1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
4<title>8.�DRD: a thread error detector</title>
5<link rel="stylesheet" type="text/css" href="vg_basic.css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="index.html" title="Valgrind Documentation">
8<link rel="up" href="manual.html" title="Valgrind User Manual">
9<link rel="prev" href="hg-manual.html" title="7.�Helgrind: a thread error detector">
10<link rel="next" href="ms-manual.html" title="9.�Massif: a heap profiler">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
14<td width="22px" align="center" valign="middle"><a accesskey="p" href="hg-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
15<td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
16<td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
17<th align="center" valign="middle">Valgrind User Manual</th>
18<td width="22px" align="center" valign="middle"><a accesskey="n" href="ms-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
19</tr></table></div>
20<div class="chapter">
21<div class="titlepage"><div><div><h1 class="title">
22<a name="drd-manual"></a>8.�DRD: a thread error detector</h1></div></div></div>
23<div class="toc">
24<p><b>Table of Contents</b></p>
25<dl class="toc">
26<dt><span class="sect1"><a href="drd-manual.html#drd-manual.overview">8.1. Overview</a></span></dt>
27<dd><dl>
28<dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-progr-models">8.1.1. Multithreaded Programming Paradigms</a></span></dt>
29<dt><span class="sect2"><a href="drd-manual.html#drd-manual.pthreads-model">8.1.2. POSIX Threads Programming Model</a></span></dt>
30<dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-problems">8.1.3. Multithreaded Programming Problems</a></span></dt>
31<dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-race-detection">8.1.4. Data Race Detection</a></span></dt>
32</dl></dd>
33<dt><span class="sect1"><a href="drd-manual.html#drd-manual.using-drd">8.2. Using DRD</a></span></dt>
34<dd><dl>
35<dt><span class="sect2"><a href="drd-manual.html#drd-manual.options">8.2.1. DRD Command-line Options</a></span></dt>
36<dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-races">8.2.2. Detected Errors: Data Races</a></span></dt>
37<dt><span class="sect2"><a href="drd-manual.html#drd-manual.lock-contention">8.2.3. Detected Errors: Lock Contention</a></span></dt>
38<dt><span class="sect2"><a href="drd-manual.html#drd-manual.api-checks">8.2.4. Detected Errors: Misuse of the POSIX threads API</a></span></dt>
39<dt><span class="sect2"><a href="drd-manual.html#drd-manual.clientreqs">8.2.5. Client Requests</a></span></dt>
40<dt><span class="sect2"><a href="drd-manual.html#drd-manual.C++11">8.2.6. Debugging C++11 Programs</a></span></dt>
41<dt><span class="sect2"><a href="drd-manual.html#drd-manual.gnome">8.2.7. Debugging GNOME Programs</a></span></dt>
42<dt><span class="sect2"><a href="drd-manual.html#drd-manual.boost.thread">8.2.8. Debugging Boost.Thread Programs</a></span></dt>
43<dt><span class="sect2"><a href="drd-manual.html#drd-manual.openmp">8.2.9. Debugging OpenMP Programs</a></span></dt>
44<dt><span class="sect2"><a href="drd-manual.html#drd-manual.cust-mem-alloc">8.2.10. DRD and Custom Memory Allocators</a></span></dt>
45<dt><span class="sect2"><a href="drd-manual.html#drd-manual.drd-versus-memcheck">8.2.11. DRD Versus Memcheck</a></span></dt>
46<dt><span class="sect2"><a href="drd-manual.html#drd-manual.resource-requirements">8.2.12. Resource Requirements</a></span></dt>
47<dt><span class="sect2"><a href="drd-manual.html#drd-manual.effective-use">8.2.13. Hints and Tips for Effective Use of DRD</a></span></dt>
48</dl></dd>
49<dt><span class="sect1"><a href="drd-manual.html#drd-manual.Pthreads">8.3. Using the POSIX Threads API Effectively</a></span></dt>
50<dd><dl>
51<dt><span class="sect2"><a href="drd-manual.html#drd-manual.mutex-types">8.3.1. Mutex types</a></span></dt>
52<dt><span class="sect2"><a href="drd-manual.html#drd-manual.condvar">8.3.2. Condition variables</a></span></dt>
53<dt><span class="sect2"><a href="drd-manual.html#drd-manual.pctw">8.3.3. pthread_cond_timedwait and timeouts</a></span></dt>
54</dl></dd>
55<dt><span class="sect1"><a href="drd-manual.html#drd-manual.limitations">8.4. Limitations</a></span></dt>
56<dt><span class="sect1"><a href="drd-manual.html#drd-manual.feedback">8.5. Feedback</a></span></dt>
57</dl>
58</div>
59<p>To use this tool, you must specify
60<code class="option">--tool=drd</code>
61on the Valgrind command line.</p>
62<div class="sect1">
63<div class="titlepage"><div><div><h2 class="title" style="clear: both">
64<a name="drd-manual.overview"></a>8.1.�Overview</h2></div></div></div>
65<p>
66DRD is a Valgrind tool for detecting errors in multithreaded C and C++
67programs. The tool works for any program that uses the POSIX threading
68primitives or that uses threading concepts built on top of the POSIX threading
69primitives.
