1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_MIPS
6 
7 #include "src/code-stubs.h"
8 #include "src/api-arguments.h"
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/codegen.h"
12 #include "src/ic/handler-compiler.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 #include "src/isolate.h"
16 #include "src/mips/code-stubs-mips.h"
17 #include "src/regexp/jsregexp.h"
18 #include "src/regexp/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
20 
21 namespace v8 {
22 namespace internal {
23 
24 #define __ ACCESS_MASM(masm)
25 
Generate(MacroAssembler * masm)26 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
27   __ sll(t9, a0, kPointerSizeLog2);
28   __ Addu(t9, sp, t9);
29   __ sw(a1, MemOperand(t9, 0));
30   __ Push(a1);
31   __ Push(a2);
32   __ Addu(a0, a0, Operand(3));
33   __ TailCallRuntime(Runtime::kNewArray);
34 }
35 
36 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
37                                           Condition cc);
38 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
39                                     Register lhs,
40                                     Register rhs,
41                                     Label* rhs_not_nan,
42                                     Label* slow,
43                                     bool strict);
44 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
45                                            Register lhs,
46                                            Register rhs);
47 
48 
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)49 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
50                                                ExternalReference miss) {
51   // Update the static counter each time a new code stub is generated.
52   isolate()->counters()->code_stubs()->Increment();
53 
54   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
55   int param_count = descriptor.GetRegisterParameterCount();
56   {
57     // Call the runtime system in a fresh internal frame.
58     FrameScope scope(masm, StackFrame::INTERNAL);
59     DCHECK(param_count == 0 ||
60            a0.is(descriptor.GetRegisterParameter(param_count - 1)));
61     // Push arguments, adjust sp.
62     __ Subu(sp, sp, Operand(param_count * kPointerSize));
63     for (int i = 0; i < param_count; ++i) {
64       // Store argument to stack.
65       __ sw(descriptor.GetRegisterParameter(i),
66             MemOperand(sp, (param_count - 1 - i) * kPointerSize));
67     }
68     __ CallExternalReference(miss, param_count);
69   }
70 
71   __ Ret();
72 }
73 
74 
Generate(MacroAssembler * masm)75 void DoubleToIStub::Generate(MacroAssembler* masm) {
76   Label out_of_range, only_low, negate, done;
77   Register input_reg = source();
78   Register result_reg = destination();
79 
80   int double_offset = offset();
81   // Account for saved regs if input is sp.
82   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
83 
84   Register scratch =
85       GetRegisterThatIsNotOneOf(input_reg, result_reg);
86   Register scratch2 =
87       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
88   Register scratch3 =
89       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
90   DoubleRegister double_scratch = kLithiumScratchDouble;
91 
92   __ Push(scratch, scratch2, scratch3);
93 
94   if (!skip_fastpath()) {
95     // Load double input.
96     __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
97 
98     // Clear cumulative exception flags and save the FCSR.
99     __ cfc1(scratch2, FCSR);
100     __ ctc1(zero_reg, FCSR);
101 
102     // Try a conversion to a signed integer.
103     __ Trunc_w_d(double_scratch, double_scratch);
104     // Move the converted value into the result register.
105     __ mfc1(scratch3, double_scratch);
106 
107     // Retrieve and restore the FCSR.
108     __ cfc1(scratch, FCSR);
109     __ ctc1(scratch2, FCSR);
110 
111     // Check for overflow and NaNs.
112     __ And(
113         scratch, scratch,
114         kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
115            | kFCSRInvalidOpFlagMask);
116     // If we had no exceptions then set result_reg and we are done.
117     Label error;
118     __ Branch(&error, ne, scratch, Operand(zero_reg));
119     __ Move(result_reg, scratch3);
120     __ Branch(&done);
121     __ bind(&error);
122   }
123 
124   // Load the double value and perform a manual truncation.
125   Register input_high = scratch2;
126   Register input_low = scratch3;
127 
128   __ lw(input_low,
129       MemOperand(input_reg, double_offset + Register::kMantissaOffset));
130   __ lw(input_high,
131       MemOperand(input_reg, double_offset + Register::kExponentOffset));
132 
133   Label normal_exponent, restore_sign;
134   // Extract the biased exponent in result.
135   __ Ext(result_reg,
136          input_high,
137          HeapNumber::kExponentShift,
138          HeapNumber::kExponentBits);
139 
140   // Check for Infinity and NaNs, which should return 0.
141   __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
142   __ Movz(result_reg, zero_reg, scratch);
143   __ Branch(&done, eq, scratch, Operand(zero_reg));
144 
145   // Express exponent as delta to (number of mantissa bits + 31).
146   __ Subu(result_reg,
147           result_reg,
148           Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
149 
150   // If the delta is strictly positive, all bits would be shifted away,
151   // which means that we can return 0.
152   __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
153   __ mov(result_reg, zero_reg);
154   __ Branch(&done);
155 
156   __ bind(&normal_exponent);
157   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
158   // Calculate shift.
159   __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
160 
161   // Save the sign.
162   Register sign = result_reg;
163   result_reg = no_reg;
164   __ And(sign, input_high, Operand(HeapNumber::kSignMask));
165 
166   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
167   // to check for this specific case.
168   Label high_shift_needed, high_shift_done;
169   __ Branch(&high_shift_needed, lt, scratch, Operand(32));
170   __ mov(input_high, zero_reg);
171   __ Branch(&high_shift_done);
172   __ bind(&high_shift_needed);
173 
174   // Set the implicit 1 before the mantissa part in input_high.
175   __ Or(input_high,
176         input_high,
177         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
178   // Shift the mantissa bits to the correct position.
179   // We don't need to clear non-mantissa bits as they will be shifted away.
180   // If they weren't, it would mean that the answer is in the 32bit range.
181   __ sllv(input_high, input_high, scratch);
182 
183   __ bind(&high_shift_done);
184 
185   // Replace the shifted bits with bits from the lower mantissa word.
186   Label pos_shift, shift_done;
187   __ li(at, 32);
188   __ subu(scratch, at, scratch);
189   __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
190 
191   // Negate scratch.
192   __ Subu(scratch, zero_reg, scratch);
193   __ sllv(input_low, input_low, scratch);
194   __ Branch(&shift_done);
195 
196   __ bind(&pos_shift);
197   __ srlv(input_low, input_low, scratch);
198 
199   __ bind(&shift_done);
200   __ Or(input_high, input_high, Operand(input_low));
201   // Restore sign if necessary.
202   __ mov(scratch, sign);
203   result_reg = sign;
204   sign = no_reg;
205   __ Subu(result_reg, zero_reg, input_high);
206   __ Movz(result_reg, input_high, scratch);
207 
208   __ bind(&done);
209 
210   __ Pop(scratch, scratch2, scratch3);
211   __ Ret();
212 }
213 
214 
215 // Handle the case where the lhs and rhs are the same object.
216 // Equality is almost reflexive (everything but NaN), so this is a test
217 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cc)218 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
219                                           Condition cc) {
220   Label not_identical;
221   Label heap_number, return_equal;
222   Register exp_mask_reg = t5;
223 
224   __ Branch(&not_identical, ne, a0, Operand(a1));
225 
226   __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
227 
228   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
229   // so we do the second best thing - test it ourselves.
230   // They are both equal and they are not both Smis so both of them are not
231   // Smis. If it's not a heap number, then return equal.
232   __ GetObjectType(a0, t4, t4);
233   if (cc == less || cc == greater) {
234     // Call runtime on identical JSObjects.
235     __ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE));
236     // Call runtime on identical symbols since we need to throw a TypeError.
237     __ Branch(slow, eq, t4, Operand(SYMBOL_TYPE));
238   } else {
239     __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
240     // Comparing JS objects with <=, >= is complicated.
241     if (cc != eq) {
242       __ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE));
243       // Call runtime on identical symbols since we need to throw a TypeError.
244       __ Branch(slow, eq, t4, Operand(SYMBOL_TYPE));
245       // Normally here we fall through to return_equal, but undefined is
246       // special: (undefined == undefined) == true, but
247       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
248       if (cc == less_equal || cc == greater_equal) {
249         __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
250         __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
251         __ Branch(&return_equal, ne, a0, Operand(t2));
252         DCHECK(is_int16(GREATER) && is_int16(LESS));
253         __ Ret(USE_DELAY_SLOT);
254         if (cc == le) {
255           // undefined <= undefined should fail.
256           __ li(v0, Operand(GREATER));
257         } else  {
258           // undefined >= undefined should fail.
259           __ li(v0, Operand(LESS));
260         }
261       }
262     }
263   }
264 
265   __ bind(&return_equal);
266   DCHECK(is_int16(GREATER) && is_int16(LESS));
267   __ Ret(USE_DELAY_SLOT);
268   if (cc == less) {
269     __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
270   } else if (cc == greater) {
271     __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
272   } else {
273     __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
274   }
275 
276   // For less and greater we don't have to check for NaN since the result of
277   // x < x is false regardless.  For the others here is some code to check
278   // for NaN.
279   if (cc != lt && cc != gt) {
280     __ bind(&heap_number);
281     // It is a heap number, so return non-equal if it's NaN and equal if it's
282     // not NaN.
283 
284     // The representation of NaN values has all exponent bits (52..62) set,
285     // and not all mantissa bits (0..51) clear.
286     // Read top bits of double representation (second word of value).
287     __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
288     // Test that exponent bits are all set.
289     __ And(t3, t2, Operand(exp_mask_reg));
290     // If all bits not set (ne cond), then not a NaN, objects are equal.
291     __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
292 
293     // Shift out flag and all exponent bits, retaining only mantissa.
294     __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
295     // Or with all low-bits of mantissa.
296     __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
297     __ Or(v0, t3, Operand(t2));
298     // For equal we already have the right value in v0:  Return zero (equal)
299     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
300     // not (it's a NaN).  For <= and >= we need to load v0 with the failing
301     // value if it's a NaN.
302     if (cc != eq) {
303       // All-zero means Infinity means equal.
304       __ Ret(eq, v0, Operand(zero_reg));
305       DCHECK(is_int16(GREATER) && is_int16(LESS));
306       __ Ret(USE_DELAY_SLOT);
307       if (cc == le) {
308         __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
309       } else {
310         __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
311       }
312     }
313   }
314   // No fall through here.
315 
316   __ bind(&not_identical);
317 }
318 
319 
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * slow,bool strict)320 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
321                                     Register lhs,
322                                     Register rhs,
323                                     Label* both_loaded_as_doubles,
324                                     Label* slow,
325                                     bool strict) {
326   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
327          (lhs.is(a1) && rhs.is(a0)));
328 
329   Label lhs_is_smi;
330   __ JumpIfSmi(lhs, &lhs_is_smi);
331   // Rhs is a Smi.
332   // Check whether the non-smi is a heap number.
333   __ GetObjectType(lhs, t4, t4);
334   if (strict) {
335     // If lhs was not a number and rhs was a Smi then strict equality cannot
336     // succeed. Return non-equal (lhs is already not zero).
337     __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
338     __ mov(v0, lhs);
339   } else {
340     // Smi compared non-strictly with a non-Smi non-heap-number. Call
341     // the runtime.
342     __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
343   }
344 
345   // Rhs is a smi, lhs is a number.
346   // Convert smi rhs to double.
347   __ sra(at, rhs, kSmiTagSize);
348   __ mtc1(at, f14);
349   __ cvt_d_w(f14, f14);
350   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
351 
352   // We now have both loaded as doubles.
353   __ jmp(both_loaded_as_doubles);
354 
355   __ bind(&lhs_is_smi);
356   // Lhs is a Smi.  Check whether the non-smi is a heap number.
357   __ GetObjectType(rhs, t4, t4);
358   if (strict) {
359     // If lhs was not a number and rhs was a Smi then strict equality cannot
360     // succeed. Return non-equal.
361     __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
362     __ li(v0, Operand(1));
363   } else {
364     // Smi compared non-strictly with a non-Smi non-heap-number. Call
365     // the runtime.
366     __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
367   }
368 
369   // Lhs is a smi, rhs is a number.
370   // Convert smi lhs to double.
371   __ sra(at, lhs, kSmiTagSize);
372   __ mtc1(at, f12);
373   __ cvt_d_w(f12, f12);
374   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
375   // Fall through to both_loaded_as_doubles.
376 }
377 
378 
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)379 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
380                                            Register lhs,
381                                            Register rhs) {
382     // If either operand is a JS object or an oddball value, then they are
383     // not equal since their pointers are different.
384     // There is no test for undetectability in strict equality.
385     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
386     Label first_non_object;
387     // Get the type of the first operand into a2 and compare it with
388     // FIRST_JS_RECEIVER_TYPE.
389     __ GetObjectType(lhs, a2, a2);
390     __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
391 
392     // Return non-zero.
393     Label return_not_equal;
394     __ bind(&return_not_equal);
395     __ Ret(USE_DELAY_SLOT);
396     __ li(v0, Operand(1));
397 
398     __ bind(&first_non_object);
399     // Check for oddballs: true, false, null, undefined.
400     __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
401 
402     __ GetObjectType(rhs, a3, a3);
403     __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
404 
405     // Check for oddballs: true, false, null, undefined.
406     __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
407 
408     // Now that we have the types we might as well check for
409     // internalized-internalized.
410     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
411     __ Or(a2, a2, Operand(a3));
412     __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
413     __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
414 }
415 
416 
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)417 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
418                                        Register lhs,
419                                        Register rhs,
420                                        Label* both_loaded_as_doubles,
421                                        Label* not_heap_numbers,
422                                        Label* slow) {
423   __ GetObjectType(lhs, a3, a2);
424   __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
425   __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
426   // If first was a heap number & second wasn't, go to slow case.
427   __ Branch(slow, ne, a3, Operand(a2));
428 
429   // Both are heap numbers. Load them up then jump to the code we have
430   // for that.
431   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
432   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
433 
434   __ jmp(both_loaded_as_doubles);
435 }
436 
437 
438 // Fast negative check for internalized-to-internalized equality.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * runtime_call)439 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
440                                                      Register lhs, Register rhs,
441                                                      Label* possible_strings,
442                                                      Label* runtime_call) {
443   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
444          (lhs.is(a1) && rhs.is(a0)));
445 
446   // a2 is object type of rhs.
447   Label object_test, return_equal, return_unequal, undetectable;
448   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
449   __ And(at, a2, Operand(kIsNotStringMask));
450   __ Branch(&object_test, ne, at, Operand(zero_reg));
451   __ And(at, a2, Operand(kIsNotInternalizedMask));
452   __ Branch(possible_strings, ne, at, Operand(zero_reg));
453   __ GetObjectType(rhs, a3, a3);
454   __ Branch(runtime_call, ge, a3, Operand(FIRST_NONSTRING_TYPE));
455   __ And(at, a3, Operand(kIsNotInternalizedMask));
456   __ Branch(possible_strings, ne, at, Operand(zero_reg));
457 
458   // Both are internalized. We already checked they weren't the same pointer so
459   // they are not equal. Return non-equal by returning the non-zero object
460   // pointer in v0.
461   __ Ret(USE_DELAY_SLOT);
462   __ mov(v0, a0);  // In delay slot.
463 
464   __ bind(&object_test);
465   __ lw(a2, FieldMemOperand(lhs, HeapObject::kMapOffset));
466   __ lw(a3, FieldMemOperand(rhs, HeapObject::kMapOffset));
467   __ lbu(t0, FieldMemOperand(a2, Map::kBitFieldOffset));
468   __ lbu(t1, FieldMemOperand(a3, Map::kBitFieldOffset));
469   __ And(at, t0, Operand(1 << Map::kIsUndetectable));
470   __ Branch(&undetectable, ne, at, Operand(zero_reg));
471   __ And(at, t1, Operand(1 << Map::kIsUndetectable));
472   __ Branch(&return_unequal, ne, at, Operand(zero_reg));
473 
474   __ GetInstanceType(a2, a2);
475   __ Branch(runtime_call, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
476   __ GetInstanceType(a3, a3);
477   __ Branch(runtime_call, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
478 
479   __ bind(&return_unequal);
480   // Return non-equal by returning the non-zero object pointer in v0.
