1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation is designed for use by code generators which do not yet
11 // support stack unwinding.  This pass supports two models of exception handling
12 // lowering, the 'cheap' support and the 'expensive' support.
13 //
14 // 'Cheap' exception handling support gives the program the ability to execute
15 // any program which does not "throw an exception", by turning 'invoke'
16 // instructions into calls and by turning 'unwind' instructions into calls to
17 // abort().  If the program does dynamically use the unwind instruction, the
18 // program will print a message then abort.
19 //
20 // 'Expensive' exception handling support gives the full exception handling
21 // support to the program at the cost of making the 'invoke' instruction
22 // really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23 // exception handling as necessary.
24 //
25 // Because the 'expensive' support slows down programs a lot, and EH is only
26 // used for a subset of the programs, it must be specifically enabled by an
27 // option.
28 //
29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
30 // control flow edges are not correct anymore) so only very simple things should
31 // be done after the lowerinvoke pass has run (like generation of native code).
32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33 // support the invoke instruction yet" lowering pass.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #define DEBUG_TYPE "lowerinvoke"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Constants.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/Instructions.h"
42 #include "llvm/Intrinsics.h"
43 #include "llvm/LLVMContext.h"
44 #include "llvm/Module.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Target/TargetLowering.h"
52 #include <csetjmp>
53 #include <set>
54 using namespace llvm;
55 
56 STATISTIC(NumInvokes, "Number of invokes replaced");
57 STATISTIC(NumUnwinds, "Number of unwinds replaced");
58 STATISTIC(NumSpilled, "Number of registers live across unwind edges");
59 
60 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
61  cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
62 
63 namespace {
64   class LowerInvoke : public FunctionPass {
65     // Used for both models.
66     Constant *AbortFn;
67 
68     // Used for expensive EH support.
69     StructType *JBLinkTy;
70     GlobalVariable *JBListHead;
71     Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
72     bool useExpensiveEHSupport;
73 
74     // We peek in TLI to grab the target's jmp_buf size and alignment
75     const TargetLowering *TLI;
76 
77   public:
78     static char ID; // Pass identification, replacement for typeid
79     explicit LowerInvoke(const TargetLowering *tli = NULL,
80                          bool useExpensiveEHSupport = ExpensiveEHSupport)
81       : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport),
82         TLI(tli) {
83       initializeLowerInvokePass(*PassRegistry::getPassRegistry());
84     }
85     bool doInitialization(Module &M);
86     bool runOnFunction(Function &F);
87 
88     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
89       // This is a cluster of orthogonal Transforms
90       AU.addPreserved("mem2reg");
91       AU.addPreservedID(LowerSwitchID);
92     }
93 
94   private:
95     bool insertCheapEHSupport(Function &F);
96     void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
97     void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
98                                 AllocaInst *InvokeNum, AllocaInst *StackPtr,
99                                 SwitchInst *CatchSwitch);
100     bool insertExpensiveEHSupport(Function &F);
101   };
102 }
103 
104 char LowerInvoke::ID = 0;
105 INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
106                 "Lower invoke and unwind, for unwindless code generators",
107                 false, false)
108 
109 char &llvm::LowerInvokePassID = LowerInvoke::ID;
110 
111 // Public Interface To the LowerInvoke pass.
112 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
113   return new LowerInvoke(TLI, ExpensiveEHSupport);
114 }
115 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
116                                           bool useExpensiveEHSupport) {
117   return new LowerInvoke(TLI, useExpensiveEHSupport);
118 }
119 
120 // doInitialization - Make sure that there is a prototype for abort in the
121 // current module.
122 bool LowerInvoke::doInitialization(Module &M) {
123   Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
124   if (useExpensiveEHSupport) {
125     // Insert a type for the linked list of jump buffers.
126     unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
127     JBSize = JBSize ? JBSize : 200;
128     Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
129 
130     JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty");
131     Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) };
132     JBLinkTy->setBody(Elts);
133 
134     Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
135 
136     // Now that we've done that, insert the jmpbuf list head global, unless it
137     // already exists.
