1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some functions that are useful for math stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
15 #define LLVM_SUPPORT_MATHEXTRAS_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/SwapByteOrder.h"
19 #include <algorithm>
20 #include <cassert>
21 #include <cstring>
22 #include <type_traits>
23 #include <limits>
24 
25 #ifdef _MSC_VER
26 #include <intrin.h>
27 #endif
28 
29 #ifdef __ANDROID_NDK__
30 #include <android/api-level.h>
31 #endif
32 
33 namespace llvm {
34 /// \brief The behavior an operation has on an input of 0.
35 enum ZeroBehavior {
36   /// \brief The returned value is undefined.
37   ZB_Undefined,
38   /// \brief The returned value is numeric_limits<T>::max()
39   ZB_Max,
40   /// \brief The returned value is numeric_limits<T>::digits
41   ZB_Width
42 };
43 
44 namespace detail {
45 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
countTrailingZerosCounter46   static std::size_t count(T Val, ZeroBehavior) {
47     if (!Val)
48       return std::numeric_limits<T>::digits;
49     if (Val & 0x1)
50       return 0;
51 
52     // Bisection method.
53     std::size_t ZeroBits = 0;
54     T Shift = std::numeric_limits<T>::digits >> 1;
55     T Mask = std::numeric_limits<T>::max() >> Shift;
56     while (Shift) {
57       if ((Val & Mask) == 0) {
58         Val >>= Shift;
59         ZeroBits |= Shift;
60       }
61       Shift >>= 1;
62       Mask >>= Shift;
63     }
64     return ZeroBits;
65   }
66 };
67 
68 #if __GNUC__ >= 4 || defined(_MSC_VER)
69 template <typename T> struct TrailingZerosCounter<T, 4> {
70   static std::size_t count(T Val, ZeroBehavior ZB) {
71     if (ZB != ZB_Undefined && Val == 0)
72       return 32;
73 
74 #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
75     return __builtin_ctz(Val);
76 #elif defined(_MSC_VER)
77     unsigned long Index;
78     _BitScanForward(&Index, Val);
79     return Index;
80 #endif
81   }
82 };
83 
84 #if !defined(_MSC_VER) || defined(_M_X64)
85 template <typename T> struct TrailingZerosCounter<T, 8> {
86   static std::size_t count(T Val, ZeroBehavior ZB) {
87     if (ZB != ZB_Undefined && Val == 0)
88       return 64;
89 
90 #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
91     return __builtin_ctzll(Val);
92 #elif defined(_MSC_VER)
93     unsigned long Index;
94     _BitScanForward64(&Index, Val);
95     return Index;
96 #endif
97   }
98 };
99 #endif
100 #endif
101 } // namespace detail
102 
103 /// \brief Count number of 0's from the least significant bit to the most
104 ///   stopping at the first 1.
105 ///
106 /// Only unsigned integral types are allowed.
107 ///
108 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
109 ///   valid arguments.
110 template <typename T>
111 std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
112   static_assert(std::numeric_limits<T>::is_integer &&
113                     !std::numeric_limits<T>::is_signed,
114                 "Only unsigned integral types are allowed.");
115   return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
116 }
117 
118 namespace detail {
119 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
120   static std::size_t count(T Val, ZeroBehavior) {
121     if (!Val)
122       return std::numeric_limits<T>::digits;
123 
124     // Bisection method.