481   __ Ret(USE_DELAY_SLOT);
482   __ mov(v0, a0);  // In delay slot.
483 
484   __ bind(&undetectable);
485   __ And(at, t1, Operand(1 << Map::kIsUndetectable));
486   __ Branch(&return_unequal, eq, at, Operand(zero_reg));
487 
488   // If both sides are JSReceivers, then the result is false according to
489   // the HTML specification, which says that only comparisons with null or
490   // undefined are affected by special casing for document.all.
491   __ GetInstanceType(a2, a2);
492   __ Branch(&return_equal, eq, a2, Operand(ODDBALL_TYPE));
493   __ GetInstanceType(a3, a3);
494   __ Branch(&return_unequal, ne, a3, Operand(ODDBALL_TYPE));
495 
496   __ bind(&return_equal);
497   __ Ret(USE_DELAY_SLOT);
498   __ li(v0, Operand(EQUAL));  // In delay slot.
499 }
500 
501 
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)502 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
503                                          Register scratch,
504                                          CompareICState::State expected,
505                                          Label* fail) {
506   Label ok;
507   if (expected == CompareICState::SMI) {
508     __ JumpIfNotSmi(input, fail);
509   } else if (expected == CompareICState::NUMBER) {
510     __ JumpIfSmi(input, &ok);
511     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
512                 DONT_DO_SMI_CHECK);
513   }
514   // We could be strict about internalized/string here, but as long as
515   // hydrogen doesn't care, the stub doesn't have to care either.
516   __ bind(&ok);
517 }
518 
519 
520 // On entry a1 and a2 are the values to be compared.
521 // On exit a0 is 0, positive or negative to indicate the result of
522 // the comparison.
GenerateGeneric(MacroAssembler * masm)523 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
524   Register lhs = a1;
525   Register rhs = a0;
526   Condition cc = GetCondition();
527 
528   Label miss;
529   CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
530   CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
531 
532   Label slow;  // Call builtin.
533   Label not_smis, both_loaded_as_doubles;
534 
535   Label not_two_smis, smi_done;
536   __ Or(a2, a1, a0);
537   __ JumpIfNotSmi(a2, &not_two_smis);
538   __ sra(a1, a1, 1);
539   __ sra(a0, a0, 1);
540   __ Ret(USE_DELAY_SLOT);
541   __ subu(v0, a1, a0);
542   __ bind(&not_two_smis);
543 
544   // NOTICE! This code is only reached after a smi-fast-case check, so
545   // it is certain that at least one operand isn't a smi.
546 
547   // Handle the case where the objects are identical.  Either returns the answer
548   // or goes to slow.  Only falls through if the objects were not identical.
549   EmitIdenticalObjectComparison(masm, &slow, cc);
550 
551   // If either is a Smi (we know that not both are), then they can only
552   // be strictly equal if the other is a HeapNumber.
553   STATIC_ASSERT(kSmiTag == 0);
554   DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
555   __ And(t2, lhs, Operand(rhs));
556   __ JumpIfNotSmi(t2, &not_smis, t0);
557   // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
558   // 1) Return the answer.
559   // 2) Go to slow.
560   // 3) Fall through to both_loaded_as_doubles.
561   // 4) Jump to rhs_not_nan.
562   // In cases 3 and 4 we have found out we were dealing with a number-number
563   // comparison and the numbers have been loaded into f12 and f14 as doubles,
564   // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
565   EmitSmiNonsmiComparison(masm, lhs, rhs,
566                           &both_loaded_as_doubles, &slow, strict());
567 
568   __ bind(&both_loaded_as_doubles);
569   // f12, f14 are the double representations of the left hand side
570   // and the right hand side if we have FPU. Otherwise a2, a3 represent
571   // left hand side and a0, a1 represent right hand side.
572   Label nan;
573   __ li(t0, Operand(LESS));
574   __ li(t1, Operand(GREATER));
575   __ li(t2, Operand(EQUAL));
576 
577   // Check if either rhs or lhs is NaN.
578   __ BranchF(NULL, &nan, eq, f12, f14);
579 
580   // Check if LESS condition is satisfied. If true, move conditionally
581   // result to v0.
582   if (!IsMipsArchVariant(kMips32r6)) {
583     __ c(OLT, D, f12, f14);
584     __ Movt(v0, t0);
585     // Use previous check to store conditionally to v0 oposite condition
586     // (GREATER). If rhs is equal to lhs, this will be corrected in next
587     // check.
588     __ Movf(v0, t1);
589     // Check if EQUAL condition is satisfied. If true, move conditionally
590     // result to v0.
591     __ c(EQ, D, f12, f14);
592     __ Movt(v0, t2);
593   } else {
594     Label skip;
595     __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
596     __ mov(v0, t0);  // Return LESS as result.
597 
598     __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
599     __ mov(v0, t2);  // Return EQUAL as result.
600 
601     __ mov(v0, t1);  // Return GREATER as result.
602     __ bind(&skip);
603   }
604 
605   __ Ret();
606 
607   __ bind(&nan);
608   // NaN comparisons always fail.
609   // Load whatever we need in v0 to make the comparison fail.
610   DCHECK(is_int16(GREATER) && is_int16(LESS));
611   __ Ret(USE_DELAY_SLOT);
612   if (cc == lt || cc == le) {
613     __ li(v0, Operand(GREATER));
614   } else {
615     __ li(v0, Operand(LESS));
616   }
617 
618 
619   __ bind(&not_smis);
620   // At this point we know we are dealing with two different objects,
621   // and neither of them is a Smi. The objects are in lhs_ and rhs_.
622   if (strict()) {
623     // This returns non-equal for some object types, or falls through if it
624     // was not lucky.
625     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
626   }
627 
628   Label check_for_internalized_strings;
629   Label flat_string_check;
630   // Check for heap-number-heap-number comparison. Can jump to slow case,
631   // or load both doubles and jump to the code that handles
632   // that case. If the inputs are not doubles then jumps to
633   // check_for_internalized_strings.
634   // In this case a2 will contain the type of lhs_.
635   EmitCheckForTwoHeapNumbers(masm,
636                              lhs,
637                              rhs,
638                              &both_loaded_as_doubles,
639                              &check_for_internalized_strings,
640                              &flat_string_check);
641 
642   __ bind(&check_for_internalized_strings);
643   if (cc == eq && !strict()) {
644     // Returns an answer for two internalized strings or two
645     // detectable objects.
646     // Otherwise jumps to string case or not both strings case.
647     // Assumes that a2 is the type of lhs_ on entry.
648     EmitCheckForInternalizedStringsOrObjects(
649         masm, lhs, rhs, &flat_string_check, &slow);
650   }
651 
652   // Check for both being sequential one-byte strings,
653   // and inline if that is the case.
654   __ bind(&flat_string_check);
655 
656   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
657 
658   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
659                       a3);
660   if (cc == eq) {
661     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, t0);
662   } else {
663     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, t0,
664                                                     t1);
665   }
666   // Never falls through to here.
667 
668   __ bind(&slow);
669   if (cc == eq) {
670     {
671       FrameScope scope(masm, StackFrame::INTERNAL);
672       __ Push(cp);
673       __ Call(strict() ? isolate()->builtins()->StrictEqual()
674                        : isolate()->builtins()->Equal(),
675               RelocInfo::CODE_TARGET);
676       __ Pop(cp);
677     }
678     // Turn true into 0 and false into some non-zero value.
679     STATIC_ASSERT(EQUAL == 0);
680     __ LoadRoot(a0, Heap::kTrueValueRootIndex);
681     __ Ret(USE_DELAY_SLOT);
682     __ subu(v0, v0, a0);  // In delay slot.
683   } else {
684     // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
685     // a1 (rhs) second.
686     __ Push(lhs, rhs);
687     int ncr;  // NaN compare result.
688     if (cc == lt || cc == le) {
689       ncr = GREATER;
690     } else {
691       DCHECK(cc == gt || cc == ge);  // Remaining cases.
692       ncr = LESS;
693     }
694     __ li(a0, Operand(Smi::FromInt(ncr)));
695     __ push(a0);
696 
697     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
698     // tagged as a small integer.
699     __ TailCallRuntime(Runtime::kCompare);
700   }
701 
702   __ bind(&miss);
703   GenerateMiss(masm);
704 }
705 
706 
Generate(MacroAssembler * masm)707 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
708   __ mov(t9, ra);
709   __ pop(ra);
710   __ PushSafepointRegisters();
711   __ Jump(t9);
712 }
713 
714 
Generate(MacroAssembler * masm)715 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
716   __ mov(t9, ra);
717   __ pop(ra);
718   __ PopSafepointRegisters();
719   __ Jump(t9);
720 }
721 
722 
Generate(MacroAssembler * masm)723 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
724   // We don't allow a GC during a store buffer overflow so there is no need to
725   // store the registers in any particular way, but we do have to store and
726   // restore them.
727   __ MultiPush(kJSCallerSaved | ra.bit());
728   if (save_doubles()) {
729     __ MultiPushFPU(kCallerSavedFPU);
730   }
731   const int argument_count = 1;
732   const int fp_argument_count = 0;
733   const Register scratch = a1;
734 
735   AllowExternalCallThatCantCauseGC scope(masm);
736   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
737   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
738   __ CallCFunction(
739       ExternalReference::store_buffer_overflow_function(isolate()),
740       argument_count);
741   if (save_doubles()) {
742     __ MultiPopFPU(kCallerSavedFPU);
743   }
744 
745   __ MultiPop(kJSCallerSaved | ra.bit());
746   __ Ret();
747 }
748 
749 
Generate(MacroAssembler * masm)750 void MathPowStub::Generate(MacroAssembler* masm) {
751   const Register exponent = MathPowTaggedDescriptor::exponent();
752   DCHECK(exponent.is(a2));
753   const DoubleRegister double_base = f2;
754   const DoubleRegister double_exponent = f4;
755   const DoubleRegister double_result = f0;
756   const DoubleRegister double_scratch = f6;
757   const FPURegister single_scratch = f8;
758   const Register scratch = t5;
759   const Register scratch2 = t3;
760 
761   Label call_runtime, done, int_exponent;
762   if (exponent_type() == TAGGED) {
763     // Base is already in double_base.
764     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
765 
766     __ ldc1(double_exponent,
767             FieldMemOperand(exponent, HeapNumber::kValueOffset));
768   }
769 
770   if (exponent_type() != INTEGER) {
771     Label int_exponent_convert;
772     // Detect integer exponents stored as double.
773     __ EmitFPUTruncate(kRoundToMinusInf,
774                        scratch,
775                        double_exponent,
776                        at,
777                        double_scratch,
778                        scratch2,
779                        kCheckForInexactConversion);
780     // scratch2 == 0 means there was no conversion error.
781     __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
782 
783     __ push(ra);
784     {
785       AllowExternalCallThatCantCauseGC scope(masm);
786       __ PrepareCallCFunction(0, 2, scratch2);
787       __ MovToFloatParameters(double_base, double_exponent);
788       __ CallCFunction(
789           ExternalReference::power_double_double_function(isolate()),
790           0, 2);
791     }
792     __ pop(ra);
793     __ MovFromFloatResult(double_result);
794     __ jmp(&done);
795 
796     __ bind(&int_exponent_convert);
797   }
798 
799   // Calculate power with integer exponent.
800   __ bind(&int_exponent);
801 
802   // Get two copies of exponent in the registers scratch and exponent.
803   if (exponent_type() == INTEGER) {
804     __ mov(scratch, exponent);
805   } else {
806     // Exponent has previously been stored into scratch as untagged integer.
807     __ mov(exponent, scratch);
808   }
809 
810   __ mov_d(double_scratch, double_base);  // Back up base.
811   __ Move(double_result, 1.0);
812 
813   // Get absolute value of exponent.
814   Label positive_exponent, bail_out;
815   __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
816   __ Subu(scratch, zero_reg, scratch);
817   // Check when Subu overflows and we get negative result
818   // (happens only when input is MIN_INT).
819   __ Branch(&bail_out, gt, zero_reg, Operand(scratch));
820   __ bind(&positive_exponent);
821   __ Assert(ge, kUnexpectedNegativeValue, scratch, Operand(zero_reg));
822 
823   Label while_true, no_carry, loop_end;
824   __ bind(&while_true);
825 
826   __ And(scratch2, scratch, 1);
827 
828   __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
829   __ mul_d(double_result, double_result, double_scratch);
830   __ bind(&no_carry);
831 
832   __ sra(scratch, scratch, 1);
833 
834   __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
835   __ mul_d(double_scratch, double_scratch, double_scratch);
836 
837   __ Branch(&while_true);
838 
839   __ bind(&loop_end);
840 
841   __ Branch(&done, ge, exponent, Operand(zero_reg));
842   __ Move(double_scratch, 1.0);
843   __ div_d(double_result, double_scratch, double_result);
844   // Test whether result is zero.  Bail out to check for subnormal result.
845   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
846   __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
847 
848   // double_exponent may not contain the exponent value if the input was a
849   // smi.  We set it with exponent value before bailing out.
850   __ bind(&bail_out);
851   __ mtc1(exponent, single_scratch);
852   __ cvt_d_w(double_exponent, single_scratch);
853 
854   // Returning or bailing out.
855   __ push(ra);
856   {
857     AllowExternalCallThatCantCauseGC scope(masm);
858     __ PrepareCallCFunction(0, 2, scratch);
859     __ MovToFloatParameters(double_base, double_exponent);
860     __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
861                      0, 2);
862   }
863   __ pop(ra);
864   __ MovFromFloatResult(double_result);
865 
866   __ bind(&done);
867   __ Ret();
868 }
869 
NeedsImmovableCode()870 bool CEntryStub::NeedsImmovableCode() {
871   return true;
872 }
873 
874 
GenerateStubsAheadOfTime(Isolate * isolate)875 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
876   CEntryStub::GenerateAheadOfTime(isolate);
877   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
878   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
879   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
880   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
881   CreateWeakCellStub::GenerateAheadOfTime(isolate);
882   BinaryOpICStub::GenerateAheadOfTime(isolate);
883   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
884   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
885   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
886   StoreFastElementStub::GenerateAheadOfTime(isolate);
887 }
888 
889 
GenerateAheadOfTime(Isolate * isolate)890 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
891   StoreRegistersStateStub stub(isolate);
892   stub.GetCode();
893 }
894 
895 
GenerateAheadOfTime(Isolate * isolate)896 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
897   RestoreRegistersStateStub stub(isolate);
898   stub.GetCode();
899 }
900 
901 
GenerateFPStubs(Isolate * isolate)902 void CodeStub::GenerateFPStubs(Isolate* isolate) {
903   // Generate if not already in cache.
904   SaveFPRegsMode mode = kSaveFPRegs;
905   CEntryStub(isolate, 1, mode).GetCode();
906   StoreBufferOverflowStub(isolate, mode).GetCode();
907 }
908 
909 
GenerateAheadOfTime(Isolate * isolate)910 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
911   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
912   stub.GetCode();
913 }
914 
915 
Generate(MacroAssembler * masm)916 void CEntryStub::Generate(MacroAssembler* masm) {
917   // Called from JavaScript; parameters are on stack as if calling JS function
918   // a0: number of arguments including receiver
919   // a1: pointer to builtin function
920   // fp: frame pointer    (restored after C call)
921   // sp: stack pointer    (restored as callee's sp after C call)
922   // cp: current context  (C callee-saved)
923   //
924   // If argv_in_register():
925   // a2: pointer to the first argument
926 
927   ProfileEntryHookStub::MaybeCallEntryHook(masm);
928 
929   if (argv_in_register()) {
930     // Move argv into the correct register.
931     __ mov(s1, a2);
932   } else {
933     // Compute the argv pointer in a callee-saved register.
934     __ Lsa(s1, sp, a0, kPointerSizeLog2);
935     __ Subu(s1, s1, kPointerSize);
936   }
937 
938   // Enter the exit frame that transitions from JavaScript to C++.