138     if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
139       JBListHead = new GlobalVariable(M, PtrJBList, false,
140                                       GlobalValue::LinkOnceAnyLinkage,
141                                       Constant::getNullValue(PtrJBList),
142                                       "llvm.sjljeh.jblist");
143     }
144 
145 // VisualStudio defines setjmp as _setjmp
146 #if defined(_MSC_VER) && defined(setjmp) && \
147                          !defined(setjmp_undefined_for_msvc)
148 #  pragma push_macro("setjmp")
149 #  undef setjmp
150 #  define setjmp_undefined_for_msvc
151 #endif
152 
153     SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
154 
155 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
156    // let's return it to _setjmp state
157 #  pragma pop_macro("setjmp")
158 #  undef setjmp_undefined_for_msvc
159 #endif
160 
161     LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
162     StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
163     StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
164   }
165 
166   // We need the 'write' and 'abort' functions for both models.
167   AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
168                                   (Type *)0);
169   return true;
170 }
171 
172 bool LowerInvoke::insertCheapEHSupport(Function &F) {
173   bool Changed = false;
174   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
175     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
176       SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
177       // Insert a normal call instruction...
178       CallInst *NewCall = CallInst::Create(II->getCalledValue(),
179                                            CallArgs, "", II);
180       NewCall->takeName(II);
181       NewCall->setCallingConv(II->getCallingConv());
182       NewCall->setAttributes(II->getAttributes());
183       NewCall->setDebugLoc(II->getDebugLoc());
184       II->replaceAllUsesWith(NewCall);
185 
186       // Insert an unconditional branch to the normal destination.
187       BranchInst::Create(II->getNormalDest(), II);
188 
189       // Remove any PHI node entries from the exception destination.
190       II->getUnwindDest()->removePredecessor(BB);
191 
192       // Remove the invoke instruction now.
193       BB->getInstList().erase(II);
194 
195       ++NumInvokes; Changed = true;
196     } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
197       // Insert a call to abort()
198       CallInst::Create(AbortFn, "", UI)->setTailCall();
199 
200       // Insert a return instruction.  This really should be a "barrier", as it
201       // is unreachable.
202       ReturnInst::Create(F.getContext(),
203                          F.getReturnType()->isVoidTy() ?
204                           0 : Constant::getNullValue(F.getReturnType()), UI);
205 
206       // Remove the unwind instruction now.
207       BB->getInstList().erase(UI);
208 
209       ++NumUnwinds; Changed = true;
210     }
211   return Changed;
212 }
213 
214 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
215 /// specified invoke instruction with a call.
216 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
217                                          AllocaInst *InvokeNum,
218                                          AllocaInst *StackPtr,
219                                          SwitchInst *CatchSwitch) {
220   ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
221                                             InvokeNo);
222 
223   // If the unwind edge has phi nodes, split the edge.
224   if (isa<PHINode>(II->getUnwindDest()->begin())) {
225     SplitCriticalEdge(II, 1, this);
226 
227     // If there are any phi nodes left, they must have a single predecessor.
228     while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
229       PN->replaceAllUsesWith(PN->getIncomingValue(0));
230       PN->eraseFromParent();
231     }
232   }
233 
234   // Insert a store of the invoke num before the invoke and store zero into the
235   // location afterward.
236   new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
237 
238   // Insert a store of the stack ptr before the invoke, so we can restore it
239   // later in the exception case.
240   CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
241   new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
242 
243   BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt();
244   // nonvolatile.
245   new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
246                 InvokeNum, false, NI);
247 
248   Instruction* StackPtrLoad =
249     new LoadInst(StackPtr, "stackptr.restore", true,
250                  II->getUnwindDest()->getFirstInsertionPt());
251   CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
252 
253   // Add a switch case to our unwind block.
254   CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
255 
256   // Insert a normal call instruction.
257   SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
258   CallInst *NewCall = CallInst::Create(II->getCalledValue(),
259                                        CallArgs, "", II);
260   NewCall->takeName(II);
261   NewCall->setCallingConv(II->getCallingConv());
262   NewCall->setAttributes(II->getAttributes());
263   NewCall->setDebugLoc(II->getDebugLoc());
264   II->replaceAllUsesWith(NewCall);
265 
266   // Replace the invoke with an uncond branch.