125     std::size_t ZeroBits = 0;
126     for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
127       T Tmp = Val >> Shift;
128       if (Tmp)
129         Val = Tmp;
130       else
131         ZeroBits |= Shift;
132     }
133     return ZeroBits;
134   }
135 };
136 
137 #if __GNUC__ >= 4 || defined(_MSC_VER)
138 template <typename T> struct LeadingZerosCounter<T, 4> {
139   static std::size_t count(T Val, ZeroBehavior ZB) {
140     if (ZB != ZB_Undefined && Val == 0)
141       return 32;
142 
143 #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
144     return __builtin_clz(Val);
145 #elif defined(_MSC_VER)
146     unsigned long Index;
147     _BitScanReverse(&Index, Val);
148     return Index ^ 31;
149 #endif
150   }
151 };
152 
153 #if !defined(_MSC_VER) || defined(_M_X64)
154 template <typename T> struct LeadingZerosCounter<T, 8> {
155   static std::size_t count(T Val, ZeroBehavior ZB) {
156     if (ZB != ZB_Undefined && Val == 0)
157       return 64;
158 
159 #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
160     return __builtin_clzll(Val);
161 #elif defined(_MSC_VER)
162     unsigned long Index;
163     _BitScanReverse64(&Index, Val);
164     return Index ^ 63;
165 #endif
166   }
167 };
168 #endif
169 #endif
170 } // namespace detail
171 
172 /// \brief Count number of 0's from the most significant bit to the least
173 ///   stopping at the first 1.
174 ///
175 /// Only unsigned integral types are allowed.
176 ///
177 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
178 ///   valid arguments.
179 template <typename T>
180 std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
181   static_assert(std::numeric_limits<T>::is_integer &&
182                     !std::numeric_limits<T>::is_signed,
183                 "Only unsigned integral types are allowed.");
184   return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
185 }
186 
187 /// \brief Get the index of the first set bit starting from the least
188 ///   significant bit.
189 ///
190 /// Only unsigned integral types are allowed.
191 ///
192 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
193 ///   valid arguments.
194 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
195   if (ZB == ZB_Max && Val == 0)
196     return std::numeric_limits<T>::max();
197 
198   return countTrailingZeros(Val, ZB_Undefined);
199 }
200 
201 /// \brief Get the index of the last set bit starting from the least
202 ///   significant bit.
203 ///
204 /// Only unsigned integral types are allowed.
205 ///
206 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
207 ///   valid arguments.
208 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
209   if (ZB == ZB_Max && Val == 0)
210     return std::numeric_limits<T>::max();
211 
212   // Use ^ instead of - because both gcc and llvm can remove the associated ^
213   // in the __builtin_clz intrinsic on x86.
214   return countLeadingZeros(Val, ZB_Undefined) ^
215          (std::numeric_limits<T>::digits - 1);
216 }
217 
218 /// \brief Macro compressed bit reversal table for 256 bits.
219 ///
220 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
221 static const unsigned char BitReverseTable256[256] = {
222 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
223 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
224 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
225   R6(0), R6(2), R6(1), R6(3)
226 #undef R2
227 #undef R4
228 #undef R6
229 };
230 
231 /// \brief Reverse the bits in \p Val.
232 template <typename T>
233 T reverseBits(T Val) {
234   unsigned char in[sizeof(Val)];
235   unsigned char out[sizeof(Val)];
236   std::memcpy(in, &Val, sizeof(Val));
237   for (unsigned i = 0; i < sizeof(Val); ++i)
238     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
239   std::memcpy(&Val, out, sizeof(Val));
240   return Val;
241 }
242 
243 // NOTE: The following support functions use the _32/_64 extensions instead of
244 // type overloading so that signed and unsigned integers can be used without
245 // ambiguity.
246 
247 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
248 constexpr inline uint32_t Hi_32(uint64_t Value) {
249   return static_cast<uint32_t>(Value >> 32);
250 }
251 
252 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
253 constexpr inline uint32_t Lo_32(uint64_t Value) {
254   return static_cast<uint32_t>(Value);
255 }
256 
257 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of
258 ///           32-bit integers.
259 constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
260   return ((uint64_t)High << 32) | (uint64_t)Low;
261 }
262 
263 /// isInt - Checks if an integer fits into the given bit width.
264 template <unsigned N> constexpr inline bool isInt(int64_t x) {
265   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
266 }
267 // Template specializations to get better code for common cases.