939   FrameScope scope(masm, StackFrame::MANUAL);
940   __ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
941                                            ? StackFrame::BUILTIN_EXIT
942                                            : StackFrame::EXIT);
943 
944   // s0: number of arguments  including receiver (C callee-saved)
945   // s1: pointer to first argument (C callee-saved)
946   // s2: pointer to builtin function (C callee-saved)
947 
948   // Prepare arguments for C routine.
949   // a0 = argc
950   __ mov(s0, a0);
951   __ mov(s2, a1);
952 
953   // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
954   // also need to reserve the 4 argument slots on the stack.
955 
956   __ AssertStackIsAligned();
957 
958   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
959   int frame_alignment_mask = frame_alignment - 1;
960   int result_stack_size;
961   if (result_size() <= 2) {
962     // a0 = argc, a1 = argv, a2 = isolate
963     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
964     __ mov(a1, s1);
965     result_stack_size = 0;
966   } else {
967     DCHECK_EQ(3, result_size());
968     // Allocate additional space for the result.
969     result_stack_size =
970         ((result_size() * kPointerSize) + frame_alignment_mask) &
971         ~frame_alignment_mask;
972     __ Subu(sp, sp, Operand(result_stack_size));
973 
974     // a0 = hidden result argument, a1 = argc, a2 = argv, a3 = isolate.
975     __ li(a3, Operand(ExternalReference::isolate_address(isolate())));
976     __ mov(a2, s1);
977     __ mov(a1, a0);
978     __ mov(a0, sp);
979   }
980 
981   // To let the GC traverse the return address of the exit frames, we need to
982   // know where the return address is. The CEntryStub is unmovable, so
983   // we can store the address on the stack to be able to find it again and
984   // we never have to restore it, because it will not change.
985   { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
986     int kNumInstructionsToJump = 4;
987     Label find_ra;
988     // Adjust the value in ra to point to the correct return location, 2nd
989     // instruction past the real call into C code (the jalr(t9)), and push it.
990     // This is the return address of the exit frame.
991     if (kArchVariant >= kMips32r6) {
992       __ addiupc(ra, kNumInstructionsToJump + 1);
993     } else {
994       // This branch-and-link sequence is needed to find the current PC on mips
995       // before r6, saved to the ra register.
996       __ bal(&find_ra);  // bal exposes branch delay slot.
997       __ Addu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize);
998     }
999     __ bind(&find_ra);
1000 
1001     // This spot was reserved in EnterExitFrame.
1002     __ sw(ra, MemOperand(sp, result_stack_size));
1003     // Stack space reservation moved to the branch delay slot below.
1004     // Stack is still aligned.
1005 
1006     // Call the C routine.
1007     __ mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
1008     __ jalr(t9);
1009     // Set up sp in the delay slot.
1010     __ addiu(sp, sp, -kCArgsSlotsSize);
1011     // Make sure the stored 'ra' points to this position.
1012     DCHECK_EQ(kNumInstructionsToJump,
1013               masm->InstructionsGeneratedSince(&find_ra));
1014   }
1015   if (result_size() > 2) {
1016     DCHECK_EQ(3, result_size());
1017     // Read result values stored on stack.
1018     __ lw(a0, MemOperand(v0, 2 * kPointerSize));
1019     __ lw(v1, MemOperand(v0, 1 * kPointerSize));
1020     __ lw(v0, MemOperand(v0, 0 * kPointerSize));
1021   }
1022   // Result returned in v0, v1:v0 or a0:v1:v0 - do not destroy these registers!
1023 
1024   // Check result for exception sentinel.
1025   Label exception_returned;
1026   __ LoadRoot(t0, Heap::kExceptionRootIndex);
1027   __ Branch(&exception_returned, eq, t0, Operand(v0));
1028 
1029   // Check that there is no pending exception, otherwise we
1030   // should have returned the exception sentinel.
1031   if (FLAG_debug_code) {
1032     Label okay;
1033     ExternalReference pending_exception_address(
1034         Isolate::kPendingExceptionAddress, isolate());
1035     __ li(a2, Operand(pending_exception_address));
1036     __ lw(a2, MemOperand(a2));
1037     __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
1038     // Cannot use check here as it attempts to generate call into runtime.
1039     __ Branch(&okay, eq, t0, Operand(a2));
1040     __ stop("Unexpected pending exception");
1041     __ bind(&okay);
1042   }
1043 
1044   // Exit C frame and return.
1045   // v0:v1: result
1046   // sp: stack pointer
1047   // fp: frame pointer
1048   Register argc;
1049   if (argv_in_register()) {
1050     // We don't want to pop arguments so set argc to no_reg.
1051     argc = no_reg;
1052   } else {
1053     // s0: still holds argc (callee-saved).
1054     argc = s0;
1055   }
1056   __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
1057 
1058   // Handling of exception.
1059   __ bind(&exception_returned);
1060 
1061   ExternalReference pending_handler_context_address(
1062       Isolate::kPendingHandlerContextAddress, isolate());
1063   ExternalReference pending_handler_code_address(
1064       Isolate::kPendingHandlerCodeAddress, isolate());
1065   ExternalReference pending_handler_offset_address(
1066       Isolate::kPendingHandlerOffsetAddress, isolate());
1067   ExternalReference pending_handler_fp_address(
1068       Isolate::kPendingHandlerFPAddress, isolate());
1069   ExternalReference pending_handler_sp_address(
1070       Isolate::kPendingHandlerSPAddress, isolate());
1071 
1072   // Ask the runtime for help to determine the handler. This will set v0 to
1073   // contain the current pending exception, don't clobber it.
1074   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1075                                  isolate());
1076   {
1077     FrameScope scope(masm, StackFrame::MANUAL);
1078     __ PrepareCallCFunction(3, 0, a0);
1079     __ mov(a0, zero_reg);
1080     __ mov(a1, zero_reg);
1081     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1082     __ CallCFunction(find_handler, 3);
1083   }
1084 
1085   // Retrieve the handler context, SP and FP.
1086   __ li(cp, Operand(pending_handler_context_address));
1087   __ lw(cp, MemOperand(cp));
1088   __ li(sp, Operand(pending_handler_sp_address));
1089   __ lw(sp, MemOperand(sp));
1090   __ li(fp, Operand(pending_handler_fp_address));
1091   __ lw(fp, MemOperand(fp));
1092 
1093   // If the handler is a JS frame, restore the context to the frame. Note that
1094   // the context will be set to (cp == 0) for non-JS frames.
1095   Label zero;
1096   __ Branch(&zero, eq, cp, Operand(zero_reg));
1097   __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1098   __ bind(&zero);
1099 
1100   // Compute the handler entry address and jump to it.
1101   __ li(a1, Operand(pending_handler_code_address));
1102   __ lw(a1, MemOperand(a1));
1103   __ li(a2, Operand(pending_handler_offset_address));
1104   __ lw(a2, MemOperand(a2));
1105   __ Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
1106   __ Addu(t9, a1, a2);
1107   __ Jump(t9);
1108 }
1109 
1110 
Generate(MacroAssembler * masm)1111 void JSEntryStub::Generate(MacroAssembler* masm) {
1112   Label invoke, handler_entry, exit;
1113   Isolate* isolate = masm->isolate();
1114 
1115   // Registers:
1116   // a0: entry address
1117   // a1: function
1118   // a2: receiver
1119   // a3: argc
1120   //
1121   // Stack:
1122   // 4 args slots
1123   // args
1124 
1125   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1126 
1127   // Save callee saved registers on the stack.
1128   __ MultiPush(kCalleeSaved | ra.bit());
1129 
1130   // Save callee-saved FPU registers.
1131   __ MultiPushFPU(kCalleeSavedFPU);
1132   // Set up the reserved register for 0.0.
1133   __ Move(kDoubleRegZero, 0.0);
1134 
1135 
1136   // Load argv in s0 register.
1137   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1138   offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
1139 
1140   __ InitializeRootRegister();
1141   __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
1142 
1143   // We build an EntryFrame.
1144   __ li(t3, Operand(-1));  // Push a bad frame pointer to fail if it is used.
1145   StackFrame::Type marker = type();
1146   __ li(t2, Operand(StackFrame::TypeToMarker(marker)));
1147   __ li(t1, Operand(StackFrame::TypeToMarker(marker)));
1148   __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1149                                       isolate)));
1150   __ lw(t0, MemOperand(t0));
1151   __ Push(t3, t2, t1, t0);
1152   // Set up frame pointer for the frame to be pushed.
1153   __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1154 
1155   // Registers:
1156   // a0: entry_address
1157   // a1: function
1158   // a2: receiver_pointer
1159   // a3: argc
1160   // s0: argv
1161   //
1162   // Stack:
1163   // caller fp          |
1164   // function slot      | entry frame
1165   // context slot       |
1166   // bad fp (0xff...f)  |
1167   // callee saved registers + ra
1168   // 4 args slots
1169   // args
1170 
1171   // If this is the outermost JS call, set js_entry_sp value.
1172   Label non_outermost_js;
1173   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1174   __ li(t1, Operand(ExternalReference(js_entry_sp)));
1175   __ lw(t2, MemOperand(t1));
1176   __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
1177   __ sw(fp, MemOperand(t1));
1178   __ li(t0, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1179   Label cont;
1180   __ b(&cont);
1181   __ nop();   // Branch delay slot nop.
1182   __ bind(&non_outermost_js);
1183   __ li(t0, Operand(StackFrame::INNER_JSENTRY_FRAME));
1184   __ bind(&cont);
1185   __ push(t0);
1186 
1187   // Jump to a faked try block that does the invoke, with a faked catch
1188   // block that sets the pending exception.
1189   __ jmp(&invoke);
1190   __ bind(&handler_entry);
1191   handler_offset_ = handler_entry.pos();
1192   // Caught exception: Store result (exception) in the pending exception
1193   // field in the JSEnv and return a failure sentinel.  Coming in here the
1194   // fp will be invalid because the PushStackHandler below sets it to 0 to
1195   // signal the existence of the JSEntry frame.
1196   __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1197                                       isolate)));
1198   __ sw(v0, MemOperand(t0));  // We come back from 'invoke'. result is in v0.
1199   __ LoadRoot(v0, Heap::kExceptionRootIndex);
1200   __ b(&exit);  // b exposes branch delay slot.
1201   __ nop();   // Branch delay slot nop.
1202 
1203   // Invoke: Link this frame into the handler chain.
1204   __ bind(&invoke);
1205   __ PushStackHandler();
1206   // If an exception not caught by another handler occurs, this handler
1207   // returns control to the code after the bal(&invoke) above, which
1208   // restores all kCalleeSaved registers (including cp and fp) to their
1209   // saved values before returning a failure to C.
1210 
1211   // Invoke the function by calling through JS entry trampoline builtin.
1212   // Notice that we cannot store a reference to the trampoline code directly in
1213   // this stub, because runtime stubs are not traversed when doing GC.
1214 
1215   // Registers:
1216   // a0: entry_address
1217   // a1: function
1218   // a2: receiver_pointer
1219   // a3: argc
1220   // s0: argv
1221   //
1222   // Stack:
1223   // handler frame
1224   // entry frame
1225   // callee saved registers + ra
1226   // 4 args slots
1227   // args
1228 
1229   if (type() == StackFrame::ENTRY_CONSTRUCT) {
1230     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1231                                       isolate);
1232     __ li(t0, Operand(construct_entry));
1233   } else {
1234     ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1235     __ li(t0, Operand(entry));
1236   }
1237   __ lw(t9, MemOperand(t0));  // Deref address.
1238 
1239   // Call JSEntryTrampoline.
1240   __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1241   __ Call(t9);
1242 
1243   // Unlink this frame from the handler chain.
1244   __ PopStackHandler();
1245 
1246   __ bind(&exit);  // v0 holds result
1247   // Check if the current stack frame is marked as the outermost JS frame.
1248   Label non_outermost_js_2;
1249   __ pop(t1);
1250   __ Branch(&non_outermost_js_2, ne, t1,
1251             Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1252   __ li(t1, Operand(ExternalReference(js_entry_sp)));
1253   __ sw(zero_reg, MemOperand(t1));
1254   __ bind(&non_outermost_js_2);
1255 
1256   // Restore the top frame descriptors from the stack.
1257   __ pop(t1);
1258   __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1259                                       isolate)));
1260   __ sw(t1, MemOperand(t0));
1261 
1262   // Reset the stack to the callee saved registers.
1263   __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1264 
1265   // Restore callee-saved fpu registers.
1266   __ MultiPopFPU(kCalleeSavedFPU);
1267 
1268   // Restore callee saved registers from the stack.
1269   __ MultiPop(kCalleeSaved | ra.bit());
1270   // Return.
1271   __ Jump(ra);
1272 }
1273 
Generate(MacroAssembler * masm)1274 void RegExpExecStub::Generate(MacroAssembler* masm) {
1275   // Just jump directly to runtime if native RegExp is not selected at compile
1276   // time or if regexp entry in generated code is turned off runtime switch or
1277   // at compilation.
1278 #ifdef V8_INTERPRETED_REGEXP
1279   __ TailCallRuntime(Runtime::kRegExpExec);
1280 #else  // V8_INTERPRETED_REGEXP
1281 
1282   // Stack frame on entry.
1283   //  sp[0]: last_match_info (expected JSArray)
1284   //  sp[4]: previous index
1285   //  sp[8]: subject string
1286   //  sp[12]: JSRegExp object
1287 
1288   const int kLastMatchInfoOffset = 0 * kPointerSize;
1289   const int kPreviousIndexOffset = 1 * kPointerSize;
1290   const int kSubjectOffset = 2 * kPointerSize;
1291   const int kJSRegExpOffset = 3 * kPointerSize;
1292 
1293   Label runtime;
1294   // Allocation of registers for this function. These are in callee save
1295   // registers and will be preserved by the call to the native RegExp code, as
1296   // this code is called using the normal C calling convention. When calling
1297   // directly from generated code the native RegExp code will not do a GC and
1298   // therefore the content of these registers are safe to use after the call.
1299   // MIPS - using s0..s2, since we are not using CEntry Stub.
1300   Register subject = s0;
1301   Register regexp_data = s1;
1302   Register last_match_info_elements = s2;
1303 
1304   // Ensure that a RegExp stack is allocated.
1305   ExternalReference address_of_regexp_stack_memory_address =
1306       ExternalReference::address_of_regexp_stack_memory_address(isolate());
1307   ExternalReference address_of_regexp_stack_memory_size =
1308       ExternalReference::address_of_regexp_stack_memory_size(isolate());
1309   __ li(a0, Operand(address_of_regexp_stack_memory_size));
1310   __ lw(a0, MemOperand(a0, 0));
1311   __ Branch(&runtime, eq, a0, Operand(zero_reg));
1312 
1313   // Check that the first argument is a JSRegExp object.
1314   __ lw(a0, MemOperand(sp, kJSRegExpOffset));
1315   STATIC_ASSERT(kSmiTag == 0);
1316   __ JumpIfSmi(a0, &runtime);
1317   __ GetObjectType(a0, a1, a1);
1318   __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
1319 
1320   // Check that the RegExp has been compiled (data contains a fixed array).
1321   __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
1322   if (FLAG_debug_code) {
1323     __ SmiTst(regexp_data, t0);
1324     __ Check(nz,
1325              kUnexpectedTypeForRegExpDataFixedArrayExpected,
1326              t0,
1327              Operand(zero_reg));
1328     __ GetObjectType(regexp_data, a0, a0);
1329     __ Check(eq,
1330              kUnexpectedTypeForRegExpDataFixedArrayExpected,
1331              a0,
1332              Operand(FIXED_ARRAY_TYPE));
1333   }
1334 
1335   // regexp_data: RegExp data (FixedArray)
1336   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1337   __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1338   __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
1339 
1340   // regexp_data: RegExp data (FixedArray)
1341   // Check that the number of captures fit in the static offsets vector buffer.
1342   __ lw(a2,
1343          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1344   // Check (number_of_captures + 1) * 2 <= offsets vector size
1345   // Or          number_of_captures * 2 <= offsets vector size - 2
1346   // Multiplying by 2 comes for free since a2 is smi-tagged.