70</p>
71<div class="sect2">
72<div class="titlepage"><div><div><h3 class="title">
73<a name="drd-manual.mt-progr-models"></a>8.1.1.�Multithreaded Programming Paradigms</h3></div></div></div>
74<p>
75There are two possible reasons for using multithreading in a program:
76</p>
77<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
78<li class="listitem"><p>
79      To model concurrent activities. Assigning one thread to each activity
80      can be a great simplification compared to multiplexing the states of
81      multiple activities in a single thread. This is why most server software
82      and embedded software is multithreaded.
83    </p></li>
84<li class="listitem"><p>
85      To use multiple CPU cores simultaneously for speeding up
86      computations. This is why many High Performance Computing (HPC)
87      applications are multithreaded.
88    </p></li>
89</ul></div>
90<p>
91</p>
92<p>
93Multithreaded programs can use one or more of the following programming
94paradigms. Which paradigm is appropriate depends e.g. on the application type.
95Some examples of multithreaded programming paradigms are:
96</p>
97<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
98<li class="listitem"><p>
99      Locking. Data that is shared over threads is protected from concurrent
100      accesses via locking. E.g. the POSIX threads library, the Qt library
101      and the Boost.Thread library support this paradigm directly.
102    </p></li>
103<li class="listitem"><p>
104      Message passing. No data is shared between threads, but threads exchange
105      data by passing messages to each other. Examples of implementations of
106      the message passing paradigm are MPI and CORBA.
107    </p></li>
108<li class="listitem"><p>
109      Automatic parallelization. A compiler converts a sequential program into
110      a multithreaded program. The original program may or may not contain
111      parallelization hints. One example of such parallelization hints is the
112      OpenMP standard. In this standard a set of directives are defined which
113      tell a compiler how to parallelize a C, C++ or Fortran program. OpenMP
114      is well suited for computational intensive applications. As an example,
115      an open source image processing software package is using OpenMP to
116      maximize performance on systems with multiple CPU
117      cores. GCC supports the
118      OpenMP standard from version 4.2.0 on.
119    </p></li>
120<li class="listitem"><p>
121      Software Transactional Memory (STM). Any data that is shared between
122      threads is updated via transactions. After each transaction it is
123      verified whether there were any conflicting transactions. If there were
124      conflicts, the transaction is aborted, otherwise it is committed. This
125      is a so-called optimistic approach. There is a prototype of the Intel C++
126      Compiler available that supports STM. Research about the addition of
127      STM support to GCC is ongoing.
128    </p></li>
129</ul></div>
130<p>
131</p>
132<p>
133DRD supports any combination of multithreaded programming paradigms as
134long as the implementation of these paradigms is based on the POSIX
135threads primitives. DRD however does not support programs that use
136e.g. Linux' futexes directly. Attempts to analyze such programs with
137DRD will cause DRD to report many false positives.
138</p>
139</div>
140<div class="sect2">
141<div class="titlepage"><div><div><h3 class="title">
142<a name="drd-manual.pthreads-model"></a>8.1.2.�POSIX Threads Programming Model</h3></div></div></div>
143<p>
144POSIX threads, also known as Pthreads, is the most widely available
145threading library on Unix systems.
146</p>
147<p>
148The POSIX threads programming model is based on the following abstractions:
149</p>
150<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
151<li class="listitem"><p>
152      A shared address space. All threads running within the same
153      process share the same address space. All data, whether shared or
154      not, is identified by its address.
155    </p></li>
156<li class="listitem"><p>
157      Regular load and store operations, which allow to read values
158      from or to write values to the memory shared by all threads
159      running in the same process.
160    </p></li>
161<li class="listitem"><p>
162      Atomic store and load-modify-store operations. While these are
163      not mentioned in the POSIX threads standard, most
164      microprocessors support atomic memory operations.
165    </p></li>
166<li class="listitem"><p>
167      Threads. Each thread represents a concurrent activity.
168    </p></li>
169<li class="listitem"><p>
170      Synchronization objects and operations on these synchronization
171      objects. The following types of synchronization objects have been
172      defined in the POSIX threads standard: mutexes, condition variables,
173      semaphores, reader-writer synchronization objects, barriers and
174      spinlocks.
175    </p></li>
176</ul></div>
177<p>
178</p>
179<p>
180Which source code statements generate which memory accesses depends on
181the <span class="emphasis"><em>memory model</em></span> of the programming language being
182used. There is not yet a definitive memory model for the C and C++
183languages. For a draft memory model, see also the document
184<a class="ulink" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html" target="_top">
185WG21/N2338: Concurrency memory model compiler consequences</a>.
