1 //===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "DWARFDebugAranges.h"
11 #include "DWARFCompileUnit.h"
12 #include "DWARFContext.h"
13 #include "llvm/Support/Format.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include <algorithm>
16 #include <cassert>
17 using namespace llvm;
18 
19 // Compare function DWARFDebugAranges::Range structures
20 static bool RangeLessThan(const DWARFDebugAranges::Range &range1,
21                           const DWARFDebugAranges::Range &range2) {
22   return range1.LoPC < range2.LoPC;
23 }
24 
25 namespace {
26   class CountArangeDescriptors {
27   public:
28     CountArangeDescriptors(uint32_t &count_ref) : Count(count_ref) {}
29     void operator()(const DWARFDebugArangeSet &set) {
30       Count += set.getNumDescriptors();
31     }
32     uint32_t &Count;
33   };
34 
35   class AddArangeDescriptors {
36   public:
37     AddArangeDescriptors(DWARFDebugAranges::RangeColl &ranges)
38       : RangeCollection(ranges) {}
39     void operator()(const DWARFDebugArangeSet& set) {
40       const DWARFDebugArangeSet::Descriptor* arange_desc_ptr;
41       DWARFDebugAranges::Range range;
42       range.Offset = set.getCompileUnitDIEOffset();
43 
44       for (uint32_t i=0; (arange_desc_ptr = set.getDescriptor(i)) != NULL; ++i){
45         range.LoPC = arange_desc_ptr->Address;
46         range.Length = arange_desc_ptr->Length;
47 
48         // Insert each item in increasing address order so binary searching
49         // can later be done!
50         DWARFDebugAranges::RangeColl::iterator insert_pos =
51           std::lower_bound(RangeCollection.begin(), RangeCollection.end(),
52                            range, RangeLessThan);
53         RangeCollection.insert(insert_pos, range);
54       }
55     }
56     DWARFDebugAranges::RangeColl& RangeCollection;
57   };
58 }
59 
60 bool DWARFDebugAranges::extract(DataExtractor debug_aranges_data) {
61   if (debug_aranges_data.isValidOffset(0)) {
62     uint32_t offset = 0;
63 
64     typedef std::vector<DWARFDebugArangeSet> SetCollection;
65     typedef SetCollection::const_iterator SetCollectionIter;
66     SetCollection sets;
67 
68     DWARFDebugArangeSet set;
69     Range range;
70     while (set.extract(debug_aranges_data, &offset))
71       sets.push_back(set);
72 
73     uint32_t count = 0;
74 
75     std::for_each(sets.begin(), sets.end(), CountArangeDescriptors(count));
76 
77     if (count > 0) {
78       Aranges.reserve(count);
79       AddArangeDescriptors range_adder(Aranges);
80       std::for_each(sets.begin(), sets.end(), range_adder);
81     }
82   }
83   return false;
84 }
85 
86 bool DWARFDebugAranges::generate(DWARFContext *ctx) {
87   clear();
88   if (ctx) {
89     const uint32_t num_compile_units = ctx->getNumCompileUnits();
90     for (uint32_t cu_idx = 0; cu_idx < num_compile_units; ++cu_idx) {
91       DWARFCompileUnit *cu = ctx->getCompileUnitAtIndex(cu_idx);
92       if (cu)
93         cu->buildAddressRangeTable(this, true);
94     }
95   }
96   return !isEmpty();
97 }
98 
99 void DWARFDebugAranges::dump(raw_ostream &OS) const {
100   const uint32_t num_ranges = getNumRanges();
101   for (uint32_t i = 0; i < num_ranges; ++i) {
102     const Range &range = Aranges[i];
103     OS << format("0x%8.8x: [0x%8.8llx - 0x%8.8llx)\n", range.Offset,
104                  (uint64_t)range.LoPC, (uint64_t)range.HiPC());
105   }
106 }
107 
108 void DWARFDebugAranges::Range::dump(raw_ostream &OS) const {
109   OS << format("{0x%8.8x}: [0x%8.8llx - 0x%8.8llx)\n", Offset, LoPC, HiPC());
110 }
111 
112 void DWARFDebugAranges::appendRange(uint32_t offset, uint64_t low_pc,
113                                     uint64_t high_pc) {
114   if (!Aranges.empty()) {
115     if (Aranges.back().Offset == offset && Aranges.back().HiPC() == low_pc) {
116       Aranges.back().setHiPC(high_pc);
117       return;
118     }
119   }
120   Aranges.push_back(Range(low_pc, high_pc, offset));
121 }
122 
123 void DWARFDebugAranges::sort(bool minimize, uint32_t n) {
124   const size_t orig_arange_size = Aranges.size();
125   // Size of one? If so, no sorting is needed
126   if (orig_arange_size <= 1)
127     return;
128   // Sort our address range entries
129   std::stable_sort(Aranges.begin(), Aranges.end(), RangeLessThan);
130 
131   if (!minimize)
132     return;
133 
134   // Most address ranges are contiguous from function to function
135   // so our new ranges will likely be smaller. We calculate the size
136   // of the new ranges since although std::vector objects can be resized,
137   // the will never reduce their allocated block size and free any excesss
138   // memory, so we might as well start a brand new collection so it is as
139   // small as possible.