1347   STATIC_ASSERT(kSmiTag == 0);
1348   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1349   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1350   __ Branch(
1351       &runtime, hi, a2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1352 
1353   // Reset offset for possibly sliced string.
1354   __ mov(t0, zero_reg);
1355   __ lw(subject, MemOperand(sp, kSubjectOffset));
1356   __ JumpIfSmi(subject, &runtime);
1357   __ mov(a3, subject);  // Make a copy of the original subject string.
1358   // subject: subject string
1359   // a3: subject string
1360   // regexp_data: RegExp data (FixedArray)
1361   // Handle subject string according to its encoding and representation:
1362   // (1) Sequential string?  If yes, go to (4).
1363   // (2) Sequential or cons?  If not, go to (5).
1364   // (3) Cons string.  If the string is flat, replace subject with first string
1365   //     and go to (1). Otherwise bail out to runtime.
1366   // (4) Sequential string.  Load regexp code according to encoding.
1367   // (E) Carry on.
1368   /// [...]
1369 
1370   // Deferred code at the end of the stub:
1371   // (5) Long external string?  If not, go to (7).
1372   // (6) External string.  Make it, offset-wise, look like a sequential string.
1373   //     Go to (4).
1374   // (7) Short external string or not a string?  If yes, bail out to runtime.
1375   // (8) Sliced or thin string.  Replace subject with parent.  Go to (1).
1376 
1377   Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1378       not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
1379 
1380   __ bind(&check_underlying);
1381   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
1382   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
1383 
1384   // (1) Sequential string?  If yes, go to (4).
1385   __ And(a1,
1386          a0,
1387          Operand(kIsNotStringMask |
1388                  kStringRepresentationMask |
1389                  kShortExternalStringMask));
1390   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1391   __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (5).
1392 
1393   // (2) Sequential or cons?  If not, go to (5).
1394   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1395   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1396   STATIC_ASSERT(kThinStringTag > kExternalStringTag);
1397   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1398   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1399   // Go to (5).
1400   __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
1401 
1402   // (3) Cons string.  Check that it's flat.
1403   // Replace subject with first string and reload instance type.
1404   __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
1405   __ LoadRoot(a1, Heap::kempty_stringRootIndex);
1406   __ Branch(&runtime, ne, a0, Operand(a1));
1407   __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1408   __ jmp(&check_underlying);
1409 
1410   // (4) Sequential string.  Load regexp code according to encoding.
1411   __ bind(&seq_string);
1412   // subject: sequential subject string (or look-alike, external string)
1413   // a3: original subject string
1414   // Load previous index and check range before a3 is overwritten.  We have to
1415   // use a3 instead of subject here because subject might have been only made
1416   // to look like a sequential string when it actually is an external string.
1417   __ lw(a1, MemOperand(sp, kPreviousIndexOffset));
1418   __ JumpIfNotSmi(a1, &runtime);
1419   __ lw(a3, FieldMemOperand(a3, String::kLengthOffset));
1420   __ Branch(&runtime, ls, a3, Operand(a1));
1421   __ sra(a1, a1, kSmiTagSize);  // Untag the Smi.
1422 
1423   STATIC_ASSERT(kStringEncodingMask == 8);
1424   STATIC_ASSERT(kOneByteStringTag == 8);
1425   STATIC_ASSERT(kTwoByteStringTag == 0);
1426   __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one-byte.
1427   __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1428   __ sra(a3, a0, 3);  // a3 is 1 for ASCII, 0 for UC16 (used below).
1429   __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1430   __ Movz(t9, t1, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
1431 
1432   // (E) Carry on.  String handling is done.
1433   // t9: irregexp code
1434   // Check that the irregexp code has been generated for the actual string
1435   // encoding. If it has, the field contains a code object otherwise it contains
1436   // a smi (code flushing support).
1437   __ JumpIfSmi(t9, &runtime);
1438 
1439   // a1: previous index
1440   // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
1441   // t9: code
1442   // subject: Subject string
1443   // regexp_data: RegExp data (FixedArray)
1444   // All checks done. Now push arguments for native regexp code.
1445   __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
1446                       1, a0, a2);
1447 
1448   // Isolates: note we add an additional parameter here (isolate pointer).
1449   const int kRegExpExecuteArguments = 9;
1450   const int kParameterRegisters = 4;
1451   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1452 
1453   // Stack pointer now points to cell where return address is to be written.
1454   // Arguments are before that on the stack or in registers, meaning we
1455   // treat the return address as argument 5. Thus every argument after that
1456   // needs to be shifted back by 1. Since DirectCEntryStub will handle
1457   // allocating space for the c argument slots, we don't need to calculate
1458   // that into the argument positions on the stack. This is how the stack will
1459   // look (sp meaning the value of sp at this moment):
1460   // [sp + 5] - Argument 9
1461   // [sp + 4] - Argument 8
1462   // [sp + 3] - Argument 7
1463   // [sp + 2] - Argument 6
1464   // [sp + 1] - Argument 5
1465   // [sp + 0] - saved ra
1466 
1467   // Argument 9: Pass current isolate address.
1468   // CFunctionArgumentOperand handles MIPS stack argument slots.
1469   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
1470   __ sw(a0, MemOperand(sp, 5 * kPointerSize));
1471 
1472   // Argument 8: Indicate that this is a direct call from JavaScript.
1473   __ li(a0, Operand(1));
1474   __ sw(a0, MemOperand(sp, 4 * kPointerSize));
1475 
1476   // Argument 7: Start (high end) of backtracking stack memory area.
1477   __ li(a0, Operand(address_of_regexp_stack_memory_address));
1478   __ lw(a0, MemOperand(a0, 0));
1479   __ li(a2, Operand(address_of_regexp_stack_memory_size));
1480   __ lw(a2, MemOperand(a2, 0));
1481   __ addu(a0, a0, a2);
1482   __ sw(a0, MemOperand(sp, 3 * kPointerSize));
1483 
1484   // Argument 6: Set the number of capture registers to zero to force global
1485   // regexps to behave as non-global.  This does not affect non-global regexps.
1486   __ mov(a0, zero_reg);
1487   __ sw(a0, MemOperand(sp, 2 * kPointerSize));
1488 
1489   // Argument 5: static offsets vector buffer.
1490   __ li(a0, Operand(
1491         ExternalReference::address_of_static_offsets_vector(isolate())));
1492   __ sw(a0, MemOperand(sp, 1 * kPointerSize));
1493 
1494   // For arguments 4 and 3 get string length, calculate start of string data
1495   // calculate the shift of the index (0 for one-byte and 1 for two-byte).
1496   __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1497   __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
1498   // Load the length from the original subject string from the previous stack
1499   // frame. Therefore we have to use fp, which points exactly to two pointer
1500   // sizes below the previous sp. (Because creating a new stack frame pushes
1501   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
1502   __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1503   // If slice offset is not 0, load the length from the original sliced string.
1504   // Argument 4, a3: End of string data
1505   // Argument 3, a2: Start of string data
1506   // Prepare start and end index of the input.
1507   __ sllv(t1, t0, a3);
1508   __ addu(t0, t2, t1);
1509   __ sllv(t1, a1, a3);
1510   __ addu(a2, t0, t1);
1511 
1512   __ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
1513   __ sra(t2, t2, kSmiTagSize);
1514   __ sllv(t1, t2, a3);
1515   __ addu(a3, t0, t1);
1516   // Argument 2 (a1): Previous index.
1517   // Already there
1518 
1519   // Argument 1 (a0): Subject string.
1520   __ mov(a0, subject);
1521 
1522   // Locate the code entry and call it.
1523   __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
1524   DirectCEntryStub stub(isolate());
1525   stub.GenerateCall(masm, t9);
1526 
1527   __ LeaveExitFrame(false, no_reg, true);
1528 
1529   // v0: result
1530   // subject: subject string (callee saved)
1531   // regexp_data: RegExp data (callee saved)
1532   // last_match_info_elements: Last match info elements (callee saved)
1533   // Check the result.
1534   Label success;
1535   __ Branch(&success, eq, v0, Operand(1));
1536   // We expect exactly one result since we force the called regexp to behave
1537   // as non-global.
1538   Label failure;
1539   __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
1540   // If not exception it can only be retry. Handle that in the runtime system.
1541   __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1542   // Result must now be exception. If there is no pending exception already a
1543   // stack overflow (on the backtrack stack) was detected in RegExp code but
1544   // haven't created the exception yet. Handle that in the runtime system.
1545   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1546   __ li(a1, Operand(isolate()->factory()->the_hole_value()));
1547   __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1548                                       isolate())));
1549   __ lw(v0, MemOperand(a2, 0));
1550   __ Branch(&runtime, eq, v0, Operand(a1));
1551 
1552   // For exception, throw the exception again.
1553   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1554 
1555   __ bind(&failure);
1556   // For failure and exception return null.
1557   __ li(v0, Operand(isolate()->factory()->null_value()));
1558   __ DropAndRet(4);
1559 
1560   // Process the result from the native regexp code.
1561   __ bind(&success);
1562   __ lw(a1,
1563          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1564   // Calculate number of capture registers (number_of_captures + 1) * 2.
1565   // Multiplying by 2 comes for free since r1 is smi-tagged.
1566   STATIC_ASSERT(kSmiTag == 0);
1567   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1568   __ Addu(a1, a1, Operand(2));  // a1 was a smi.
1569 
1570   // Check that the last match info is a FixedArray.
1571   __ lw(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
1572   __ JumpIfSmi(last_match_info_elements, &runtime);
1573   // Check that the object has fast elements.
1574   __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1575   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
1576   __ Branch(&runtime, ne, a0, Operand(at));
1577   // Check that the last match info has space for the capture registers and the
1578   // additional information.
1579   __ lw(a0,
1580         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1581   __ Addu(a2, a1, Operand(RegExpMatchInfo::kLastMatchOverhead));
1582   __ sra(at, a0, kSmiTagSize);
1583   __ Branch(&runtime, gt, a2, Operand(at));
1584 
1585   // a1: number of capture registers
1586   // subject: subject string
1587   // Store the capture count.
1588   __ sll(a2, a1, kSmiTagSize + kSmiShiftSize);  // To smi.
1589   __ sw(a2, FieldMemOperand(last_match_info_elements,
1590                             RegExpMatchInfo::kNumberOfCapturesOffset));
1591   // Store last subject and last input.
1592   __ sw(subject, FieldMemOperand(last_match_info_elements,
1593                                  RegExpMatchInfo::kLastSubjectOffset));
1594   __ mov(a2, subject);
1595   __ RecordWriteField(last_match_info_elements,
1596                       RegExpMatchInfo::kLastSubjectOffset, subject, t3,
1597                       kRAHasNotBeenSaved, kDontSaveFPRegs);
1598   __ mov(subject, a2);
1599   __ sw(subject, FieldMemOperand(last_match_info_elements,
1600                                  RegExpMatchInfo::kLastInputOffset));
1601   __ RecordWriteField(last_match_info_elements,
1602                       RegExpMatchInfo::kLastInputOffset, subject, t3,
1603                       kRAHasNotBeenSaved, kDontSaveFPRegs);
1604 
1605   // Get the static offsets vector filled by the native regexp code.
1606   ExternalReference address_of_static_offsets_vector =
1607       ExternalReference::address_of_static_offsets_vector(isolate());
1608   __ li(a2, Operand(address_of_static_offsets_vector));
1609 
1610   // a1: number of capture registers
1611   // a2: offsets vector
1612   Label next_capture, done;
1613   // Capture register counter starts from number of capture registers and
1614   // counts down until wrapping after zero.
1615   __ Addu(a0, last_match_info_elements,
1616           Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag));
1617   __ bind(&next_capture);
1618   __ Subu(a1, a1, Operand(1));
1619   __ Branch(&done, lt, a1, Operand(zero_reg));
1620   // Read the value from the static offsets vector buffer.
1621   __ lw(a3, MemOperand(a2, 0));
1622   __ addiu(a2, a2, kPointerSize);
1623   // Store the smi value in the last match info.
1624   __ sll(a3, a3, kSmiTagSize);  // Convert to Smi.
1625   __ sw(a3, MemOperand(a0, 0));
1626   __ Branch(&next_capture, USE_DELAY_SLOT);
1627   __ addiu(a0, a0, kPointerSize);  // In branch delay slot.
1628 
1629   __ bind(&done);
1630 
1631   // Return last match info.
1632   __ mov(v0, last_match_info_elements);
1633   __ DropAndRet(4);
1634 
1635   // Do the runtime call to execute the regexp.
1636   __ bind(&runtime);
1637   __ TailCallRuntime(Runtime::kRegExpExec);
1638 
1639   // Deferred code for string handling.
1640   // (5) Long external string?  If not, go to (7).
1641   __ bind(&not_seq_nor_cons);
1642   // Go to (7).
1643   __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
1644 
1645   // (6) External string.  Make it, offset-wise, look like a sequential string.
1646   __ bind(&external_string);
1647   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
1648   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
1649   if (FLAG_debug_code) {
1650     // Assert that we do not have a cons or slice (indirect strings) here.
1651     // Sequential strings have already been ruled out.
1652     __ And(at, a0, Operand(kIsIndirectStringMask));
1653     __ Assert(eq,
1654               kExternalStringExpectedButNotFound,
1655               at,
1656               Operand(zero_reg));
1657   }
1658   __ lw(subject,
1659         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1660   // Move the pointer so that offset-wise, it looks like a sequential string.
1661   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1662   __ Subu(subject,
1663           subject,
1664           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
1665   __ jmp(&seq_string);    // Go to (5).
1666 
1667   // (7) Short external string or not a string?  If yes, bail out to runtime.
1668   __ bind(&not_long_external);
1669   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1670   __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
1671   __ Branch(&runtime, ne, at, Operand(zero_reg));
1672 
1673   // (8) Sliced or thin string.  Replace subject with parent.  Go to (4).
1674   Label thin_string;
1675   __ Branch(&thin_string, eq, a1, Operand(kThinStringTag));
1676   // Load offset into t0 and replace subject string with parent.
1677   __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1678   __ sra(t0, t0, kSmiTagSize);
1679   __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1680   __ jmp(&check_underlying);  // Go to (4).
1681 
1682   __ bind(&thin_string);
1683   __ lw(subject, FieldMemOperand(subject, ThinString::kActualOffset));
1684   __ jmp(&check_underlying);  // Go to (4).
1685 #endif  // V8_INTERPRETED_REGEXP
1686 }
1687 
1688 
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1689 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1690   // a0 : number of arguments to the construct function
1691   // a2 : feedback vector
1692   // a3 : slot in feedback vector (Smi)
1693   // a1 : the function to call
1694   FrameScope scope(masm, StackFrame::INTERNAL);
1695   const RegList kSavedRegs = 1 << 4 |  // a0
1696                              1 << 5 |  // a1
1697                              1 << 6 |  // a2
1698                              1 << 7 |  // a3
1699                              1 << cp.code();
1700 
1701   // Number-of-arguments register must be smi-tagged to call out.
1702   __ SmiTag(a0);
1703   __ MultiPush(kSavedRegs);
1704 
1705   __ CallStub(stub);
1706 
1707   __ MultiPop(kSavedRegs);
1708   __ SmiUntag(a0);
1709 }
1710 
1711 
GenerateRecordCallTarget(MacroAssembler * masm)1712 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1713   // Cache the called function in a feedback vector slot.  Cache states
1714   // are uninitialized, monomorphic (indicated by a JSFunction), and
1715   // megamorphic.
1716   // a0 : number of arguments to the construct function
1717   // a1 : the function to call
1718   // a2 : feedback vector
1719   // a3 : slot in feedback vector (Smi)
1720   Label initialize, done, miss, megamorphic, not_array_function;
1721 
1722   DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
1723             masm->isolate()->heap()->megamorphic_symbol());
1724   DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
1725             masm->isolate()->heap()->uninitialized_symbol());
1726 
1727   // Load the cache state into t2.
1728   __ Lsa(t2, a2, a3, kPointerSizeLog2 - kSmiTagSize);
1729   __ lw(t2, FieldMemOperand(t2, FixedArray::kHeaderSize));
1730 
1731   // A monomorphic cache hit or an already megamorphic state: invoke the
1732   // function without changing the state.