186</p>
187<p>
188For more information about POSIX threads, see also the Single UNIX
189Specification version 3, also known as
190<a class="ulink" href="http://www.opengroup.org/onlinepubs/000095399/idx/threads.html" target="_top">
191IEEE Std 1003.1</a>.
192</p>
193</div>
194<div class="sect2">
195<div class="titlepage"><div><div><h3 class="title">
196<a name="drd-manual.mt-problems"></a>8.1.3.�Multithreaded Programming Problems</h3></div></div></div>
197<p>
198Depending on which multithreading paradigm is being used in a program,
199one or more of the following problems can occur:
200</p>
201<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
202<li class="listitem"><p>
203      Data races. One or more threads access the same memory location without
204      sufficient locking. Most but not all data races are programming errors
205      and are the cause of subtle and hard-to-find bugs.
206    </p></li>
207<li class="listitem"><p>
208      Lock contention. One thread blocks the progress of one or more other
209      threads by holding a lock too long.
210    </p></li>
211<li class="listitem"><p>
212      Improper use of the POSIX threads API. Most implementations of the POSIX
213      threads API have been optimized for runtime speed. Such implementations
214      will not complain on certain errors, e.g. when a mutex is being unlocked
215      by another thread than the thread that obtained a lock on the mutex.
216    </p></li>
217<li class="listitem"><p>
218      Deadlock. A deadlock occurs when two or more threads wait for
219      each other indefinitely.
220    </p></li>
221<li class="listitem"><p>
222      False sharing. If threads that run on different processor cores
223      access different variables located in the same cache line
224      frequently, this will slow down the involved threads a lot due
225      to frequent exchange of cache lines.
226    </p></li>
227</ul></div>
228<p>
229</p>
230<p>
231Although the likelihood of the occurrence of data races can be reduced
232through a disciplined programming style, a tool for automatic
233detection of data races is a necessity when developing multithreaded
234software. DRD can detect these, as well as lock contention and
235improper use of the POSIX threads API.
236</p>
237</div>
238<div class="sect2">
239<div class="titlepage"><div><div><h3 class="title">
240<a name="drd-manual.data-race-detection"></a>8.1.4.�Data Race Detection</h3></div></div></div>
241<p>
242The result of load and store operations performed by a multithreaded program
243depends on the order in which memory operations are performed. This order is
244determined by:
245</p>
246<div class="orderedlist"><ol class="orderedlist" type="1">
247<li class="listitem"><p>
248      All memory operations performed by the same thread are performed in
249      <span class="emphasis"><em>program order</em></span>, that is, the order determined by the
250      program source code and the results of previous load operations.
251    </p></li>
252<li class="listitem"><p>
253      Synchronization operations determine certain ordering constraints on
254      memory operations performed by different threads. These ordering
255      constraints are called the <span class="emphasis"><em>synchronization order</em></span>.
256    </p></li>
257</ol></div>
258<p>
259The combination of program order and synchronization order is called the
260<span class="emphasis"><em>happens-before relationship</em></span>. This concept was first
261defined by S. Adve et al in the paper <span class="emphasis"><em>Detecting data races on weak
262memory systems</em></span>, ACM SIGARCH Computer Architecture News, v.19 n.3,
263p.234-243, May 1991.
264</p>
265<p>
266Two memory operations <span class="emphasis"><em>conflict</em></span> if both operations are
267performed by different threads, refer to the same memory location and at least
268one of them is a store operation.
269</p>
270<p>
271A multithreaded program is <span class="emphasis"><em>data-race free</em></span> if all
272conflicting memory accesses are ordered by synchronization
273operations.
274</p>
275<p>
276A well known way to ensure that a multithreaded program is data-race
277free is to ensure that a locking discipline is followed. It is e.g.
278possible to associate a mutex with each shared data item, and to hold
279a lock on the associated mutex while the shared data is accessed.
280</p>
281<p>
282All programs that follow a locking discipline are data-race free, but not all
283data-race free programs follow a locking discipline. There exist multithreaded
284programs where access to shared data is arbitrated via condition variables,
285semaphores or barriers. As an example, a certain class of HPC applications
286consists of a sequence of computation steps separated in time by barriers, and
287where these barriers are the only means of synchronization. Although there are
288many conflicting memory accesses in such applications and although such
289applications do not make use mutexes, most of these applications do not
290contain data races.
291</p>
292<p>
293There exist two different approaches for verifying the correctness of
294multithreaded programs at runtime. The approach of the so-called Eraser
295algorithm is to verify whether all shared memory accesses follow a consistent
296locking strategy. And the happens-before data race detectors verify directly
297whether all interthread memory accesses are ordered by synchronization
298operations. While the last approach is more complex to implement, and while it
299is more sensitive to OS scheduling, it is a general approach that works for
300all classes of multithreaded programs. An important advantage of
301happens-before data race detectors is that these do not report any false
302positives.