268 template <> constexpr inline bool isInt<8>(int64_t x) {
269   return static_cast<int8_t>(x) == x;
270 }
271 template <> constexpr inline bool isInt<16>(int64_t x) {
272   return static_cast<int16_t>(x) == x;
273 }
274 template <> constexpr inline bool isInt<32>(int64_t x) {
275   return static_cast<int32_t>(x) == x;
276 }
277 
278 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
279 ///                     left by S.
280 template <unsigned N, unsigned S>
281 constexpr inline bool isShiftedInt(int64_t x) {
282   static_assert(
283       N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
284   static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
285   return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
286 }
287 
288 /// isUInt - Checks if an unsigned integer fits into the given bit width.
289 ///
290 /// This is written as two functions rather than as simply
291 ///
292 ///   return N >= 64 || X < (UINT64_C(1) << N);
293 ///
294 /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
295 /// left too many places.
296 template <unsigned N>
297 constexpr inline typename std::enable_if<(N < 64), bool>::type
298 isUInt(uint64_t X) {
299   static_assert(N > 0, "isUInt<0> doesn't make sense");
300   return X < (UINT64_C(1) << (N));
301 }
302 template <unsigned N>
303 constexpr inline typename std::enable_if<N >= 64, bool>::type
304 isUInt(uint64_t X) {
305   return true;
306 }
307 
308 // Template specializations to get better code for common cases.
309 template <> constexpr inline bool isUInt<8>(uint64_t x) {
310   return static_cast<uint8_t>(x) == x;
311 }
312 template <> constexpr inline bool isUInt<16>(uint64_t x) {
313   return static_cast<uint16_t>(x) == x;
314 }
315 template <> constexpr inline bool isUInt<32>(uint64_t x) {
316   return static_cast<uint32_t>(x) == x;
317 }
318 
319 /// Checks if a unsigned integer is an N bit number shifted left by S.
320 template <unsigned N, unsigned S>
321 constexpr inline bool isShiftedUInt(uint64_t x) {
322   static_assert(
323       N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
324   static_assert(N + S <= 64,
325                 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
326   // Per the two static_asserts above, S must be strictly less than 64.  So
327   // 1 << S is not undefined behavior.
328   return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
329 }
330 
331 /// Gets the maximum value for a N-bit unsigned integer.
332 inline uint64_t maxUIntN(uint64_t N) {
333   assert(N > 0 && N <= 64 && "integer width out of range");
334 
335   // uint64_t(1) << 64 is undefined behavior, so we can't do
336   //   (uint64_t(1) << N) - 1
337   // without checking first that N != 64.  But this works and doesn't have a
338   // branch.
339   return UINT64_MAX >> (64 - N);
340 }
341 
342 /// Gets the minimum value for a N-bit signed integer.
343 inline int64_t minIntN(int64_t N) {
344   assert(N > 0 && N <= 64 && "integer width out of range");
345 
346   return -(UINT64_C(1)<<(N-1));
347 }
348 
349 /// Gets the maximum value for a N-bit signed integer.
350 inline int64_t maxIntN(int64_t N) {
351   assert(N > 0 && N <= 64 && "integer width out of range");
352 
353   // This relies on two's complement wraparound when N == 64, so we convert to
354   // int64_t only at the very end to avoid UB.
355   return (UINT64_C(1) << (N - 1)) - 1;
356 }
357 
358 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
359 /// bit width.
360 inline bool isUIntN(unsigned N, uint64_t x) {
361   return N >= 64 || x <= maxUIntN(N);
362 }
363 
364 /// isIntN - Checks if an signed integer fits into the given (dynamic)
365 /// bit width.
366 inline bool isIntN(unsigned N, int64_t x) {
367   return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
368 }
369 
370 /// isMask_32 - This function returns true if the argument is a non-empty
371 /// sequence of ones starting at the least significant bit with the remainder
372 /// zero (32 bit version).  Ex. isMask_32(0x0000FFFFU) == true.