1733   // We don't know if t2 is a WeakCell or a Symbol, but it's harmless to read at
1734   // this position in a symbol (see static asserts in feedback-vector.h).
1735   Label check_allocation_site;
1736   Register feedback_map = t1;
1737   Register weak_value = t4;
1738   __ lw(weak_value, FieldMemOperand(t2, WeakCell::kValueOffset));
1739   __ Branch(&done, eq, a1, Operand(weak_value));
1740   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
1741   __ Branch(&done, eq, t2, Operand(at));
1742   __ lw(feedback_map, FieldMemOperand(t2, HeapObject::kMapOffset));
1743   __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
1744   __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
1745 
1746   // If the weak cell is cleared, we have a new chance to become monomorphic.
1747   __ JumpIfSmi(weak_value, &initialize);
1748   __ jmp(&megamorphic);
1749 
1750   __ bind(&check_allocation_site);
1751   // If we came here, we need to see if we are the array function.
1752   // If we didn't have a matching function, and we didn't find the megamorph
1753   // sentinel, then we have in the slot either some other function or an
1754   // AllocationSite.
1755   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
1756   __ Branch(&miss, ne, feedback_map, Operand(at));
1757 
1758   // Make sure the function is the Array() function
1759   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2);
1760   __ Branch(&megamorphic, ne, a1, Operand(t2));
1761   __ jmp(&done);
1762 
1763   __ bind(&miss);
1764 
1765   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1766   // megamorphic.
1767   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
1768   __ Branch(&initialize, eq, t2, Operand(at));
1769   // MegamorphicSentinel is an immortal immovable object (undefined) so no
1770   // write-barrier is needed.
1771   __ bind(&megamorphic);
1772   __ Lsa(t2, a2, a3, kPointerSizeLog2 - kSmiTagSize);
1773   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
1774   __ sw(at, FieldMemOperand(t2, FixedArray::kHeaderSize));
1775   __ jmp(&done);
1776 
1777   // An uninitialized cache is patched with the function.
1778   __ bind(&initialize);
1779   // Make sure the function is the Array() function.
1780   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2);
1781   __ Branch(&not_array_function, ne, a1, Operand(t2));
1782 
1783   // The target function is the Array constructor,
1784   // Create an AllocationSite if we don't already have it, store it in the
1785   // slot.
1786   CreateAllocationSiteStub create_stub(masm->isolate());
1787   CallStubInRecordCallTarget(masm, &create_stub);
1788   __ Branch(&done);
1789 
1790   __ bind(&not_array_function);
1791   CreateWeakCellStub weak_cell_stub(masm->isolate());
1792   CallStubInRecordCallTarget(masm, &weak_cell_stub);
1793 
1794   __ bind(&done);
1795 
1796   // Increment the call count for all function calls.
1797   __ Lsa(at, a2, a3, kPointerSizeLog2 - kSmiTagSize);
1798   __ lw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
1799   __ Addu(t0, t0, Operand(Smi::FromInt(1)));
1800   __ sw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
1801 }
1802 
1803 
Generate(MacroAssembler * masm)1804 void CallConstructStub::Generate(MacroAssembler* masm) {
1805   // a0 : number of arguments
1806   // a1 : the function to call
1807   // a2 : feedback vector
1808   // a3 : slot in feedback vector (Smi, for RecordCallTarget)
1809 
1810   Label non_function;
1811   // Check that the function is not a smi.
1812   __ JumpIfSmi(a1, &non_function);
1813   // Check that the function is a JSFunction.
1814   __ GetObjectType(a1, t1, t1);
1815   __ Branch(&non_function, ne, t1, Operand(JS_FUNCTION_TYPE));
1816 
1817   GenerateRecordCallTarget(masm);
1818 
1819   __ Lsa(t1, a2, a3, kPointerSizeLog2 - kSmiTagSize);
1820   Label feedback_register_initialized;
1821   // Put the AllocationSite from the feedback vector into a2, or undefined.
1822   __ lw(a2, FieldMemOperand(t1, FixedArray::kHeaderSize));
1823   __ lw(t1, FieldMemOperand(a2, AllocationSite::kMapOffset));
1824   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
1825   __ Branch(&feedback_register_initialized, eq, t1, Operand(at));
1826   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1827   __ bind(&feedback_register_initialized);
1828 
1829   __ AssertUndefinedOrAllocationSite(a2, t1);
1830 
1831   // Pass function as new target.
1832   __ mov(a3, a1);
1833 
1834   // Tail call to the function-specific construct stub (still in the caller
1835   // context at this point).
1836   __ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1837   __ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kConstructStubOffset));
1838   __ Addu(at, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
1839   __ Jump(at);
1840 
1841   __ bind(&non_function);
1842   __ mov(a3, a1);
1843   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1844 }
1845 
1846 // StringCharCodeAtGenerator.
GenerateFast(MacroAssembler * masm)1847 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
1848   DCHECK(!t0.is(index_));
1849   DCHECK(!t0.is(result_));
1850   DCHECK(!t0.is(object_));
1851   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
1852     // If the receiver is a smi trigger the non-string case.
1853     __ JumpIfSmi(object_, receiver_not_string_);
1854 
1855     // Fetch the instance type of the receiver into result register.
1856     __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1857     __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1858     // If the receiver is not a string trigger the non-string case.
1859     __ And(t0, result_, Operand(kIsNotStringMask));
1860     __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
1861   }
1862 
1863   // If the index is non-smi trigger the non-smi case.
1864   __ JumpIfNotSmi(index_, &index_not_smi_);
1865 
1866   __ bind(&got_smi_index_);
1867 
1868   // Check for index out of range.
1869   __ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
1870   __ Branch(index_out_of_range_, ls, t0, Operand(index_));
1871 
1872   __ sra(index_, index_, kSmiTagSize);
1873 
1874   StringCharLoadGenerator::Generate(masm,
1875                                     object_,
1876                                     index_,
1877                                     result_,
1878                                     &call_runtime_);
1879 
1880   __ sll(result_, result_, kSmiTagSize);
1881   __ bind(&exit_);
1882 }
1883 
1884 
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)1885 void StringCharCodeAtGenerator::GenerateSlow(
1886     MacroAssembler* masm, EmbedMode embed_mode,
1887     const RuntimeCallHelper& call_helper) {
1888   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
1889 
1890   // Index is not a smi.
1891   __ bind(&index_not_smi_);
1892   // If index is a heap number, try converting it to an integer.
1893   __ CheckMap(index_,
1894               result_,
1895               Heap::kHeapNumberMapRootIndex,
1896               index_not_number_,
1897               DONT_DO_SMI_CHECK);
1898   call_helper.BeforeCall(masm);
1899   // Consumed by runtime conversion function:
1900   if (embed_mode == PART_OF_IC_HANDLER) {
1901     __ Push(LoadWithVectorDescriptor::VectorRegister(),
1902             LoadWithVectorDescriptor::SlotRegister(), object_, index_);
1903   } else {
1904     __ Push(object_, index_);
1905   }
1906   __ CallRuntime(Runtime::kNumberToSmi);
1907 
1908   // Save the conversion result before the pop instructions below
1909   // have a chance to overwrite it.
1910   __ Move(index_, v0);
1911   if (embed_mode == PART_OF_IC_HANDLER) {
1912     __ Pop(LoadWithVectorDescriptor::VectorRegister(),
1913            LoadWithVectorDescriptor::SlotRegister(), object_);
1914   } else {
1915     __ pop(object_);
1916   }
1917   // Reload the instance type.
1918   __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1919   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1920   call_helper.AfterCall(masm);
1921   // If index is still not a smi, it must be out of range.
1922   __ JumpIfNotSmi(index_, index_out_of_range_);
1923   // Otherwise, return to the fast path.
1924   __ Branch(&got_smi_index_);
1925 
1926   // Call runtime. We get here when the receiver is a string and the
1927   // index is a number, but the code of getting the actual character
1928   // is too complex (e.g., when the string needs to be flattened).
1929   __ bind(&call_runtime_);
1930   call_helper.BeforeCall(masm);
1931   __ sll(index_, index_, kSmiTagSize);
1932   __ Push(object_, index_);
1933   __ CallRuntime(Runtime::kStringCharCodeAtRT);
1934 
1935   __ Move(result_, v0);
1936 
1937   call_helper.AfterCall(masm);
1938   __ jmp(&exit_);
1939 
1940   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
1941 }
1942 
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)1943 void StringHelper::GenerateFlatOneByteStringEquals(
1944     MacroAssembler* masm, Register left, Register right, Register scratch1,
1945     Register scratch2, Register scratch3) {
1946   Register length = scratch1;
1947 
1948   // Compare lengths.
1949   Label strings_not_equal, check_zero_length;
1950   __ lw(length, FieldMemOperand(left, String::kLengthOffset));
1951   __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
1952   __ Branch(&check_zero_length, eq, length, Operand(scratch2));
1953   __ bind(&strings_not_equal);
1954   DCHECK(is_int16(NOT_EQUAL));
1955   __ Ret(USE_DELAY_SLOT);
1956   __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
1957 
1958   // Check if the length is zero.
1959   Label compare_chars;
1960   __ bind(&check_zero_length);
1961   STATIC_ASSERT(kSmiTag == 0);
1962   __ Branch(&compare_chars, ne, length, Operand(zero_reg));
1963   DCHECK(is_int16(EQUAL));
1964   __ Ret(USE_DELAY_SLOT);
1965   __ li(v0, Operand(Smi::FromInt(EQUAL)));
1966 
1967   // Compare characters.
1968   __ bind(&compare_chars);
1969 
1970   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
1971                                   v0, &strings_not_equal);
1972 
1973   // Characters are equal.
1974   __ Ret(USE_DELAY_SLOT);
1975   __ li(v0, Operand(Smi::FromInt(EQUAL)));
1976 }
1977 
1978 
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)1979 void StringHelper::GenerateCompareFlatOneByteStrings(
1980     MacroAssembler* masm, Register left, Register right, Register scratch1,
1981     Register scratch2, Register scratch3, Register scratch4) {
1982   Label result_not_equal, compare_lengths;
1983   // Find minimum length and length difference.
1984   __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
1985   __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
1986   __ Subu(scratch3, scratch1, Operand(scratch2));
1987   Register length_delta = scratch3;
1988   __ slt(scratch4, scratch2, scratch1);
1989   __ Movn(scratch1, scratch2, scratch4);
1990   Register min_length = scratch1;
1991   STATIC_ASSERT(kSmiTag == 0);
1992   __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
1993 
1994   // Compare loop.
1995   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
1996                                   scratch4, v0, &result_not_equal);
1997 
1998   // Compare lengths - strings up to min-length are equal.
1999   __ bind(&compare_lengths);
2000   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
2001   // Use length_delta as result if it's zero.
2002   __ mov(scratch2, length_delta);
2003   __ mov(scratch4, zero_reg);
2004   __ mov(v0, zero_reg);
2005 
2006   __ bind(&result_not_equal);
2007   // Conditionally update the result based either on length_delta or
2008   // the last comparion performed in the loop above.
2009   Label ret;
2010   __ Branch(&ret, eq, scratch2, Operand(scratch4));
2011   __ li(v0, Operand(Smi::FromInt(GREATER)));
2012   __ Branch(&ret, gt, scratch2, Operand(scratch4));
2013   __ li(v0, Operand(Smi::FromInt(LESS)));
2014   __ bind(&ret);
2015   __ Ret();
2016 }
2017 
2018 
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Register scratch3,Label * chars_not_equal)2019 void StringHelper::GenerateOneByteCharsCompareLoop(
2020     MacroAssembler* masm, Register left, Register right, Register length,
2021     Register scratch1, Register scratch2, Register scratch3,
2022     Label* chars_not_equal) {
2023   // Change index to run from -length to -1 by adding length to string
2024   // start. This means that loop ends when index reaches zero, which
2025   // doesn't need an additional compare.
2026   __ SmiUntag(length);
2027   __ Addu(scratch1, length,
2028           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2029   __ Addu(left, left, Operand(scratch1));
2030   __ Addu(right, right, Operand(scratch1));
2031   __ Subu(length, zero_reg, length);
2032   Register index = length;  // index = -length;
2033 
2034 
2035   // Compare loop.
2036   Label loop;
2037   __ bind(&loop);
2038   __ Addu(scratch3, left, index);
2039   __ lbu(scratch1, MemOperand(scratch3));
2040   __ Addu(scratch3, right, index);
2041   __ lbu(scratch2, MemOperand(scratch3));
2042   __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
2043   __ Addu(index, index, 1);
2044   __ Branch(&loop, ne, index, Operand(zero_reg));
2045 }
2046 
2047 
Generate(MacroAssembler * masm)2048 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2049   // ----------- S t a t e -------------
2050   //  -- a1    : left
2051   //  -- a0    : right
2052   //  -- ra    : return address
2053   // -----------------------------------
2054 
2055   // Load a2 with the allocation site. We stick an undefined dummy value here
2056   // and replace it with the real allocation site later when we instantiate this
2057   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2058   __ li(a2, isolate()->factory()->undefined_value());
2059 
2060   // Make sure that we actually patched the allocation site.
2061   if (FLAG_debug_code) {
2062     __ And(at, a2, Operand(kSmiTagMask));
2063     __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
2064     __ lw(t0, FieldMemOperand(a2, HeapObject::kMapOffset));
2065     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2066     __ Assert(eq, kExpectedAllocationSite, t0, Operand(at));
2067   }
2068 
2069   // Tail call into the stub that handles binary operations with allocation
2070   // sites.
2071   BinaryOpWithAllocationSiteStub stub(isolate(), state());
2072   __ TailCallStub(&stub);
2073 }
2074 
2075 
GenerateBooleans(MacroAssembler * masm)2076 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2077   DCHECK_EQ(CompareICState::BOOLEAN, state());
2078   Label miss;
2079 
2080   __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2081   __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2082   if (!Token::IsEqualityOp(op())) {
2083     __ lw(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
2084     __ AssertSmi(a1);
2085     __ lw(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
2086     __ AssertSmi(a0);
2087   }
2088   __ Ret(USE_DELAY_SLOT);
2089   __ Subu(v0, a1, a0);
2090 
2091   __ bind(&miss);
2092   GenerateMiss(masm);
2093 }
2094 
2095 
GenerateSmis(MacroAssembler * masm)2096 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2097   DCHECK(state() == CompareICState::SMI);
2098   Label miss;
2099   __ Or(a2, a1, a0);
2100   __ JumpIfNotSmi(a2, &miss);
2101 
2102   if (GetCondition() == eq) {
2103     // For equality we do not care about the sign of the result.
2104     __ Ret(USE_DELAY_SLOT);
2105     __ Subu(v0, a0, a1);
2106   } else {
2107     // Untag before subtracting to avoid handling overflow.
2108     __ SmiUntag(a1);
2109     __ SmiUntag(a0);
2110     __ Ret(USE_DELAY_SLOT);
2111     __ Subu(v0, a1, a0);
2112   }
2113 
2114   __ bind(&miss);
2115   GenerateMiss(masm);
2116 }
2117 
2118 
GenerateNumbers(MacroAssembler * masm)2119 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2120   DCHECK(state() == CompareICState::NUMBER);
2121 
2122   Label generic_stub;
2123   Label unordered, maybe_undefined1, maybe_undefined2;
2124   Label miss;
2125 
2126   if (left() == CompareICState::SMI) {
2127     __ JumpIfNotSmi(a1, &miss);
2128   }
2129   if (right() == CompareICState::SMI) {
2130     __ JumpIfNotSmi(a0, &miss);
2131   }
2132 
2133   // Inlining the double comparison and falling back to the general compare
2134   // stub if NaN is involved.
2135   // Load left and right operand.