267   BranchInst::Create(II->getNormalDest(), NewCall->getParent());
268   II->eraseFromParent();
269 }
270 
271 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
272 /// we reach blocks we've already seen.
273 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
274   if (!LiveBBs.insert(BB).second) return; // already been here.
275 
276   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
277     MarkBlocksLiveIn(*PI, LiveBBs);
278 }
279 
280 // First thing we need to do is scan the whole function for values that are
281 // live across unwind edges.  Each value that is live across an unwind edge
282 // we spill into a stack location, guaranteeing that there is nothing live
283 // across the unwind edge.  This process also splits all critical edges
284 // coming out of invoke's.
285 void LowerInvoke::
286 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
287   // First step, split all critical edges from invoke instructions.
288   for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
289     InvokeInst *II = Invokes[i];
290     SplitCriticalEdge(II, 0, this);
291     SplitCriticalEdge(II, 1, this);
292     assert(!isa<PHINode>(II->getNormalDest()) &&
293            !isa<PHINode>(II->getUnwindDest()) &&
294            "critical edge splitting left single entry phi nodes?");
295   }
296 
297   Function *F = Invokes.back()->getParent()->getParent();
298 
299   // To avoid having to handle incoming arguments specially, we lower each arg
300   // to a copy instruction in the entry block.  This ensures that the argument
301   // value itself cannot be live across the entry block.
302   BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
303   while (isa<AllocaInst>(AfterAllocaInsertPt) &&
304         isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
305     ++AfterAllocaInsertPt;
306   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
307        AI != E; ++AI) {
308     Type *Ty = AI->getType();
309     // Aggregate types can't be cast, but are legal argument types, so we have
310     // to handle them differently. We use an extract/insert pair as a
311     // lightweight method to achieve the same goal.
312     if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
313       Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
314       Instruction *NI = InsertValueInst::Create(AI, EI, 0);
315       NI->insertAfter(EI);
316       AI->replaceAllUsesWith(NI);
317       // Set the operand of the instructions back to the AllocaInst.
318       EI->setOperand(0, AI);
319       NI->setOperand(0, AI);
320     } else {
321       // This is always a no-op cast because we're casting AI to AI->getType()
322       // so src and destination types are identical. BitCast is the only
323       // possibility.
324       CastInst *NC = new BitCastInst(
325         AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
326       AI->replaceAllUsesWith(NC);
327       // Set the operand of the cast instruction back to the AllocaInst.
328       // Normally it's forbidden to replace a CastInst's operand because it
329       // could cause the opcode to reflect an illegal conversion. However,
330       // we're replacing it here with the same value it was constructed with.
331       // We do this because the above replaceAllUsesWith() clobbered the
332       // operand, but we want this one to remain.
333       NC->setOperand(0, AI);
334     }
335   }
336 
337   // Finally, scan the code looking for instructions with bad live ranges.
338   for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
339     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
340       // Ignore obvious cases we don't have to handle.  In particular, most
341       // instructions either have no uses or only have a single use inside the
342       // current block.  Ignore them quickly.
343       Instruction *Inst = II;
344       if (Inst->use_empty()) continue;
345       if (Inst->hasOneUse() &&
346           cast<Instruction>(Inst->use_back())->getParent() == BB &&
347           !isa<PHINode>(Inst->use_back())) continue;
348 
349       // If this is an alloca in the entry block, it's not a real register
350       // value.
351       if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
352         if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
353           continue;
354 
355       // Avoid iterator invalidation by copying users to a temporary vector.
356       SmallVector<Instruction*,16> Users;
357       for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
358            UI != E; ++UI) {
359         Instruction *User = cast<Instruction>(*UI);
360         if (User->getParent() != BB || isa<PHINode>(User))
361           Users.push_back(User);
362       }
363 
364       // Scan all of the uses and see if the live range is live across an unwind
365       // edge.  If we find a use live across an invoke edge, create an alloca
366       // and spill the value.