140 
141   // First calculate the size of the new minimal arange vector
142   // so we don't have to do a bunch of re-allocations as we
143   // copy the new minimal stuff over to the new collection.
144   size_t minimal_size = 1;
145   for (size_t i = 1; i < orig_arange_size; ++i) {
146     if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i], n))
147       ++minimal_size;
148   }
149 
150   // If the sizes are the same, then no consecutive aranges can be
151   // combined, we are done.
152   if (minimal_size == orig_arange_size)
153     return;
154 
155   // Else, make a new RangeColl that _only_ contains what we need.
156   RangeColl minimal_aranges;
157   minimal_aranges.resize(minimal_size);
158   uint32_t j = 0;
159   minimal_aranges[j] = Aranges[0];
160   for (size_t i = 1; i < orig_arange_size; ++i) {
161     if(Range::SortedOverlapCheck (minimal_aranges[j], Aranges[i], n)) {
162       minimal_aranges[j].setHiPC (Aranges[i].HiPC());
163     } else {
164       // Only increment j if we aren't merging
165       minimal_aranges[++j] = Aranges[i];
166     }
167   }
168   assert (j+1 == minimal_size);
169 
170   // Now swap our new minimal aranges into place. The local
171   // minimal_aranges will then contian the old big collection
172   // which will get freed.
173   minimal_aranges.swap(Aranges);
174 }
175 
176 uint32_t DWARFDebugAranges::findAddress(uint64_t address) const {
177   if (!Aranges.empty()) {
178     Range range(address);
179     RangeCollIterator begin = Aranges.begin();
180     RangeCollIterator end = Aranges.end();
181     RangeCollIterator pos = lower_bound(begin, end, range, RangeLessThan);
182 
183     if (pos != end && pos->LoPC <= address && address < pos->HiPC()) {
184       return pos->Offset;
185     } else if (pos != begin) {
186       --pos;
187       if (pos->LoPC <= address && address < pos->HiPC())
188         return (*pos).Offset;
189     }
190   }
191   return -1U;
192 }
193 
194 bool
195 DWARFDebugAranges::allRangesAreContiguous(uint64_t &LoPC, uint64_t &HiPC) const{
196   if (Aranges.empty())
197     return false;
198 
199   uint64_t next_addr = 0;
200   RangeCollIterator begin = Aranges.begin();
201   for (RangeCollIterator pos = begin, end = Aranges.end(); pos != end;
202        ++pos) {
203     if (pos != begin && pos->LoPC != next_addr)
204       return false;
205     next_addr = pos->HiPC();
206   }
207   // We checked for empty at the start of function so front() will be valid.
208   LoPC = Aranges.front().LoPC;
209   // We checked for empty at the start of function so back() will be valid.
210   HiPC = Aranges.back().HiPC();
211   return true;
212 }
213 
214 bool DWARFDebugAranges::getMaxRange(uint64_t &LoPC, uint64_t &HiPC) const {
215   if (Aranges.empty())
216     return false;
217   // We checked for empty at the start of function so front() will be valid.
218   LoPC = Aranges.front().LoPC;
219   // We checked for empty at the start of function so back() will be valid.
220   HiPC = Aranges.back().HiPC();
221   return true;
222 }
223 
224