373 constexpr inline bool isMask_32(uint32_t Value) {
374   return Value && ((Value + 1) & Value) == 0;
375 }
376 
377 /// isMask_64 - This function returns true if the argument is a non-empty
378 /// sequence of ones starting at the least significant bit with the remainder
379 /// zero (64 bit version).
380 constexpr inline bool isMask_64(uint64_t Value) {
381   return Value && ((Value + 1) & Value) == 0;
382 }
383 
384 /// isShiftedMask_32 - This function returns true if the argument contains a
385 /// non-empty sequence of ones with the remainder zero (32 bit version.)
386 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
387 constexpr inline bool isShiftedMask_32(uint32_t Value) {
388   return Value && isMask_32((Value - 1) | Value);
389 }
390 
391 /// isShiftedMask_64 - This function returns true if the argument contains a
392 /// non-empty sequence of ones with the remainder zero (64 bit version.)
393 constexpr inline bool isShiftedMask_64(uint64_t Value) {
394   return Value && isMask_64((Value - 1) | Value);
395 }
396 
397 /// isPowerOf2_32 - This function returns true if the argument is a power of
398 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
399 constexpr inline bool isPowerOf2_32(uint32_t Value) {
400   return Value && !(Value & (Value - 1));
401 }
402 
403 /// isPowerOf2_64 - This function returns true if the argument is a power of two
404 /// > 0 (64 bit edition.)
405 constexpr inline bool isPowerOf2_64(uint64_t Value) {
406   return Value && !(Value & (Value - int64_t(1L)));
407 }
408 
409 /// ByteSwap_16 - This function returns a byte-swapped representation of the
410 /// 16-bit argument, Value.
411 inline uint16_t ByteSwap_16(uint16_t Value) {
412   return sys::SwapByteOrder_16(Value);
413 }
414 
415 /// ByteSwap_32 - This function returns a byte-swapped representation of the
416 /// 32-bit argument, Value.
417 inline uint32_t ByteSwap_32(uint32_t Value) {
418   return sys::SwapByteOrder_32(Value);
419 }
420 
421 /// ByteSwap_64 - This function returns a byte-swapped representation of the
422 /// 64-bit argument, Value.
423 inline uint64_t ByteSwap_64(uint64_t Value) {
424   return sys::SwapByteOrder_64(Value);
425 }
426 
427 /// \brief Count the number of ones from the most significant bit to the first
428 /// zero bit.
429 ///
430 /// Ex. CountLeadingOnes(0xFF0FFF00) == 8.
431 /// Only unsigned integral types are allowed.
432 ///
433 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
434 /// ZB_Undefined are valid arguments.
435 template <typename T>
436 std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
437   static_assert(std::numeric_limits<T>::is_integer &&
438                     !std::numeric_limits<T>::is_signed,
439                 "Only unsigned integral types are allowed.");
440   return countLeadingZeros(~Value, ZB);
441 }
442 
443 /// \brief Count the number of ones from the least significant bit to the first
444 /// zero bit.
445 ///
446 /// Ex. countTrailingOnes(0x00FF00FF) == 8.
447 /// Only unsigned integral types are allowed.
448 ///
449 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
450 /// ZB_Undefined are valid arguments.
451 template <typename T>
452 std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
453   static_assert(std::numeric_limits<T>::is_integer &&
454                     !std::numeric_limits<T>::is_signed,
455                 "Only unsigned integral types are allowed.");
456   return countTrailingZeros(~Value, ZB);
457 }
458 
459 namespace detail {
460 template <typename T, std::size_t SizeOfT> struct PopulationCounter {
461   static unsigned count(T Value) {
462     // Generic version, forward to 32 bits.