303</p>
304<p>
305DRD is based on the happens-before algorithm.
306</p>
307</div>
308</div>
309<div class="sect1">
310<div class="titlepage"><div><div><h2 class="title" style="clear: both">
311<a name="drd-manual.using-drd"></a>8.2.�Using DRD</h2></div></div></div>
312<div class="sect2">
313<div class="titlepage"><div><div><h3 class="title">
314<a name="drd-manual.options"></a>8.2.1.�DRD Command-line Options</h3></div></div></div>
315<p>The following command-line options are available for controlling the
316behavior of the DRD tool itself:</p>
317<div class="variablelist">
318<a name="drd.opts.list"></a><dl class="variablelist">
319<dt><span class="term">
320      <code class="option">--check-stack-var=&lt;yes|no&gt; [default: no]</code>
321    </span></dt>
322<dd><p>
323        Controls whether DRD detects data races on stack
324        variables. Verifying stack variables is disabled by default because
325        most programs do not share stack variables over threads.
326      </p></dd>
327<dt><span class="term">
328      <code class="option">--exclusive-threshold=&lt;n&gt; [default: off]</code>
329    </span></dt>
330<dd><p>
331        Print an error message if any mutex or writer lock has been
332        held longer than the time specified in milliseconds. This
333        option enables the detection of lock contention.
334      </p></dd>
335<dt><span class="term">
336      <code class="option">--join-list-vol=&lt;n&gt; [default: 10]</code>
337    </span></dt>
338<dd><p>
339        Data races that occur between a statement at the end of one thread
340	and another thread can be missed if memory access information is
341	discarded immediately after a thread has been joined. This option
342	allows to specify for how many joined threads memory access information
343	should be retained.
344      </p></dd>
345<dt><span class="term">
346      <code class="option">
347        --first-race-only=&lt;yes|no&gt; [default: no]
348      </code>
349    </span></dt>
350<dd><p>
351        Whether to report only the first data race that has been detected on a
352        memory location or all data races that have been detected on a memory
353        location.
354      </p></dd>
355<dt><span class="term">
356      <code class="option">
357        --free-is-write=&lt;yes|no&gt; [default: no]
358      </code>
359    </span></dt>
360<dd>
361<p>
362        Whether to report races between accessing memory and freeing
363        memory. Enabling this option may cause DRD to run slightly
364        slower. Notes:</p>
365<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
366<li class="listitem"><p>
367	    Don't enable this option when using custom memory allocators
368	    that use
369	    the <code class="computeroutput">VG_USERREQ__MALLOCLIKE_BLOCK</code>
370	    and <code class="computeroutput">VG_USERREQ__FREELIKE_BLOCK</code>
371	    because that would result in false positives.
372	  </p></li>
373<li class="listitem"><p>Don't enable this option when using reference-counted
374	    objects because that will result in false positives, even when
375	    that code has been annotated properly with
376	    <code class="computeroutput">ANNOTATE_HAPPENS_BEFORE</code>
377	    and <code class="computeroutput">ANNOTATE_HAPPENS_AFTER</code>. See
378	    e.g.  the output of the following command for an example:
379	    <code class="computeroutput">valgrind --tool=drd --free-is-write=yes
380	      drd/tests/annotate_smart_pointer</code>.
381	  </p></li>
382</ul></div>
383</dd>
384<dt><span class="term">
385      <code class="option">
386        --report-signal-unlocked=&lt;yes|no&gt; [default: yes]
387      </code>
388    </span></dt>
389<dd><p>
390        Whether to report calls to
391        <code class="function">pthread_cond_signal</code> and
392        <code class="function">pthread_cond_broadcast</code> where the mutex
393        associated with the signal through
394        <code class="function">pthread_cond_wait</code> or
395        <code class="function">pthread_cond_timed_wait</code>is not locked at
396        the time the signal is sent.  Sending a signal without holding
397        a lock on the associated mutex is a common programming error
398        which can cause subtle race conditions and unpredictable
399        behavior. There exist some uncommon synchronization patterns
400        however where it is safe to send a signal without holding a
401        lock on the associated mutex.
402      </p></dd>
403<dt><span class="term">
404      <code class="option">--segment-merging=&lt;yes|no&gt; [default: yes]</code>
405    </span></dt>
406<dd><p>
407        Controls segment merging. Segment merging is an algorithm to
408        limit memory usage of the data race detection
409        algorithm. Disabling segment merging may improve the accuracy
410        of the so-called 'other segments' displayed in race reports
411        but can also trigger an out of memory error.
412      </p></dd>
413<dt><span class="term">
414      <code class="option">--segment-merging-interval=&lt;n&gt; [default: 10]</code>
415    </span></dt>
416<dd><p>
417        Perform segment merging only after the specified number of new
418        segments have been created. This is an advanced configuration option
419        that allows to choose whether to minimize DRD's memory usage by
420        choosing a low value or to let DRD run faster by choosing a slightly
421        higher value. The optimal value for this parameter depends on the
422        program being analyzed. The default value works well for most programs.
