>
780
781<div>
782
783<!-- -------------------------------------------------------------------------->
784<h4>
785  <a name="include">File inclusion</a>
786</h4>
787
788<div>
789<p>TableGen supports the '<tt>include</tt>' token, which textually substitutes
790the specified file in place of the include directive.  The filename should be
791specified as a double quoted string immediately after the '<tt>include</tt>'
792keyword.  Example:</p>
793
794<div class="doc_code">
795<pre>
796<b>include</b> "foo.td"
797</pre>
798</div>
799
800</div>
801
802<!-- -------------------------------------------------------------------------->
803<h4>
804  <a name="globallet">'let' expressions</a>
805</h4>
806
807<div>
808
809<p>"Let" expressions at file scope are similar to <a href="#recordlet">"let"
810expressions within a record</a>, except they can specify a value binding for
811multiple records at a time, and may be useful in certain other cases.
812File-scope let expressions are really just another way that TableGen allows the
813end-user to factor out commonality from the records.</p>
814
815<p>File-scope "let" expressions take a comma-separated list of bindings to
816apply, and one or more records to bind the values in.  Here are some
817examples:</p>
818
819<div class="doc_code">
820<pre>
821<b>let</b> isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 <b>in</b>
822  <b>def</b> RET : I&lt;0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]&gt;;
823
824<b>let</b> isCall = 1 <b>in</b>
825  <i>// All calls clobber the non-callee saved registers...</i>
826  <b>let</b> Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
827              MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
828              XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] <b>in</b> {
829    <b>def</b> CALLpcrel32 : Ii32&lt;0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
830                           "call\t${dst:call}", []&gt;;
831    <b>def</b> CALL32r     : I&lt;0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
832                        "call\t{*}$dst", [(X86call GR32:$dst)]&gt;;
833    <b>def</b> CALL32m     : I&lt;0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
834                        "call\t{*}$dst", []&gt;;
835  }
836</pre>
837</div>
838
839<p>File-scope "let" expressions are often useful when a couple of definitions
840need to be added to several records, and the records do not otherwise need to be
841opened, as in the case with the <tt>CALL*</tt> instructions above.</p>
842
843<p>It's also possible to use "let" expressions inside multiclasses, providing
844more ways to factor out commonality from the records, specially if using
845several levels of multiclass instanciations. This also avoids the need of using
846"let" expressions within subsequent records inside a multiclass.</p>
847
848<pre class="doc_code">
849<b>multiclass </b>basic_r&lt;bits&lt;4&gt; opc&gt; {
850  <b>let </b>Predicates = [HasSSE2] in {
851    <b>def </b>rr : Instruction&lt;opc, "rr"&gt;;
852    <b>def </b>rm : Instruction&lt;opc, "rm"&gt;;
853  }
854  <b>let </b>Predicates = [HasSSE3] in
855    <b>def </b>rx : Instruction&lt;opc, "rx"&gt;;
856}
857
858<b>multiclass </b>basic_ss&lt;bits&lt;4&gt; opc&gt; {
859  <b>let </b>IsDouble = 0 in
860    <b>defm </b>SS : basic_r&lt;opc&gt;;
861
862  <b>let </b>IsDouble = 1 in
863    <b>defm </b>SD : basic_r&lt;opc&gt;;
864}
865
866<b>defm </b>ADD : basic_ss&lt;0xf&gt;;
867</pre>
868</div>
869
870</div>
871
872</div>
873
874<!-- *********************************************************************** -->
875<h2><a name="codegen">Code Generator backend info</a></h2>
876<!-- *********************************************************************** -->
877
878<div>
879
880<p>Expressions used by code generator to describe instructions and isel
881patterns:</p>
882
883<dl>
884<dt><tt>(implicit a)</tt></dt>
885  <dd>an implicitly defined physical register.  This tells the dag instruction
886  selection emitter the input pattern's extra definitions matches implicit
887  physical register definitions.</dd>
888</dl>
889</div>
890
891<!-- *********************************************************************** -->
892<h2><a name="backends">TableGen backends</a></h2>
893<!-- *********************************************************************** -->
894
895<div>
896
897<p>TODO: How they work, how to write one.  This section should not contain
898details about any particular backend, except maybe -print-enums as an example.
899This should highlight the APIs in <tt>TableGen/Record.h</tt>.</p>
900
901</div>
902
903<!-- *********************************************************************** -->
904
905<hr>
906<address>
907  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
908  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
909  <a href="http://validator.w3.org/check/referer"><img
910  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
911
912  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
913  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
914  Last modified: $Date: 2011-10-07 14:25:05 -0400 (Fri, 07 Oct 2011) $
915</address>
916
917</body>
918</html>
919