367       std::set<InvokeInst*> InvokesWithStoreInserted;
368 
369       // Find all of the blocks that this value is live in.
370       std::set<BasicBlock*> LiveBBs;
371       LiveBBs.insert(Inst->getParent());
372       while (!Users.empty()) {
373         Instruction *U = Users.back();
374         Users.pop_back();
375 
376         if (!isa<PHINode>(U)) {
377           MarkBlocksLiveIn(U->getParent(), LiveBBs);
378         } else {
379           // Uses for a PHI node occur in their predecessor block.
380           PHINode *PN = cast<PHINode>(U);
381           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
382             if (PN->getIncomingValue(i) == Inst)
383               MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
384         }
385       }
386 
387       // Now that we know all of the blocks that this thing is live in, see if
388       // it includes any of the unwind locations.
389       bool NeedsSpill = false;
390       for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
391         BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
392         if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
393           NeedsSpill = true;
394         }
395       }
396 
397       // If we decided we need a spill, do it.
398       if (NeedsSpill) {
399         ++NumSpilled;
400         DemoteRegToStack(*Inst, true);
401       }
402     }
403 }
404 
405 bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
406   SmallVector<ReturnInst*,16> Returns;
407   SmallVector<UnwindInst*,16> Unwinds;
408   SmallVector<InvokeInst*,16> Invokes;
409   UnreachableInst* UnreachablePlaceholder = 0;
410 
411   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
412     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
413       // Remember all return instructions in case we insert an invoke into this
414       // function.
415       Returns.push_back(RI);
416     } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
417       Invokes.push_back(II);
418     } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
419       Unwinds.push_back(UI);
420     }
421 
422   if (Unwinds.empty() && Invokes.empty()) return false;
423 
424   NumInvokes += Invokes.size();
425   NumUnwinds += Unwinds.size();
426 
427   // TODO: This is not an optimal way to do this.  In particular, this always
428   // inserts setjmp calls into the entries of functions with invoke instructions
429   // even though there are possibly paths through the function that do not
430   // execute any invokes.  In particular, for functions with early exits, e.g.
431   // the 'addMove' method in hexxagon, it would be nice to not have to do the
432   // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
433   // would not be too hard to do.
434 
435   // If we have an invoke instruction, insert a setjmp that dominates all
436   // invokes.  After the setjmp, use a cond branch that goes to the original
437   // code path on zero, and to a designated 'catch' block of nonzero.
438   Value *OldJmpBufPtr = 0;
439   if (!Invokes.empty()) {
440     // First thing we need to do is scan the whole function for values that are
441     // live across unwind edges.  Each value that is live across an unwind edge
442     // we spill into a stack location, guaranteeing that there is nothing live
443     // across the unwind edge.  This process also splits all critical edges
444     // coming out of invoke's.
445     splitLiveRangesLiveAcrossInvokes(Invokes);
446 
447     BasicBlock *EntryBB = F.begin();
448 
449     // Create an alloca for the incoming jump buffer ptr and the new jump buffer
450     // that needs to be restored on all exits from the function.  This is an
451     // alloca because the value needs to be live across invokes.
452     unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
453     AllocaInst *JmpBuf =
454       new AllocaInst(JBLinkTy, 0, Align,
455                      "jblink", F.begin()->begin());
456 
457     Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
458                      ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
459     OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf",
460                                              EntryBB->getTerminator());
461 
462     // Copy the JBListHead to the alloca.
463     Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
464                                  EntryBB->getTerminator());
465     new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
466 
467     // Add the new jumpbuf to the list.
468     new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
469 
470     // Create the catch block.  The catch block is basically a big switch
471     // statement that goes to all of the invoke catch blocks.
472     BasicBlock *CatchBB =
473             BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
474 
475     // Create an alloca which keeps track of the stack pointer before every
476     // invoke, this allows us to properly restore the stack pointer after
477     // long jumping.
478     AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
479                                           "stackptr", EntryBB->begin());
480 
481     // Create an alloca which keeps track of which invoke is currently
482     // executing.  For normal calls it contains zero.