423      </p></dd>
424<dt><span class="term">
425      <code class="option">--shared-threshold=&lt;n&gt; [default: off]</code>
426    </span></dt>
427<dd><p>
428        Print an error message if a reader lock has been held longer
429        than the specified time (in milliseconds). This option enables
430        the detection of lock contention.
431      </p></dd>
432<dt><span class="term">
433      <code class="option">--show-confl-seg=&lt;yes|no&gt; [default: yes]</code>
434    </span></dt>
435<dd><p>
436         Show conflicting segments in race reports. Since this
437         information can help to find the cause of a data race, this
438         option is enabled by default. Disabling this option makes the
439         output of DRD more compact.
440      </p></dd>
441<dt><span class="term">
442      <code class="option">--show-stack-usage=&lt;yes|no&gt; [default: no]</code>
443    </span></dt>
444<dd><p>
445        Print stack usage at thread exit time. When a program creates a large
446        number of threads it becomes important to limit the amount of virtual
447        memory allocated for thread stacks. This option makes it possible to
448        observe how much stack memory has been used by each thread of the
449        client program. Note: the DRD tool itself allocates some temporary
450        data on the client thread stack. The space necessary for this
451        temporary data must be allocated by the client program when it
452        allocates stack memory, but is not included in stack usage reported by
453        DRD.
454      </p></dd>
455<dt><span class="term">
456      <code class="option">--ignore-thread-creation=&lt;yes|no&gt; [default: no]</code>
457    </span></dt>
458<dd>
459<p>
460        Controls whether all activities during thread creation should be
461        ignored. By default enabled only on Solaris.
462        Solaris provides higher throughput, parallelism and scalability than
463        other operating systems, at the cost of more fine-grained locking
464        activity. This means for example that when a thread is created under
465        glibc, just one big lock is used for all thread setup. Solaris libc
466        uses several fine-grained locks and the creator thread resumes its
467        activities as soon as possible, leaving for example stack and TLS setup
468        sequence to the created thread.
469        This situation confuses DRD as it assumes there is some false ordering
470        in place between creator and created thread; and therefore many types
471        of race conditions in the application would not be reported. To prevent
472        such false ordering, this command line option is set to
473        <code class="computeroutput">yes</code> by default on Solaris.
474        All activity (loads, stores, client requests) is therefore ignored
475        during:</p>
476<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
477<li class="listitem"><p>
478	    pthread_create() call in the creator thread
479	  </p></li>
480<li class="listitem"><p>
481	    thread creation phase (stack and TLS setup) in the created thread
482	  </p></li>
483</ul></div>
484</dd>
485</dl>
486</div>
487<p>
488The following options are available for monitoring the behavior of the
489client program:
490</p>
491<div class="variablelist">
492<a name="drd.debugopts.list"></a><dl class="variablelist">
493<dt><span class="term">
494      <code class="option">--trace-addr=&lt;address&gt; [default: none]</code>
495    </span></dt>
496<dd><p>
497        Trace all load and store activity for the specified
498        address. This option may be specified more than once.
499      </p></dd>
500<dt><span class="term">
501      <code class="option">--ptrace-addr=&lt;address&gt; [default: none]</code>
502    </span></dt>
503<dd><p>
504        Trace all load and store activity for the specified address and keep
505        doing that even after the memory at that address has been freed and
506        reallocated.
507      </p></dd>
508<dt><span class="term">
509      <code class="option">--trace-alloc=&lt;yes|no&gt; [default: no]</code>
510    </span></dt>
511<dd><p>
512        Trace all memory allocations and deallocations. May produce a huge
513        amount of output.
514      </p></dd>
515<dt><span class="term">
516      <code class="option">--trace-barrier=&lt;yes|no&gt; [default: no]</code>
517    </span></dt>
518<dd><p>
519        Trace all barrier activity.
520      </p></dd>
521<dt><span class="term">
522      <code class="option">--trace-cond=&lt;yes|no&gt; [default: no]</code>
523    </span></dt>
524<dd><p>
525        Trace all condition variable activity.
526      </p></dd>
527<dt><span class="term">
528      <code class="option">--trace-fork-join=&lt;yes|no&gt; [default: no]</code>
529    </span></dt>
530<dd><p>
531        Trace all thread creation and all thread termination events.
532      </p></dd>
533<dt><span class="term">
534      <code class="option">--trace-hb=&lt;yes|no&gt; [default: no]</code>
535    </span></dt>
536<dd><p>
537        Trace execution of the <code class="literal">ANNOTATE_HAPPENS_BEFORE()</code>,
538	<code class="literal">ANNOTATE_HAPPENS_AFTER()</code> and
539	<code class="literal">ANNOTATE_HAPPENS_DONE()</code> client requests.