2136   Label done, left, left_smi, right_smi;
2137   __ JumpIfSmi(a0, &right_smi);
2138   __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
2139               DONT_DO_SMI_CHECK);
2140   __ Subu(a2, a0, Operand(kHeapObjectTag));
2141   __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
2142   __ Branch(&left);
2143   __ bind(&right_smi);
2144   __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
2145   FPURegister single_scratch = f6;
2146   __ mtc1(a2, single_scratch);
2147   __ cvt_d_w(f2, single_scratch);
2148 
2149   __ bind(&left);
2150   __ JumpIfSmi(a1, &left_smi);
2151   __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
2152               DONT_DO_SMI_CHECK);
2153   __ Subu(a2, a1, Operand(kHeapObjectTag));
2154   __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
2155   __ Branch(&done);
2156   __ bind(&left_smi);
2157   __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
2158   single_scratch = f8;
2159   __ mtc1(a2, single_scratch);
2160   __ cvt_d_w(f0, single_scratch);
2161 
2162   __ bind(&done);
2163 
2164   // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
2165   Label fpu_eq, fpu_lt;
2166   // Test if equal, and also handle the unordered/NaN case.
2167   __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
2168 
2169   // Test if less (unordered case is already handled).
2170   __ BranchF(&fpu_lt, NULL, lt, f0, f2);
2171 
2172   // Otherwise it's greater, so just fall thru, and return.
2173   DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
2174   __ Ret(USE_DELAY_SLOT);
2175   __ li(v0, Operand(GREATER));
2176 
2177   __ bind(&fpu_eq);
2178   __ Ret(USE_DELAY_SLOT);
2179   __ li(v0, Operand(EQUAL));
2180 
2181   __ bind(&fpu_lt);
2182   __ Ret(USE_DELAY_SLOT);
2183   __ li(v0, Operand(LESS));
2184 
2185   __ bind(&unordered);
2186   __ bind(&generic_stub);
2187   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2188                      CompareICState::GENERIC, CompareICState::GENERIC);
2189   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2190 
2191   __ bind(&maybe_undefined1);
2192   if (Token::IsOrderedRelationalCompareOp(op())) {
2193     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2194     __ Branch(&miss, ne, a0, Operand(at));
2195     __ JumpIfSmi(a1, &unordered);
2196     __ GetObjectType(a1, a2, a2);
2197     __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
2198     __ jmp(&unordered);
2199   }
2200 
2201   __ bind(&maybe_undefined2);
2202   if (Token::IsOrderedRelationalCompareOp(op())) {
2203     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2204     __ Branch(&unordered, eq, a1, Operand(at));
2205   }
2206 
2207   __ bind(&miss);
2208   GenerateMiss(masm);
2209 }
2210 
2211 
GenerateInternalizedStrings(MacroAssembler * masm)2212 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2213   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2214   Label miss;
2215 
2216   // Registers containing left and right operands respectively.
2217   Register left = a1;
2218   Register right = a0;
2219   Register tmp1 = a2;
2220   Register tmp2 = a3;
2221 
2222   // Check that both operands are heap objects.
2223   __ JumpIfEitherSmi(left, right, &miss);
2224 
2225   // Check that both operands are internalized strings.
2226   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2227   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2228   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2229   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2230   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2231   __ Or(tmp1, tmp1, Operand(tmp2));
2232   __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2233   __ Branch(&miss, ne, at, Operand(zero_reg));
2234 
2235   // Make sure a0 is non-zero. At this point input operands are
2236   // guaranteed to be non-zero.
2237   DCHECK(right.is(a0));
2238   STATIC_ASSERT(EQUAL == 0);
2239   STATIC_ASSERT(kSmiTag == 0);
2240   __ mov(v0, right);
2241   // Internalized strings are compared by identity.
2242   __ Ret(ne, left, Operand(right));
2243   DCHECK(is_int16(EQUAL));
2244   __ Ret(USE_DELAY_SLOT);
2245   __ li(v0, Operand(Smi::FromInt(EQUAL)));
2246 
2247   __ bind(&miss);
2248   GenerateMiss(masm);
2249 }
2250 
2251 
GenerateUniqueNames(MacroAssembler * masm)2252 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2253   DCHECK(state() == CompareICState::UNIQUE_NAME);
2254   DCHECK(GetCondition() == eq);
2255   Label miss;
2256 
2257   // Registers containing left and right operands respectively.
2258   Register left = a1;
2259   Register right = a0;
2260   Register tmp1 = a2;
2261   Register tmp2 = a3;
2262 
2263   // Check that both operands are heap objects.
2264   __ JumpIfEitherSmi(left, right, &miss);
2265 
2266   // Check that both operands are unique names. This leaves the instance
2267   // types loaded in tmp1 and tmp2.
2268   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2269   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2270   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2271   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2272 
2273   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
2274   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
2275 
2276   // Use a0 as result
2277   __ mov(v0, a0);
2278 
2279   // Unique names are compared by identity.
2280   Label done;
2281   __ Branch(&done, ne, left, Operand(right));
2282   // Make sure a0 is non-zero. At this point input operands are
2283   // guaranteed to be non-zero.
2284   DCHECK(right.is(a0));
2285   STATIC_ASSERT(EQUAL == 0);
2286   STATIC_ASSERT(kSmiTag == 0);
2287   __ li(v0, Operand(Smi::FromInt(EQUAL)));
2288   __ bind(&done);
2289   __ Ret();
2290 
2291   __ bind(&miss);
2292   GenerateMiss(masm);
2293 }
2294 
2295 
GenerateStrings(MacroAssembler * masm)2296 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2297   DCHECK(state() == CompareICState::STRING);
2298   Label miss;
2299 
2300   bool equality = Token::IsEqualityOp(op());
2301 
2302   // Registers containing left and right operands respectively.
2303   Register left = a1;
2304   Register right = a0;
2305   Register tmp1 = a2;
2306   Register tmp2 = a3;
2307   Register tmp3 = t0;
2308   Register tmp4 = t1;
2309   Register tmp5 = t2;
2310 
2311   // Check that both operands are heap objects.
2312   __ JumpIfEitherSmi(left, right, &miss);
2313 
2314   // Check that both operands are strings. This leaves the instance
2315   // types loaded in tmp1 and tmp2.
2316   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2317   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2318   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2319   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2320   STATIC_ASSERT(kNotStringTag != 0);
2321   __ Or(tmp3, tmp1, tmp2);
2322   __ And(tmp5, tmp3, Operand(kIsNotStringMask));
2323   __ Branch(&miss, ne, tmp5, Operand(zero_reg));
2324 
2325   // Fast check for identical strings.
2326   Label left_ne_right;
2327   STATIC_ASSERT(EQUAL == 0);
2328   STATIC_ASSERT(kSmiTag == 0);
2329   __ Branch(&left_ne_right, ne, left, Operand(right));
2330   __ Ret(USE_DELAY_SLOT);
2331   __ mov(v0, zero_reg);  // In the delay slot.
2332   __ bind(&left_ne_right);
2333 
2334   // Handle not identical strings.
2335 
2336   // Check that both strings are internalized strings. If they are, we're done
2337   // because we already know they are not identical. We know they are both
2338   // strings.
2339   if (equality) {
2340     DCHECK(GetCondition() == eq);
2341     STATIC_ASSERT(kInternalizedTag == 0);
2342     __ Or(tmp3, tmp1, Operand(tmp2));
2343     __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
2344     Label is_symbol;
2345     __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
2346     // Make sure a0 is non-zero. At this point input operands are
2347     // guaranteed to be non-zero.
2348     DCHECK(right.is(a0));
2349     __ Ret(USE_DELAY_SLOT);
2350     __ mov(v0, a0);  // In the delay slot.
2351     __ bind(&is_symbol);
2352   }
2353 
2354   // Check that both strings are sequential one-byte.
2355   Label runtime;
2356   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
2357                                                     &runtime);
2358 
2359   // Compare flat one-byte strings. Returns when done.
2360   if (equality) {
2361     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
2362                                                   tmp3);
2363   } else {
2364     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2365                                                     tmp2, tmp3, tmp4);
2366   }
2367 
2368   // Handle more complex cases in runtime.
2369   __ bind(&runtime);
2370   if (equality) {
2371     {
2372       FrameScope scope(masm, StackFrame::INTERNAL);
2373       __ Push(left, right);
2374       __ CallRuntime(Runtime::kStringEqual);
2375     }
2376     __ LoadRoot(a0, Heap::kTrueValueRootIndex);
2377     __ Ret(USE_DELAY_SLOT);
2378     __ Subu(v0, v0, a0);  // In delay slot.
2379   } else {
2380     __ Push(left, right);
2381     __ TailCallRuntime(Runtime::kStringCompare);
2382   }
2383 
2384   __ bind(&miss);
2385   GenerateMiss(masm);
2386 }
2387 
2388 
GenerateReceivers(MacroAssembler * masm)2389 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2390   DCHECK_EQ(CompareICState::RECEIVER, state());
2391   Label miss;
2392   __ And(a2, a1, Operand(a0));
2393   __ JumpIfSmi(a2, &miss);
2394 
2395   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2396   __ GetObjectType(a0, a2, a2);
2397   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
2398   __ GetObjectType(a1, a2, a2);
2399   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
2400 
2401   DCHECK_EQ(eq, GetCondition());
2402   __ Ret(USE_DELAY_SLOT);
2403   __ subu(v0, a0, a1);
2404 
2405   __ bind(&miss);
2406   GenerateMiss(masm);
2407 }
2408 
2409 
GenerateKnownReceivers(MacroAssembler * masm)2410 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2411   Label miss;
2412   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2413   __ And(a2, a1, a0);
2414   __ JumpIfSmi(a2, &miss);
2415   __ GetWeakValue(t0, cell);
2416   __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
2417   __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
2418   __ Branch(&miss, ne, a2, Operand(t0));
2419   __ Branch(&miss, ne, a3, Operand(t0));
2420 
2421   if (Token::IsEqualityOp(op())) {
2422     __ Ret(USE_DELAY_SLOT);
2423     __ subu(v0, a0, a1);
2424   } else {
2425     if (op() == Token::LT || op() == Token::LTE) {
2426       __ li(a2, Operand(Smi::FromInt(GREATER)));
2427     } else {
2428       __ li(a2, Operand(Smi::FromInt(LESS)));
2429     }
2430     __ Push(a1, a0, a2);
2431     __ TailCallRuntime(Runtime::kCompare);
2432   }
2433 
2434   __ bind(&miss);
2435   GenerateMiss(masm);
2436 }
2437 
2438 
GenerateMiss(MacroAssembler * masm)2439 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2440   {
2441     // Call the runtime system in a fresh internal frame.
2442     FrameScope scope(masm, StackFrame::INTERNAL);
2443     __ Push(a1, a0);
2444     __ Push(ra, a1, a0);
2445     __ li(t0, Operand(Smi::FromInt(op())));
2446     __ addiu(sp, sp, -kPointerSize);
2447     __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
2448                    USE_DELAY_SLOT);
2449     __ sw(t0, MemOperand(sp));  // In the delay slot.
2450     // Compute the entry point of the rewritten stub.
2451     __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
2452     // Restore registers.
2453     __ Pop(a1, a0, ra);
2454   }
2455   __ Jump(a2);
2456 }
2457 
2458 
Generate(MacroAssembler * masm)2459 void DirectCEntryStub::Generate(MacroAssembler* masm) {
2460   // Make place for arguments to fit C calling convention. Most of the callers
2461   // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
2462   // so they handle stack restoring and we don't have to do that here.
2463   // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
2464   // kCArgsSlotsSize stack space after the call.
2465   __ Subu(sp, sp, Operand(kCArgsSlotsSize));
2466   // Place the return address on the stack, making the call
2467   // GC safe. The RegExp backend also relies on this.
2468   __ sw(ra, MemOperand(sp, kCArgsSlotsSize));
2469   __ Call(t9);  // Call the C++ function.
2470   __ lw(t9, MemOperand(sp, kCArgsSlotsSize));
2471 
2472   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
2473     // In case of an error the return address may point to a memory area
2474     // filled with kZapValue by the GC.
2475     // Dereference the address and check for this.
2476     __ lw(t0, MemOperand(t9));
2477     __ Assert(ne, kReceivedInvalidReturnAddress, t0,
2478         Operand(reinterpret_cast<uint32_t>(kZapValue)));
2479   }
2480   __ Jump(t9);
2481 }
2482 
2483 
GenerateCall(MacroAssembler * masm,Register target)2484 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
2485                                     Register target) {
2486   intptr_t loc =
2487       reinterpret_cast<intptr_t>(GetCode().location());
2488   __ Move(t9, target);
2489   __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
2490   __ Call(at);
2491 }
2492 
2493 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)2494 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
2495                                                       Label* miss,
2496                                                       Label* done,
2497                                                       Register receiver,
2498                                                       Register properties,
2499                                                       Handle<Name> name,
2500                                                       Register scratch0) {
2501   DCHECK(name->IsUniqueName());
2502   // If names of slots in range from 1 to kProbes - 1 for the hash value are
2503   // not equal to the name and kProbes-th slot is not used (its name is the
2504   // undefined value), it guarantees the hash table doesn't contain the
2505   // property. It's true even if some slots represent deleted properties
2506   // (their names are the hole value).
2507   for (int i = 0; i < kInlinedProbes; i++) {
2508     // scratch0 points to properties hash.
2509     // Compute the masked index: (hash + i + i * i) & mask.
2510     Register index = scratch0;
2511     // Capacity is smi 2^n.
2512     __ lw(index, FieldMemOperand(properties, kCapacityOffset));
2513     __ Subu(index, index, Operand(1));
2514     __ And(index, index, Operand(
2515         Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
2516 
2517     // Scale the index by multiplying by the entry size.
2518     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2519     __ Lsa(index, index, index, 1);
2520 
2521     Register entity_name = scratch0;
2522     // Having undefined at this place means the name is not contained.
2523     STATIC_ASSERT(kSmiTagSize == 1);
2524     Register tmp = properties;
2525     __ Lsa(tmp, properties, index, 1);
2526     __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
2527 
2528     DCHECK(!tmp.is(entity_name));
2529     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
2530     __ Branch(done, eq, entity_name, Operand(tmp));
2531 
2532     // Load the hole ready for use below:
2533     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
2534 
2535     // Stop if found the property.
2536     __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
2537 
2538     Label good;
2539     __ Branch(&good, eq, entity_name, Operand(tmp));
2540 
2541     // Check if the entry name is not a unique name.
2542     __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
2543     __ lbu(entity_name,
2544            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
2545     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
2546     __ bind(&good);
2547 
2548     // Restore the properties.
2549     __ lw(properties,
2550           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2551   }
2552 
2553   const int spill_mask =
2554       (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
2555        a2.bit() | a1.bit() | a0.bit() | v0.bit());
2556 
2557   __ MultiPush(spill_mask);
2558   __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2559   __ li(a1, Operand(Handle<Name>(name)));
2560   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
2561   __ CallStub(&stub);
2562   __ mov(at, v0);
2563   __ MultiPop(spill_mask);
2564 
2565   __ Branch(done, eq, at, Operand(zero_reg));
2566   __ Branch(miss, ne, at, Operand(zero_reg));
2567 }
2568 
Generate(MacroAssembler * masm)2569 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2570   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
2571   // we cannot call anything that could cause a GC from this stub.
2572   // Registers:
2573   //  result: NameDictionary to probe
2574   //  a1: key
2575   //  dictionary: NameDictionary to probe.
2576   //  index: will hold an index of entry if lookup is successful.
2577   //         might alias with result_.
2578   // Returns:
2579   //  result_ is zero if lookup failed, non zero otherwise.
2580 
2581   Register result = v0;
2582   Register dictionary = a0;
2583   Register key = a1;
2584   Register index = a2;
2585   Register mask = a3;
2586   Register hash = t0;
2587   Register undefined = t1;
2588   Register entry_key = t2;
2589 
2590   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2591 
2592   __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
2593   __ sra(mask, mask, kSmiTagSize);
2594   __ Subu(mask, mask, Operand(1));
2595 
2596   __ lw(hash, FieldMemOperand(key, Name::kHashFieldOffset));
2597 
2598   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
2599 
2600   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
2601     // Compute the masked index: (hash + i + i * i) & mask.
2602     // Capacity is smi 2^n.
2603     if (i > 0) {
2604       // Add the probe offset (i + i * i) left shifted to avoid right shifting
2605       // the hash in a separate instruction. The value hash + i + i * i is right
2606       // shifted in the following and instruction.