463     static_assert(SizeOfT <= 4, "Not implemented!");
464 #if __GNUC__ >= 4
465     return __builtin_popcount(Value);
466 #else
467     uint32_t v = Value;
468     v = v - ((v >> 1) & 0x55555555);
469     v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
470     return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
471 #endif
472   }
473 };
474 
475 template <typename T> struct PopulationCounter<T, 8> {
476   static unsigned count(T Value) {
477 #if __GNUC__ >= 4
478     return __builtin_popcountll(Value);
479 #else
480     uint64_t v = Value;
481     v = v - ((v >> 1) & 0x5555555555555555ULL);
482     v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
483     v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
484     return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
485 #endif
486   }
487 };
488 } // namespace detail
489 
490 /// \brief Count the number of set bits in a value.
491 /// Ex. countPopulation(0xF000F000) = 8
492 /// Returns 0 if the word is zero.
493 template <typename T>
494 inline unsigned countPopulation(T Value) {
495   static_assert(std::numeric_limits<T>::is_integer &&
496                     !std::numeric_limits<T>::is_signed,
497                 "Only unsigned integral types are allowed.");
498   return detail::PopulationCounter<T, sizeof(T)>::count(Value);
499 }
500 
501 /// Log2 - This function returns the log base 2 of the specified value
502 inline double Log2(double Value) {
503 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
504   return __builtin_log(Value) / __builtin_log(2.0);
505 #else
506   return log2(Value);
507 #endif
508 }
509 
510 /// Log2_32 - This function returns the floor log base 2 of the specified value,
511 /// -1 if the value is zero. (32 bit edition.)
512 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
513 inline unsigned Log2_32(uint32_t Value) {
514   return 31 - countLeadingZeros(Value);
515 }
516 
517 /// Log2_64 - This function returns the floor log base 2 of the specified value,
518 /// -1 if the value is zero. (64 bit edition.)
519 inline unsigned Log2_64(uint64_t Value) {
520   return 63 - countLeadingZeros(Value);
521 }
522 
523 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
524 /// value, 32 if the value is zero. (32 bit edition).
525 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
526 inline unsigned Log2_32_Ceil(uint32_t Value) {
527   return 32 - countLeadingZeros(Value - 1);
528 }
529 
530 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
531 /// value, 64 if the value is zero. (64 bit edition.)
532 inline unsigned Log2_64_Ceil(uint64_t Value) {
533   return 64 - countLeadingZeros(Value - 1);
534 }
535 
536 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
537 /// values using Euclid's algorithm.
538 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
539   while (B) {
540     uint64_t T = B;
541     B = A % B;
542     A = T;
543   }
544   return A;
545 }
546 
547 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
548 /// equivalent double.
549 inline double BitsToDouble(uint64_t Bits) {
550   union {
551     uint64_t L;
552     double D;
553   } T;
554   T.L = Bits;
555   return T.D;
556 }
557 
558 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
559 /// equivalent float.
560 inline float BitsToFloat(uint32_t Bits) {
561   union {
562     uint32_t I;
563     float F;
564   } T;
565   T.I = Bits;
566   return T.F;
567 }
568 
569 /// DoubleToBits - This function takes a double and returns the bit
570 /// equivalent 64-bit integer.  Note that copying doubles around
571 /// changes the bits of NaNs on some hosts, notably x86, so this
572 /// routine cannot be used if these bits are needed.
573 inline uint64_t DoubleToBits(double Double) {
574   union {
575     uint64_t L;
576     double D;
577   } T;
578   T.D = Double;
579   return T.L;
580 }
581 
582 /// FloatToBits - This function takes a float and returns the bit
583 /// equivalent 32-bit integer.  Note that copying floats around
584 /// changes the bits of NaNs on some hosts, notably x86, so this
585 /// routine cannot be used if these bits are needed.
586 inline uint32_t FloatToBits(float Float) {
587   union {
588     uint32_t I;
589     float F;
590   } T;
591   T.F = Float;
592   return T.I;
593 }
594 
595 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
596 /// alignment that may be assumed after adding the two together.
597 constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
598   // The largest power of 2 that divides both A and B.