540      </p></dd>
541<dt><span class="term">
542      <code class="option">--trace-mutex=&lt;yes|no&gt; [default: no]</code>
543    </span></dt>
544<dd><p>
545        Trace all mutex activity.
546      </p></dd>
547<dt><span class="term">
548      <code class="option">--trace-rwlock=&lt;yes|no&gt; [default: no]</code>
549    </span></dt>
550<dd><p>
551         Trace all reader-writer lock activity.
552      </p></dd>
553<dt><span class="term">
554      <code class="option">--trace-semaphore=&lt;yes|no&gt; [default: no]</code>
555    </span></dt>
556<dd><p>
557        Trace all semaphore activity.
558      </p></dd>
559</dl>
560</div>
561</div>
562<div class="sect2">
563<div class="titlepage"><div><div><h3 class="title">
564<a name="drd-manual.data-races"></a>8.2.2.�Detected Errors: Data Races</h3></div></div></div>
565<p>
566DRD prints a message every time it detects a data race. Please keep
567the following in mind when interpreting DRD's output:
568</p>
569<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
570<li class="listitem"><p>
571      Every thread is assigned a <span class="emphasis"><em>thread ID</em></span> by the DRD
572      tool. A thread ID is a number. Thread ID's start at one and are never
573      recycled.
574    </p></li>
575<li class="listitem"><p>
576      The term <span class="emphasis"><em>segment</em></span> refers to a consecutive
577      sequence of load, store and synchronization operations, all
578      issued by the same thread. A segment always starts and ends at a
579      synchronization operation. Data race analysis is performed
580      between segments instead of between individual load and store
581      operations because of performance reasons.
582    </p></li>
583<li class="listitem"><p>
584      There are always at least two memory accesses involved in a data
585      race. Memory accesses involved in a data race are called
586      <span class="emphasis"><em>conflicting memory accesses</em></span>. DRD prints a
587      report for each memory access that conflicts with a past memory
588      access.
589    </p></li>
590</ul></div>
591<p>
592</p>
593<p>
594Below you can find an example of a message printed by DRD when it
595detects a data race:
596</p>
597<pre class="programlisting">
598$ valgrind --tool=drd --read-var-info=yes drd/tests/rwlock_race
599...
600==9466== Thread 3:
601==9466== Conflicting load by thread 3 at 0x006020b8 size 4
602==9466==    at 0x400B6C: thread_func (rwlock_race.c:29)
603==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
604==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
605==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
606==9466== Location 0x6020b8 is 0 bytes inside local var "s_racy"
607==9466== declared at rwlock_race.c:18, in frame #0 of thread 3
608==9466== Other segment start (thread 2)
609==9466==    at 0x4C2847D: pthread_rwlock_rdlock* (drd_pthread_intercepts.c:813)
610==9466==    by 0x400B6B: thread_func (rwlock_race.c:28)
611==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
612==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
613==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
614==9466== Other segment end (thread 2)
615==9466==    at 0x4C28B54: pthread_rwlock_unlock* (drd_pthread_intercepts.c:912)
616==9466==    by 0x400B84: thread_func (rwlock_race.c:30)
617==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
618==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
619==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
620...
621</pre>
622<p>
623The above report has the following meaning:
624</p>
625<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
626<li class="listitem"><p>
627      The number in the column on the left is the process ID of the
628      process being analyzed by DRD.
629    </p></li>
630<li class="listitem"><p>
631      The first line ("Thread 3") tells you the thread ID for
632      the thread in which context the data race has been detected.
633    </p></li>
634<li class="listitem"><p>
635      The next line tells which kind of operation was performed (load or
636      store) and by which thread. On the same line the start address and the
637      number of bytes involved in the conflicting access are also displayed.
638    </p></li>
639<li class="listitem"><p>
640      Next, the call stack of the conflicting access is displayed. If
641      your program has been compiled with debug information
642      (<code class="option">-g</code>), this call stack will include file names and
643      line numbers. The two
644      bottommost frames in this call stack (<code class="function">clone</code>
645      and <code class="function">start_thread</code>) show how the NPTL starts
646      a thread. The third frame
647      (<code class="function">vg_thread_wrapper</code>) is added by DRD. The
648      fourth frame (<code class="function">thread_func</code>) is the first
649      interesting line because it shows the thread entry point, that
650      is the function that has been passed as the third argument to
651      <code class="function">pthread_create</code>.
652    </p></li>
653<li class="listitem"><p>
654      Next, the allocation context for the conflicting address is
655      displayed. For dynamically allocated data the allocation call
656      stack is shown. For static variables and stack variables the
657      allocation context is only shown when the option
658      <code class="option">--read-var-info=yes</code> has been
659      specified. Otherwise DRD will print <code class="computeroutput">Allocation
660      context: unknown</code>.