2607       DCHECK(NameDictionary::GetProbeOffset(i) <
2608              1 << (32 - Name::kHashFieldOffset));
2609       __ Addu(index, hash, Operand(
2610           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
2611     } else {
2612       __ mov(index, hash);
2613     }
2614     __ srl(index, index, Name::kHashShift);
2615     __ And(index, mask, index);
2616 
2617     // Scale the index by multiplying by the entry size.
2618     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2619     // index *= 3.
2620     __ Lsa(index, index, index, 1);
2621 
2622     STATIC_ASSERT(kSmiTagSize == 1);
2623     __ Lsa(index, dictionary, index, 2);
2624     __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
2625 
2626     // Having undefined at this place means the name is not contained.
2627     __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
2628 
2629     // Stop if found the property.
2630     __ Branch(&in_dictionary, eq, entry_key, Operand(key));
2631 
2632     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
2633       // Check if the entry name is not a unique name.
2634       __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
2635       __ lbu(entry_key,
2636              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
2637       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
2638     }
2639   }
2640 
2641   __ bind(&maybe_in_dictionary);
2642   // If we are doing negative lookup then probing failure should be
2643   // treated as a lookup success. For positive lookup probing failure
2644   // should be treated as lookup failure.
2645   if (mode() == POSITIVE_LOOKUP) {
2646     __ Ret(USE_DELAY_SLOT);
2647     __ mov(result, zero_reg);
2648   }
2649 
2650   __ bind(&in_dictionary);
2651   __ Ret(USE_DELAY_SLOT);
2652   __ li(result, 1);
2653 
2654   __ bind(&not_in_dictionary);
2655   __ Ret(USE_DELAY_SLOT);
2656   __ mov(result, zero_reg);
2657 }
2658 
2659 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)2660 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
2661     Isolate* isolate) {
2662   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
2663   stub1.GetCode();
2664   // Hydrogen code stubs need stub2 at snapshot time.
2665   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
2666   stub2.GetCode();
2667 }
2668 
2669 
2670 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
2671 // the value has just been written into the object, now this stub makes sure
2672 // we keep the GC informed.  The word in the object where the value has been
2673 // written is in the address register.
Generate(MacroAssembler * masm)2674 void RecordWriteStub::Generate(MacroAssembler* masm) {
2675   Label skip_to_incremental_noncompacting;
2676   Label skip_to_incremental_compacting;
2677 
2678   // The first two branch+nop instructions are generated with labels so as to
2679   // get the offset fixed up correctly by the bind(Label*) call.  We patch it
2680   // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
2681   // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
2682   // incremental heap marking.
2683   // See RecordWriteStub::Patch for details.
2684   __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
2685   __ nop();
2686   __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
2687   __ nop();
2688 
2689   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2690     __ RememberedSetHelper(object(),
2691                            address(),
2692                            value(),
2693                            save_fp_regs_mode(),
2694                            MacroAssembler::kReturnAtEnd);
2695   }
2696   __ Ret();
2697 
2698   __ bind(&skip_to_incremental_noncompacting);
2699   GenerateIncremental(masm, INCREMENTAL);
2700 
2701   __ bind(&skip_to_incremental_compacting);
2702   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
2703 
2704   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
2705   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
2706 
2707   PatchBranchIntoNop(masm, 0);
2708   PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
2709 }
2710 
2711 
GenerateIncremental(MacroAssembler * masm,Mode mode)2712 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
2713   regs_.Save(masm);
2714 
2715   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2716     Label dont_need_remembered_set;
2717 
2718     __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
2719     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
2720                            regs_.scratch0(),
2721                            &dont_need_remembered_set);
2722 
2723     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
2724                         &dont_need_remembered_set);
2725 
2726     // First notify the incremental marker if necessary, then update the
2727     // remembered set.
2728     CheckNeedsToInformIncrementalMarker(
2729         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
2730     InformIncrementalMarker(masm);
2731     regs_.Restore(masm);
2732     __ RememberedSetHelper(object(),
2733                            address(),
2734                            value(),
2735                            save_fp_regs_mode(),
2736                            MacroAssembler::kReturnAtEnd);
2737 
2738     __ bind(&dont_need_remembered_set);
2739   }
2740 
2741   CheckNeedsToInformIncrementalMarker(
2742       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
2743   InformIncrementalMarker(masm);
2744   regs_.Restore(masm);
2745   __ Ret();
2746 }
2747 
2748 
InformIncrementalMarker(MacroAssembler * masm)2749 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
2750   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
2751   int argument_count = 3;
2752   __ PrepareCallCFunction(argument_count, regs_.scratch0());
2753   Register address =
2754       a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
2755   DCHECK(!address.is(regs_.object()));
2756   DCHECK(!address.is(a0));
2757   __ Move(address, regs_.address());
2758   __ Move(a0, regs_.object());
2759   __ Move(a1, address);
2760   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
2761 
2762   AllowExternalCallThatCantCauseGC scope(masm);
2763   __ CallCFunction(
2764       ExternalReference::incremental_marking_record_write_function(isolate()),
2765       argument_count);
2766   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
2767 }
2768 
2769 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)2770 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
2771     MacroAssembler* masm,
2772     OnNoNeedToInformIncrementalMarker on_no_need,
2773     Mode mode) {
2774   Label on_black;
2775   Label need_incremental;
2776   Label need_incremental_pop_scratch;
2777 
2778   // Let's look at the color of the object:  If it is not black we don't have
2779   // to inform the incremental marker.
2780   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
2781 
2782   regs_.Restore(masm);
2783   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2784     __ RememberedSetHelper(object(),
2785                            address(),
2786                            value(),
2787                            save_fp_regs_mode(),
2788                            MacroAssembler::kReturnAtEnd);
2789   } else {
2790     __ Ret();
2791   }
2792 
2793   __ bind(&on_black);
2794 
2795   // Get the value from the slot.
2796   __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
2797 
2798   if (mode == INCREMENTAL_COMPACTION) {
2799     Label ensure_not_white;
2800 
2801     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
2802                      regs_.scratch1(),  // Scratch.
2803                      MemoryChunk::kEvacuationCandidateMask,
2804                      eq,
2805                      &ensure_not_white);
2806 
2807     __ CheckPageFlag(regs_.object(),
2808                      regs_.scratch1(),  // Scratch.
2809                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
2810                      eq,
2811                      &need_incremental);
2812 
2813     __ bind(&ensure_not_white);
2814   }
2815 
2816   // We need extra registers for this, so we push the object and the address
2817   // register temporarily.
2818   __ Push(regs_.object(), regs_.address());
2819   __ JumpIfWhite(regs_.scratch0(),  // The value.
2820                  regs_.scratch1(),  // Scratch.
2821                  regs_.object(),    // Scratch.
2822                  regs_.address(),   // Scratch.
2823                  &need_incremental_pop_scratch);
2824   __ Pop(regs_.object(), regs_.address());
2825 
2826   regs_.Restore(masm);
2827   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2828     __ RememberedSetHelper(object(),
2829                            address(),
2830                            value(),
2831                            save_fp_regs_mode(),
2832                            MacroAssembler::kReturnAtEnd);
2833   } else {
2834     __ Ret();
2835   }
2836 
2837   __ bind(&need_incremental_pop_scratch);
2838   __ Pop(regs_.object(), regs_.address());
2839 
2840   __ bind(&need_incremental);
2841 
2842   // Fall through when we need to inform the incremental marker.
2843 }
2844 
2845 
Generate(MacroAssembler * masm)2846 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
2847   CEntryStub ces(isolate(), 1, kSaveFPRegs);
2848   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
2849   int parameter_count_offset =
2850       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
2851   __ lw(a1, MemOperand(fp, parameter_count_offset));
2852   if (function_mode() == JS_FUNCTION_STUB_MODE) {
2853     __ Addu(a1, a1, Operand(1));
2854   }
2855   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
2856   __ sll(a1, a1, kPointerSizeLog2);
2857   __ Ret(USE_DELAY_SLOT);
2858   __ Addu(sp, sp, a1);
2859 }
2860 
MaybeCallEntryHook(MacroAssembler * masm)2861 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
2862   if (masm->isolate()->function_entry_hook() != NULL) {
2863     ProfileEntryHookStub stub(masm->isolate());
2864     __ push(ra);
2865     __ CallStub(&stub);
2866     __ pop(ra);
2867   }
2868 }
2869 
2870 
Generate(MacroAssembler * masm)2871 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
2872   // The entry hook is a "push ra" instruction, followed by a call.
2873   // Note: on MIPS "push" is 2 instruction
2874   const int32_t kReturnAddressDistanceFromFunctionStart =
2875       Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
2876 
2877   // This should contain all kJSCallerSaved registers.
2878   const RegList kSavedRegs =
2879      kJSCallerSaved |  // Caller saved registers.
2880      s5.bit();         // Saved stack pointer.
2881 
2882   // We also save ra, so the count here is one higher than the mask indicates.
2883   const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
2884 
2885   // Save all caller-save registers as this may be called from anywhere.
2886   __ MultiPush(kSavedRegs | ra.bit());
2887 
2888   // Compute the function's address for the first argument.
2889   __ Subu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
2890 
2891   // The caller's return address is above the saved temporaries.
2892   // Grab that for the second argument to the hook.
2893   __ Addu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
2894 
2895   // Align the stack if necessary.
2896   int frame_alignment = masm->ActivationFrameAlignment();
2897   if (frame_alignment > kPointerSize) {
2898     __ mov(s5, sp);
2899     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2900     __ And(sp, sp, Operand(-frame_alignment));
2901   }
2902   __ Subu(sp, sp, kCArgsSlotsSize);
2903 #if defined(V8_HOST_ARCH_MIPS)
2904   int32_t entry_hook =
2905       reinterpret_cast<int32_t>(isolate()->function_entry_hook());
2906   __ li(t9, Operand(entry_hook));
2907 #else
2908   // Under the simulator we need to indirect the entry hook through a
2909   // trampoline function at a known address.
2910   // It additionally takes an isolate as a third parameter.
2911   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
2912 
2913   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
2914   __ li(t9, Operand(ExternalReference(&dispatcher,
2915                                       ExternalReference::BUILTIN_CALL,
2916                                       isolate())));
2917 #endif
2918   // Call C function through t9 to conform ABI for PIC.
2919   __ Call(t9);
2920 
2921   // Restore the stack pointer if needed.
2922   if (frame_alignment > kPointerSize) {
2923     __ mov(sp, s5);
2924   } else {
2925     __ Addu(sp, sp, kCArgsSlotsSize);
2926   }
2927 
2928   // Also pop ra to get Ret(0).
2929   __ MultiPop(kSavedRegs | ra.bit());
2930   __ Ret();
2931 }
2932 
2933 
2934 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)2935 static void CreateArrayDispatch(MacroAssembler* masm,
2936                                 AllocationSiteOverrideMode mode) {
2937   if (mode == DISABLE_ALLOCATION_SITES) {
2938     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
2939     __ TailCallStub(&stub);
2940   } else if (mode == DONT_OVERRIDE) {
2941     int last_index = GetSequenceIndexFromFastElementsKind(
2942         TERMINAL_FAST_ELEMENTS_KIND);
2943     for (int i = 0; i <= last_index; ++i) {
2944       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2945       T stub(masm->isolate(), kind);
2946       __ TailCallStub(&stub, eq, a3, Operand(kind));
2947     }
2948 
2949     // If we reached this point there is a problem.
2950     __ Abort(kUnexpectedElementsKindInArrayConstructor);
2951   } else {
2952     UNREACHABLE();
2953   }
2954 }
2955 
2956 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)2957 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
2958                                            AllocationSiteOverrideMode mode) {
2959   // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
2960   // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
2961   // a0 - number of arguments
2962   // a1 - constructor?
2963   // sp[0] - last argument
2964   Label normal_sequence;
2965   if (mode == DONT_OVERRIDE) {
2966     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2967     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2968     STATIC_ASSERT(FAST_ELEMENTS == 2);
2969     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2970     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
2971     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
2972 
2973     // is the low bit set? If so, we are holey and that is good.
2974     __ And(at, a3, Operand(1));
2975     __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
2976   }
2977 
2978   // look at the first argument
2979   __ lw(t1, MemOperand(sp, 0));
2980   __ Branch(&normal_sequence, eq, t1, Operand(zero_reg));
2981 
2982   if (mode == DISABLE_ALLOCATION_SITES) {
2983     ElementsKind initial = GetInitialFastElementsKind();
2984     ElementsKind holey_initial = GetHoleyElementsKind(initial);
2985 
2986     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
2987                                                   holey_initial,
2988                                                   DISABLE_ALLOCATION_SITES);
2989     __ TailCallStub(&stub_holey);
2990 
2991     __ bind(&normal_sequence);
2992     ArraySingleArgumentConstructorStub stub(masm->isolate(),
2993                                             initial,
2994                                             DISABLE_ALLOCATION_SITES);
2995     __ TailCallStub(&stub);
2996   } else if (mode == DONT_OVERRIDE) {
2997     // We are going to create a holey array, but our kind is non-holey.
2998     // Fix kind and retry (only if we have an allocation site in the slot).
2999     __ Addu(a3, a3, Operand(1));
3000 
3001     if (FLAG_debug_code) {
3002       __ lw(t1, FieldMemOperand(a2, 0));
3003       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3004       __ Assert(eq, kExpectedAllocationSite, t1, Operand(at));
3005     }
3006 
3007     // Save the resulting elements kind in type info. We can't just store a3
3008     // in the AllocationSite::transition_info field because elements kind is
3009     // restricted to a portion of the field...upper bits need to be left alone.
3010     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3011     __ lw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
3012     __ Addu(t0, t0, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
3013     __ sw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
3014 
3015 
3016     __ bind(&normal_sequence);
3017     int last_index = GetSequenceIndexFromFastElementsKind(
3018         TERMINAL_FAST_ELEMENTS_KIND);
3019     for (int i = 0; i <= last_index; ++i) {
3020       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3021       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
3022       __ TailCallStub(&stub, eq, a3, Operand(kind));
3023     }
3024 
3025     // If we reached this point there is a problem.
3026     __ Abort(kUnexpectedElementsKindInArrayConstructor);
3027   } else {
3028     UNREACHABLE();
3029   }
3030 }
3031 
3032 
3033 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)3034 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
3035   int to_index = GetSequenceIndexFromFastElementsKind(
3036       TERMINAL_FAST_ELEMENTS_KIND);
3037   for (int i = 0; i <= to_index; ++i) {
3038     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3039     T stub(isolate, kind);
3040     stub.GetCode();
3041     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
3042       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
3043       stub1.GetCode();
3044     }
3045   }
3046 }
3047 
GenerateStubsAheadOfTime(Isolate * isolate)3048 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
3049   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
3050       isolate);
3051   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
3052       isolate);
3053   ArrayNArgumentsConstructorStub stub(isolate);
3054   stub.GetCode();
3055   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
3056   for (int i = 0; i < 2; i++) {
3057     // For internal arrays we only need a few things.
3058     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
3059     stubh1.GetCode();
3060     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
3061     stubh2.GetCode();
3062   }
3063 }
3064 
3065 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)3066 void ArrayConstructorStub::GenerateDispatchToArrayStub(
3067     MacroAssembler* masm,
3068     AllocationSiteOverrideMode mode) {
3069   Label not_zero_case, not_one_case;
3070   __ And(at, a0, a0);
3071   __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
3072   CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
3073 
3074   __ bind(&not_zero_case);
3075   __ Branch(&not_one_case, gt, a0, Operand(1));
3076   CreateArrayDispatchOneArgument(masm, mode);
3077 
3078   __ bind(&not_one_case);
3079   ArrayNArgumentsConstructorStub stub(masm->isolate());
3080   __ TailCallStub(&stub);
3081 }
3082 
3083 
Generate(MacroAssembler * masm)3084 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
3085   // ----------- S t a t e -------------
3086   //  -- a0 : argc (only if argument_count() is ANY or MORE_THAN_ONE)
3087   //  -- a1 : constructor
3088   //  -- a2 : AllocationSite or undefined
3089   //  -- a3 : Original constructor
3090   //  -- sp[0] : last argument
3091   // -----------------------------------
3092 
3093   if (FLAG_debug_code) {
3094     // The array construct code is only set for the global and natives
3095     // builtin Array functions which always have maps.