599   //
600   // Replace "-Value" by "1+~Value" in the following commented code to avoid
601   // MSVC warning C4146
602   //    return (A | B) & -(A | B);
603   return (A | B) & (1 + ~(A | B));
604 }
605 
606 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
607 ///
608 /// Alignment should be a power of two.  This method rounds up, so
609 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
610 inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
611   assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
612          "Alignment is not a power of two!");
613 
614   assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
615 
616   return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
617 }
618 
619 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
620 /// bytes, rounding up.
621 inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
622   return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
623 }
624 
625 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
626 /// that is strictly greater than A.  Returns zero on overflow.
627 inline uint64_t NextPowerOf2(uint64_t A) {
628   A |= (A >> 1);
629   A |= (A >> 2);
630   A |= (A >> 4);
631   A |= (A >> 8);
632   A |= (A >> 16);
633   A |= (A >> 32);
634   return A + 1;
635 }
636 
637 /// Returns the power of two which is less than or equal to the given value.
638 /// Essentially, it is a floor operation across the domain of powers of two.
639 inline uint64_t PowerOf2Floor(uint64_t A) {
640   if (!A) return 0;
641   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
642 }
643 
644 /// Returns the power of two which is greater than or equal to the given value.
645 /// Essentially, it is a ceil operation across the domain of powers of two.
646 inline uint64_t PowerOf2Ceil(uint64_t A) {
647   if (!A)
648     return 0;
649   return NextPowerOf2(A - 1);
650 }
651 
652 /// Returns the next integer (mod 2**64) that is greater than or equal to
653 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
654 ///
655 /// If non-zero \p Skew is specified, the return value will be a minimal
656 /// integer that is greater than or equal to \p Value and equal to
657 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
658 /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
659 ///
660 /// Examples:
661 /// \code
662 ///   alignTo(5, 8) = 8
663 ///   alignTo(17, 8) = 24
664 ///   alignTo(~0LL, 8) = 0
665 ///   alignTo(321, 255) = 510
666 ///
667 ///   alignTo(5, 8, 7) = 7
668 ///   alignTo(17, 8, 1) = 17
669 ///   alignTo(~0LL, 8, 3) = 3
670 ///   alignTo(321, 255, 42) = 552
671 /// \endcode
672 inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
673   assert(Align != 0u && "Align can't be 0.");
674   Skew %= Align;
675   return (Value + Align - 1 - Skew) / Align * Align + Skew;
676 }
677 
678 /// Returns the next integer (mod 2**64) that is greater than or equal to
679 /// \p Value and is a multiple of \c Align. \c Align must be non-zero.
680 template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
681   static_assert(Align != 0u, "Align must be non-zero");
682   return (Value + Align - 1) / Align * Align;
683 }
684 
685 /// \c alignTo for contexts where a constant expression is required.
686 /// \sa alignTo
687 ///
688 /// \todo FIXME: remove when \c constexpr becomes really \c constexpr
689 template <uint64_t Align>
690 struct AlignTo {
691   static_assert(Align != 0u, "Align must be non-zero");
692   template <uint64_t Value>
693   struct from_value {
694     static const uint64_t value = (Value + Align - 1) / Align * Align;
695   };
696 };
697 
698 /// Returns the largest uint64_t less than or equal to \p Value and is
699 /// \p Skew mod \p Align. \p Align must be non-zero
700 inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
701   assert(Align != 0u && "Align can't be 0.");
702   Skew %= Align;
703   return (Value - Skew) / Align * Align + Skew;
704 }
705 
706 /// Returns the offset to the next integer (mod 2**64) that is greater than
707 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
708 /// non-zero.
709 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
710   return alignTo(Value, Align) - Value;
711 }
712 
713 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
714 /// Requires 0 < B <= 32.
715 template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
716   static_assert(B > 0, "Bit width can't be 0.");
717   static_assert(B <= 32, "Bit width out of range.");
718   return int32_t(X << (32 - B)) >> (32 - B);
719 }
720 
721 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
722 /// Requires 0 < B < 32.