661    </p></li>
662<li class="listitem">
663<p>
664      A conflicting access involves at least two memory accesses. For
665      one of these accesses an exact call stack is displayed, and for
666      the other accesses an approximate call stack is displayed,
667      namely the start and the end of the segments of the other
668      accesses. This information can be interpreted as follows:
669      </p>
670<div class="orderedlist"><ol class="orderedlist" type="1">
671<li class="listitem"><p>
672            Start at the bottom of both call stacks, and count the
673            number stack frames with identical function name, file
674            name and line number. In the above example the three
675            bottommost frames are identical
676            (<code class="function">clone</code>,
677            <code class="function">start_thread</code> and
678            <code class="function">vg_thread_wrapper</code>).
679          </p></li>
680<li class="listitem"><p>
681            The next higher stack frame in both call stacks now tells
682            you between in which source code region the other memory
683            access happened. The above output tells that the other
684            memory access involved in the data race happened between
685            source code lines 28 and 30 in file
686            <code class="computeroutput">rwlock_race.c</code>.
687          </p></li>
688</ol></div>
689<p>
690    </p>
691</li>
692</ul></div>
693<p>
694</p>
695</div>
696<div class="sect2">
697<div class="titlepage"><div><div><h3 class="title">
698<a name="drd-manual.lock-contention"></a>8.2.3.�Detected Errors: Lock Contention</h3></div></div></div>
699<p>
700Threads must be able to make progress without being blocked for too long by
701other threads. Sometimes a thread has to wait until a mutex or reader-writer
702synchronization object is unlocked by another thread. This is called
703<span class="emphasis"><em>lock contention</em></span>.
704</p>
705<p>
706Lock contention causes delays. Such delays should be as short as
707possible. The two command line options
708<code class="literal">--exclusive-threshold=&lt;n&gt;</code> and
709<code class="literal">--shared-threshold=&lt;n&gt;</code> make it possible to
710detect excessive lock contention by making DRD report any lock that
711has been held longer than the specified threshold. An example:
712</p>
713<pre class="programlisting">
714$ valgrind --tool=drd --exclusive-threshold=10 drd/tests/hold_lock -i 500
715...
716==10668== Acquired at:
717==10668==    at 0x4C267C8: pthread_mutex_lock (drd_pthread_intercepts.c:395)
718==10668==    by 0x400D92: main (hold_lock.c:51)
719==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 10 ms).
720==10668==    at 0x4C26ADA: pthread_mutex_unlock (drd_pthread_intercepts.c:441)
721==10668==    by 0x400DB5: main (hold_lock.c:55)
722...
723</pre>
724<p>
725The <code class="literal">hold_lock</code> test program holds a lock as long as
726specified by the <code class="literal">-i</code> (interval) argument. The DRD
727output reports that the lock acquired at line 51 in source file
728<code class="literal">hold_lock.c</code> and released at line 55 was held during
729503 ms, while a threshold of 10 ms was specified to DRD.
730</p>
731</div>
732<div class="sect2">
733<div class="titlepage"><div><div><h3 class="title">
734<a name="drd-manual.api-checks"></a>8.2.4.�Detected Errors: Misuse of the POSIX threads API</h3></div></div></div>
735<p>
736  DRD is able to detect and report the following misuses of the POSIX
737  threads API:
738  </p>
739<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
740<li class="listitem"><p>
741        Passing the address of one type of synchronization object
742        (e.g. a mutex) to a POSIX API call that expects a pointer to
743        another type of synchronization object (e.g. a condition
744        variable).
745      </p></li>
746<li class="listitem"><p>
747        Attempts to unlock a mutex that has not been locked.
748      </p></li>
749<li class="listitem"><p>
750        Attempts to unlock a mutex that was locked by another thread.
751      </p></li>
752<li class="listitem"><p>
753        Attempts to lock a mutex of type
754        <code class="literal">PTHREAD_MUTEX_NORMAL</code> or a spinlock
755        recursively.
756      </p></li>
757<li class="listitem"><p>
758        Destruction or deallocation of a locked mutex.
759      </p></li>
760<li class="listitem"><p>
761        Sending a signal to a condition variable while no lock is held
762        on the mutex associated with the condition variable.
763      </p></li>
764<li class="listitem"><p>
765        Calling <code class="function">pthread_cond_wait</code> on a mutex
766        that is not locked, that is locked by another thread or that
767        has been locked recursively.
768      </p></li>
769<li class="listitem"><p>
770        Associating two different mutexes with a condition variable
771        through <code class="function">pthread_cond_wait</code>.
772      </p></li>
773<li class="listitem"><p>
774        Destruction or deallocation of a condition variable that is
775        being waited upon.
776      </p></li>
777<li class="listitem"><p>
778        Destruction or deallocation of a locked reader-writer synchronization
779        object.
780      </p></li>
781<li class="listitem"><p>
782        Attempts to unlock a reader-writer synchronization object that was not
783        locked by the calling thread.
784      </p></li>
785<li class="listitem"><p>
786        Attempts to recursively lock a reader-writer synchronization object
787        exclusively.