483     AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
484                                            "invokenum",EntryBB->begin());
485     new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
486                   InvokeNum, true, EntryBB->getTerminator());
487 
488     // Insert a load in the Catch block, and a switch on its value.  By default,
489     // we go to a block that just does an unwind (which is the correct action
490     // for a standard call). We insert an unreachable instruction here and
491     // modify the block to jump to the correct unwinding pad later.
492     BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
493     UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB);
494 
495     Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
496     SwitchInst *CatchSwitch =
497       SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
498 
499     // Now that things are set up, insert the setjmp call itself.
500 
501     // Split the entry block to insert the conditional branch for the setjmp.
502     BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
503                                                      "setjmp.cont");
504 
505     Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
506     Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf",
507                                                  EntryBB->getTerminator());
508     JmpBufPtr = new BitCastInst(JmpBufPtr,
509                         Type::getInt8PtrTy(F.getContext()),
510                                 "tmp", EntryBB->getTerminator());
511     Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
512                                     EntryBB->getTerminator());
513 
514     // Compare the return value to zero.
515     Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
516                                    ICmpInst::ICMP_EQ, SJRet,
517                                    Constant::getNullValue(SJRet->getType()),
518                                    "notunwind");
519     // Nuke the uncond branch.
520     EntryBB->getTerminator()->eraseFromParent();
521 
522     // Put in a new condbranch in its place.
523     BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
524 
525     // At this point, we are all set up, rewrite each invoke instruction.
526     for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
527       rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
528   }
529 
530   // We know that there is at least one unwind.
531 
532   // Create three new blocks, the block to load the jmpbuf ptr and compare
533   // against null, the block to do the longjmp, and the error block for if it
534   // is null.  Add them at the end of the function because they are not hot.
535   BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
536                                                 "dounwind", &F);
537   BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
538   BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
539 
540   // If this function contains an invoke, restore the old jumpbuf ptr.
541   Value *BufPtr;
542   if (OldJmpBufPtr) {
543     // Before the return, insert a copy from the saved value to the new value.
544     BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
545     new StoreInst(BufPtr, JBListHead, UnwindHandler);
546   } else {
547     BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
548   }
549 
550   // Load the JBList, if it's null, then there was no catch!
551   Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
552                                 Constant::getNullValue(BufPtr->getType()),
553                                 "notnull");
554   BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
555 
556   // Create the block to do the longjmp.
557   // Get a pointer to the jmpbuf and longjmp.
558   Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
559                    ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
560   Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock);
561   Idx[0] = new BitCastInst(Idx[0],
562              Type::getInt8PtrTy(F.getContext()),
563                            "tmp", UnwindBlock);
564   Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
565   CallInst::Create(LongJmpFn, Idx, "", UnwindBlock);
566   new UnreachableInst(F.getContext(), UnwindBlock);
567 
568   // Set up the term block ("throw without a catch").
569   new UnreachableInst(F.getContext(), TermBlock);
570 
571   // Insert a call to abort()
572   CallInst::Create(AbortFn, "",
573                    TermBlock->getTerminator())->setTailCall();
574 
575 
576   // Replace all unwinds with a branch to the unwind handler.
577   for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
578     BranchInst::Create(UnwindHandler, Unwinds[i]);
579     Unwinds[i]->eraseFromParent();
580   }
581 
582   // Replace the inserted unreachable with a branch to the unwind handler.
583   if (UnreachablePlaceholder) {
584     BranchInst::Create(UnwindHandler, UnreachablePlaceholder);
585     UnreachablePlaceholder->eraseFromParent();
586   }
587 
588   // Finally, for any returns from this function, if this function contains an
589   // invoke, restore the old jmpbuf pointer to its input value.
590   if (OldJmpBufPtr) {
591     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
592       ReturnInst *R = Returns[i];
593 
594       // Before the return, insert a copy from the saved value to the new value.
595       Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
596       new StoreInst(OldBuf, JBListHead, true, R);
597     }
598   }
599 
600   return true;
601 }
602 
603 bool LowerInvoke::runOnFunction(Function &F) {
604   if (useExpensiveEHSupport)
605     return insertExpensiveEHSupport(F);
606   else
607     return insertCheapEHSupport(F);
608 }
609