723 inline int32_t SignExtend32(uint32_t X, unsigned B) {
724   assert(B > 0 && "Bit width can't be 0.");
725   assert(B <= 32 && "Bit width out of range.");
726   return int32_t(X << (32 - B)) >> (32 - B);
727 }
728 
729 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
730 /// Requires 0 < B < 64.
731 template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
732   static_assert(B > 0, "Bit width can't be 0.");
733   static_assert(B <= 64, "Bit width out of range.");
734   return int64_t(x << (64 - B)) >> (64 - B);
735 }
736 
737 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
738 /// Requires 0 < B < 64.
739 inline int64_t SignExtend64(uint64_t X, unsigned B) {
740   assert(B > 0 && "Bit width can't be 0.");
741   assert(B <= 64 && "Bit width out of range.");
742   return int64_t(X << (64 - B)) >> (64 - B);
743 }
744 
745 /// Subtract two unsigned integers, X and Y, of type T and return the absolute
746 /// value of the result.
747 template <typename T>
748 typename std::enable_if<std::is_unsigned<T>::value, T>::type
749 AbsoluteDifference(T X, T Y) {
750   return std::max(X, Y) - std::min(X, Y);
751 }
752 
753 /// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
754 /// maximum representable value of T on overflow.  ResultOverflowed indicates if
755 /// the result is larger than the maximum representable value of type T.
756 template <typename T>
757 typename std::enable_if<std::is_unsigned<T>::value, T>::type
758 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
759   bool Dummy;
760   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
761   // Hacker's Delight, p. 29
762   T Z = X + Y;
763   Overflowed = (Z < X || Z < Y);
764   if (Overflowed)
765     return std::numeric_limits<T>::max();
766   else
767     return Z;
768 }
769 
770 /// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
771 /// maximum representable value of T on overflow.  ResultOverflowed indicates if
772 /// the result is larger than the maximum representable value of type T.
773 template <typename T>
774 typename std::enable_if<std::is_unsigned<T>::value, T>::type
775 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
776   bool Dummy;
777   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
778 
779   // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
780   // because it fails for uint16_t (where multiplication can have undefined
781   // behavior due to promotion to int), and requires a division in addition
782   // to the multiplication.
783 
784   Overflowed = false;
785 
786   // Log2(Z) would be either Log2Z or Log2Z + 1.
787   // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
788   // will necessarily be less than Log2Max as desired.
789   int Log2Z = Log2_64(X) + Log2_64(Y);
790   const T Max = std::numeric_limits<T>::max();
791   int Log2Max = Log2_64(Max);
792   if (Log2Z < Log2Max) {
793     return X * Y;
794   }
795   if (Log2Z > Log2Max) {
796     Overflowed = true;
797     return Max;
798   }
799 
800   // We're going to use the top bit, and maybe overflow one
801   // bit past it. Multiply all but the bottom bit then add
802   // that on at the end.
803   T Z = (X >> 1) * Y;
804   if (Z & ~(Max >> 1)) {
805     Overflowed = true;
806     return Max;
807   }
808   Z <<= 1;
809   if (X & 1)
810     return SaturatingAdd(Z, Y, ResultOverflowed);
811 
812   return Z;
813 }
814 
815 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
816 /// the product. Clamp the result to the maximum representable value of T on
817 /// overflow. ResultOverflowed indicates if the result is larger than the
818 /// maximum representable value of type T.
819 template <typename T>
820 typename std::enable_if<std::is_unsigned<T>::value, T>::type
821 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
822   bool Dummy;
823   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
824 
825   T Product = SaturatingMultiply(X, Y, &Overflowed);
826   if (Overflowed)
827     return Product;
828 
829   return SaturatingAdd(A, Product, &Overflowed);
830 }
831 
832 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
833 extern const float huge_valf;
834 } // End llvm namespace
835 
836 #endif
837