3096 
3097     // Initial map for the builtin Array function should be a map.
3098     __ lw(t0, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
3099     // Will both indicate a NULL and a Smi.
3100     __ SmiTst(t0, at);
3101     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
3102         at, Operand(zero_reg));
3103     __ GetObjectType(t0, t0, t1);
3104     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
3105         t1, Operand(MAP_TYPE));
3106 
3107     // We should either have undefined in a2 or a valid AllocationSite
3108     __ AssertUndefinedOrAllocationSite(a2, t0);
3109   }
3110 
3111   // Enter the context of the Array function.
3112   __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
3113 
3114   Label subclassing;
3115   __ Branch(&subclassing, ne, a1, Operand(a3));
3116 
3117   Label no_info;
3118   // Get the elements kind and case on that.
3119   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3120   __ Branch(&no_info, eq, a2, Operand(at));
3121 
3122   __ lw(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
3123   __ SmiUntag(a3);
3124   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3125   __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
3126   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
3127 
3128   __ bind(&no_info);
3129   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
3130 
3131   // Subclassing.
3132   __ bind(&subclassing);
3133   __ Lsa(at, sp, a0, kPointerSizeLog2);
3134   __ sw(a1, MemOperand(at));
3135   __ li(at, Operand(3));
3136   __ addu(a0, a0, at);
3137   __ Push(a3, a2);
3138   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
3139 }
3140 
3141 
GenerateCase(MacroAssembler * masm,ElementsKind kind)3142 void InternalArrayConstructorStub::GenerateCase(
3143     MacroAssembler* masm, ElementsKind kind) {
3144 
3145   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
3146   __ TailCallStub(&stub0, lo, a0, Operand(1));
3147 
3148   ArrayNArgumentsConstructorStub stubN(isolate());
3149   __ TailCallStub(&stubN, hi, a0, Operand(1));
3150 
3151   if (IsFastPackedElementsKind(kind)) {
3152     // We might need to create a holey array
3153     // look at the first argument.
3154     __ lw(at, MemOperand(sp, 0));
3155 
3156     InternalArraySingleArgumentConstructorStub
3157         stub1_holey(isolate(), GetHoleyElementsKind(kind));
3158     __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
3159   }
3160 
3161   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
3162   __ TailCallStub(&stub1);
3163 }
3164 
3165 
Generate(MacroAssembler * masm)3166 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
3167   // ----------- S t a t e -------------
3168   //  -- a0 : argc
3169   //  -- a1 : constructor
3170   //  -- sp[0] : return address
3171   //  -- sp[4] : last argument
3172   // -----------------------------------
3173 
3174   if (FLAG_debug_code) {
3175     // The array construct code is only set for the global and natives
3176     // builtin Array functions which always have maps.
3177 
3178     // Initial map for the builtin Array function should be a map.
3179     __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
3180     // Will both indicate a NULL and a Smi.
3181     __ SmiTst(a3, at);
3182     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
3183         at, Operand(zero_reg));
3184     __ GetObjectType(a3, a3, t0);
3185     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
3186         t0, Operand(MAP_TYPE));
3187   }
3188 
3189   // Figure out the right elements kind.
3190   __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
3191 
3192   // Load the map's "bit field 2" into a3. We only need the first byte,
3193   // but the following bit field extraction takes care of that anyway.
3194   __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
3195   // Retrieve elements_kind from bit field 2.
3196   __ DecodeField<Map::ElementsKindBits>(a3);
3197 
3198   if (FLAG_debug_code) {
3199     Label done;
3200     __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
3201     __ Assert(
3202         eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
3203         a3, Operand(FAST_HOLEY_ELEMENTS));
3204     __ bind(&done);
3205   }
3206 
3207   Label fast_elements_case;
3208   __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
3209   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
3210 
3211   __ bind(&fast_elements_case);
3212   GenerateCase(masm, FAST_ELEMENTS);
3213 }
3214 
AddressOffset(ExternalReference ref0,ExternalReference ref1)3215 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
3216   return ref0.address() - ref1.address();
3217 }
3218 
3219 
3220 // Calls an API function.  Allocates HandleScope, extracts returned value
3221 // from handle and propagates exceptions.  Restores context.  stack_space
3222 // - space to be unwound on exit (includes the call JS arguments space and
3223 // the additional space allocated for the fast call).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,int32_t stack_space_offset,MemOperand return_value_operand,MemOperand * context_restore_operand)3224 static void CallApiFunctionAndReturn(
3225     MacroAssembler* masm, Register function_address,
3226     ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
3227     MemOperand return_value_operand, MemOperand* context_restore_operand) {
3228   Isolate* isolate = masm->isolate();
3229   ExternalReference next_address =
3230       ExternalReference::handle_scope_next_address(isolate);
3231   const int kNextOffset = 0;
3232   const int kLimitOffset = AddressOffset(
3233       ExternalReference::handle_scope_limit_address(isolate), next_address);
3234   const int kLevelOffset = AddressOffset(
3235       ExternalReference::handle_scope_level_address(isolate), next_address);
3236 
3237   DCHECK(function_address.is(a1) || function_address.is(a2));
3238 
3239   Label profiler_disabled;
3240   Label end_profiler_check;
3241   __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
3242   __ lb(t9, MemOperand(t9, 0));
3243   __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
3244 
3245   // Additional parameter is the address of the actual callback.
3246   __ li(t9, Operand(thunk_ref));
3247   __ jmp(&end_profiler_check);
3248 
3249   __ bind(&profiler_disabled);
3250   __ mov(t9, function_address);
3251   __ bind(&end_profiler_check);
3252 
3253   // Allocate HandleScope in callee-save registers.
3254   __ li(s3, Operand(next_address));
3255   __ lw(s0, MemOperand(s3, kNextOffset));
3256   __ lw(s1, MemOperand(s3, kLimitOffset));
3257   __ lw(s2, MemOperand(s3, kLevelOffset));
3258   __ Addu(s2, s2, Operand(1));
3259   __ sw(s2, MemOperand(s3, kLevelOffset));
3260 
3261   if (FLAG_log_timer_events) {
3262     FrameScope frame(masm, StackFrame::MANUAL);
3263     __ PushSafepointRegisters();
3264     __ PrepareCallCFunction(1, a0);
3265     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
3266     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
3267                      1);
3268     __ PopSafepointRegisters();
3269   }
3270 
3271   // Native call returns to the DirectCEntry stub which redirects to the
3272   // return address pushed on stack (could have moved after GC).
3273   // DirectCEntry stub itself is generated early and never moves.
3274   DirectCEntryStub stub(isolate);
3275   stub.GenerateCall(masm, t9);
3276 
3277   if (FLAG_log_timer_events) {
3278     FrameScope frame(masm, StackFrame::MANUAL);
3279     __ PushSafepointRegisters();
3280     __ PrepareCallCFunction(1, a0);
3281     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
3282     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
3283                      1);
3284     __ PopSafepointRegisters();
3285   }
3286 
3287   Label promote_scheduled_exception;
3288   Label delete_allocated_handles;
3289   Label leave_exit_frame;
3290   Label return_value_loaded;
3291 
3292   // Load value from ReturnValue.
3293   __ lw(v0, return_value_operand);
3294   __ bind(&return_value_loaded);
3295 
3296   // No more valid handles (the result handle was the last one). Restore
3297   // previous handle scope.
3298   __ sw(s0, MemOperand(s3, kNextOffset));
3299   if (__ emit_debug_code()) {
3300     __ lw(a1, MemOperand(s3, kLevelOffset));
3301     __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
3302   }
3303   __ Subu(s2, s2, Operand(1));
3304   __ sw(s2, MemOperand(s3, kLevelOffset));
3305   __ lw(at, MemOperand(s3, kLimitOffset));
3306   __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
3307 
3308   // Leave the API exit frame.
3309   __ bind(&leave_exit_frame);
3310 
3311   bool restore_context = context_restore_operand != NULL;
3312   if (restore_context) {
3313     __ lw(cp, *context_restore_operand);
3314   }
3315   if (stack_space_offset != kInvalidStackOffset) {
3316     // ExitFrame contains four MIPS argument slots after DirectCEntryStub call
3317     // so this must be accounted for.
3318     __ lw(s0, MemOperand(sp, stack_space_offset + kCArgsSlotsSize));
3319   } else {
3320     __ li(s0, Operand(stack_space));
3321   }
3322   __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
3323                     stack_space_offset != kInvalidStackOffset);
3324 
3325   // Check if the function scheduled an exception.
3326   __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
3327   __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
3328   __ lw(t1, MemOperand(at));
3329   __ Branch(&promote_scheduled_exception, ne, t0, Operand(t1));
3330 
3331   __ Ret();
3332 
3333   // Re-throw by promoting a scheduled exception.
3334   __ bind(&promote_scheduled_exception);
3335   __ TailCallRuntime(Runtime::kPromoteScheduledException);
3336 
3337   // HandleScope limit has changed. Delete allocated extensions.
3338   __ bind(&delete_allocated_handles);
3339   __ sw(s1, MemOperand(s3, kLimitOffset));
3340   __ mov(s0, v0);
3341   __ mov(a0, v0);
3342   __ PrepareCallCFunction(1, s1);
3343   __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
3344   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
3345                    1);
3346   __ mov(v0, s0);
3347   __ jmp(&leave_exit_frame);
3348 }
3349 
Generate(MacroAssembler * masm)3350 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
3351   // ----------- S t a t e -------------
3352   //  -- a0                  : callee
3353   //  -- t0                  : call_data
3354   //  -- a2                  : holder
3355   //  -- a1                  : api_function_address
3356   //  -- cp                  : context
3357   //  --
3358   //  -- sp[0]               : last argument
3359   //  -- ...
3360   //  -- sp[(argc - 1)* 4]   : first argument
3361   //  -- sp[argc * 4]        : receiver
3362   // -----------------------------------
3363 
3364   Register callee = a0;
3365   Register call_data = t0;
3366   Register holder = a2;
3367   Register api_function_address = a1;
3368   Register context = cp;
3369 
3370   typedef FunctionCallbackArguments FCA;
3371 
3372   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
3373   STATIC_ASSERT(FCA::kCalleeIndex == 5);
3374   STATIC_ASSERT(FCA::kDataIndex == 4);
3375   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3376   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3377   STATIC_ASSERT(FCA::kIsolateIndex == 1);
3378   STATIC_ASSERT(FCA::kHolderIndex == 0);
3379   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
3380   STATIC_ASSERT(FCA::kArgsLength == 8);
3381 
3382   // new target
3383   __ PushRoot(Heap::kUndefinedValueRootIndex);
3384 
3385   // Save context, callee and call data.
3386   __ Push(context, callee, call_data);
3387   if (!is_lazy()) {
3388     // Load context from callee.
3389     __ lw(context, FieldMemOperand(callee, JSFunction::kContextOffset));
3390   }
3391 
3392   Register scratch = call_data;
3393   if (!call_data_undefined()) {
3394     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3395   }
3396   // Push return value and default return value.
3397   __ Push(scratch, scratch);
3398   __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
3399   // Push isolate and holder.
3400   __ Push(scratch, holder);
3401 
3402   // Prepare arguments.
3403   __ mov(scratch, sp);
3404 
3405   // Allocate the v8::Arguments structure in the arguments' space since
3406   // it's not controlled by GC.
3407   const int kApiStackSpace = 3;
3408 
3409   FrameScope frame_scope(masm, StackFrame::MANUAL);
3410   __ EnterExitFrame(false, kApiStackSpace);
3411 
3412   DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
3413   // a0 = FunctionCallbackInfo&
3414   // Arguments is after the return address.
3415   __ Addu(a0, sp, Operand(1 * kPointerSize));
3416   // FunctionCallbackInfo::implicit_args_
3417   __ sw(scratch, MemOperand(a0, 0 * kPointerSize));
3418   // FunctionCallbackInfo::values_
3419   __ Addu(at, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
3420   __ sw(at, MemOperand(a0, 1 * kPointerSize));
3421   // FunctionCallbackInfo::length_ = argc
3422   __ li(at, Operand(argc()));
3423   __ sw(at, MemOperand(a0, 2 * kPointerSize));
3424 
3425   ExternalReference thunk_ref =
3426       ExternalReference::invoke_function_callback(masm->isolate());
3427 
3428   AllowExternalCallThatCantCauseGC scope(masm);
3429   MemOperand context_restore_operand(
3430       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
3431   // Stores return the first js argument.
3432   int return_value_offset = 0;
3433   if (is_store()) {
3434     return_value_offset = 2 + FCA::kArgsLength;
3435   } else {
3436     return_value_offset = 2 + FCA::kReturnValueOffset;
3437   }
3438   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
3439   int stack_space = 0;
3440   int32_t stack_space_offset = 3 * kPointerSize;
3441   stack_space = argc() + FCA::kArgsLength + 1;
3442   // TODO(adamk): Why are we clobbering this immediately?
3443   stack_space_offset = kInvalidStackOffset;
3444   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
3445                            stack_space_offset, return_value_operand,
3446                            &context_restore_operand);
3447 }
3448 
3449 
Generate(MacroAssembler * masm)3450 void CallApiGetterStub::Generate(MacroAssembler* masm) {
3451   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3452   // name below the exit frame to make GC aware of them.
3453   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3454   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3455   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3456   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3457   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3458   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3459   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3460   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3461 
3462   Register receiver = ApiGetterDescriptor::ReceiverRegister();
3463   Register holder = ApiGetterDescriptor::HolderRegister();
3464   Register callback = ApiGetterDescriptor::CallbackRegister();
3465   Register scratch = t0;
3466   DCHECK(!AreAliased(receiver, holder, callback, scratch));
3467 
3468   Register api_function_address = a2;
3469 
3470   // Here and below +1 is for name() pushed after the args_ array.
3471   typedef PropertyCallbackArguments PCA;
3472   __ Subu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
3473   __ sw(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
3474   __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
3475   __ sw(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
3476   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3477   __ sw(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
3478   __ sw(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
3479                                     kPointerSize));
3480   __ li(scratch, Operand(ExternalReference::isolate_address(isolate())));
3481   __ sw(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
3482   __ sw(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
3483   // should_throw_on_error -> false
3484   DCHECK(Smi::kZero == nullptr);
3485   __ sw(zero_reg,
3486         MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
3487   __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
3488   __ sw(scratch, MemOperand(sp, 0 * kPointerSize));
3489 
3490   // v8::PropertyCallbackInfo::args_ array and name handle.
3491   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3492 
3493   // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
3494   __ mov(a0, sp);                              // a0 = Handle<Name>
3495   __ Addu(a1, a0, Operand(1 * kPointerSize));  // a1 = v8::PCI::args_
3496 
3497   const int kApiStackSpace = 1;
3498   FrameScope frame_scope(masm, StackFrame::MANUAL);
3499   __ EnterExitFrame(false, kApiStackSpace);
3500 
3501   // Create v8::PropertyCallbackInfo object on the stack and initialize
3502   // it's args_ field.
3503   __ sw(a1, MemOperand(sp, 1 * kPointerSize));
3504   __ Addu(a1, sp, Operand(1 * kPointerSize));  // a1 = v8::PropertyCallbackInfo&
3505 
3506   ExternalReference thunk_ref =
3507       ExternalReference::invoke_accessor_getter_callback(isolate());
3508 
3509   __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
3510   __ lw(api_function_address,
3511         FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
3512 
3513   // +3 is to skip prolog, return address and name handle.
3514   MemOperand return_value_operand(
3515       fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
3516   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3517                            kStackUnwindSpace, kInvalidStackOffset,
3518                            return_value_operand, NULL);
3519 }
3520 
3521 #undef __
3522 
3523 }  // namespace internal
3524 }  // namespace v8
3525 
3526 #endif  // V8_TARGET_ARCH_MIPS
3527