788      </p></li>
789<li class="listitem"><p>
790        Attempts to pass the address of a user-defined reader-writer
791        synchronization object to a POSIX threads function.
792      </p></li>
793<li class="listitem"><p>
794        Attempts to pass the address of a POSIX reader-writer synchronization
795        object to one of the annotations for user-defined reader-writer
796        synchronization objects.
797      </p></li>
798<li class="listitem"><p>
799        Reinitialization of a mutex, condition variable, reader-writer
800        lock, semaphore or barrier.
801      </p></li>
802<li class="listitem"><p>
803        Destruction or deallocation of a semaphore or barrier that is
804        being waited upon.
805      </p></li>
806<li class="listitem"><p>
807        Missing synchronization between barrier wait and barrier destruction.
808      </p></li>
809<li class="listitem"><p>
810        Exiting a thread without first unlocking the spinlocks, mutexes or
811        reader-writer synchronization objects that were locked by that thread.
812      </p></li>
813<li class="listitem"><p>
814        Passing an invalid thread ID to <code class="function">pthread_join</code>
815        or <code class="function">pthread_cancel</code>.
816      </p></li>
817</ul></div>
818<p>
819</p>
820</div>
821<div class="sect2">
822<div class="titlepage"><div><div><h3 class="title">
823<a name="drd-manual.clientreqs"></a>8.2.5.�Client Requests</h3></div></div></div>
824<p>
825Just as for other Valgrind tools it is possible to let a client program
826interact with the DRD tool through client requests. In addition to the
827client requests several macros have been defined that allow to use the
828client requests in a convenient way.
829</p>
830<p>
831The interface between client programs and the DRD tool is defined in
832the header file <code class="literal">&lt;valgrind/drd.h&gt;</code>. The
833available macros and client requests are:
834</p>
835<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
836<li class="listitem"><p>
837      The macro <code class="literal">DRD_GET_VALGRIND_THREADID</code> and the
838      corresponding client
839      request <code class="varname">VG_USERREQ__DRD_GET_VALGRIND_THREAD_ID</code>.
840      Query the thread ID that has been assigned by the Valgrind core to the
841      thread executing this client request. Valgrind's thread ID's start at
842      one and are recycled in case a thread stops.
843    </p></li>
844<li class="listitem"><p>
845      The macro <code class="literal">DRD_GET_DRD_THREADID</code> and the corresponding
846      client request <code class="varname">VG_USERREQ__DRD_GET_DRD_THREAD_ID</code>.
847      Query the thread ID that has been assigned by DRD to the thread
848      executing this client request. These are the thread ID's reported by DRD
849      in data race reports and in trace messages. DRD's thread ID's start at
850      one and are never recycled.
851    </p></li>
852<li class="listitem"><p>
853      The macros <code class="literal">DRD_IGNORE_VAR(x)</code>,
854      <code class="literal">ANNOTATE_TRACE_MEMORY(&amp;x)</code> and the corresponding
855      client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>. Some
856      applications contain intentional races. There exist e.g. applications
857      where the same value is assigned to a shared variable from two different
858      threads. It may be more convenient to suppress such races than to solve
859      these. This client request allows to suppress such races.
860    </p></li>
861<li class="listitem"><p>
862      The macro <code class="literal">DRD_STOP_IGNORING_VAR(x)</code> and the
863      corresponding client request
864      <code class="varname">VG_USERREQ__DRD_FINISH_SUPPRESSION</code>. Tell DRD
865      to no longer ignore data races for the address range that was suppressed
866      either via the macro <code class="literal">DRD_IGNORE_VAR(x)</code> or via the
867      client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>.
868    </p></li>
869<li class="listitem"><p>
870      The macro <code class="literal">DRD_TRACE_VAR(x)</code>. Trace all load and store
871      activity for the address range starting at <code class="literal">&amp;x</code> and
872      occupying <code class="literal">sizeof(x)</code> bytes. When DRD reports a data
873      race on a specified variable, and it's not immediately clear which
874      source code statements triggered the conflicting accesses, it can be
875      very helpful to trace all activity on the offending memory location.
876    </p></li>
877<li class="listitem"><p>
878      The macro <code class="literal">DRD_STOP_TRACING_VAR(x)</code>. Stop tracing load
879      and store activity for the address range starting
880      at <code class="literal">&amp;x</code> and occupying <code class="literal">sizeof(x)</code>
881      bytes.
882    </p></li>
883<li class="listitem"><p>
884      The macro <code class="literal">ANNOTATE_TRACE_MEMORY(&amp;x)</code>. Trace all
885      load and store activity that touches at least the single byte at the
886      address <code class="literal">&amp;x</code>.
887    </p></li>
888<li class="listitem"><p>
889      The client request <code class="varname">VG_USERREQ__DRD_START_TRACE_ADDR</code>,
890      which allows to trace all load and store activity for the specified
891      address range.
892    </p></li>
893<li class="listitem"><p>
894      The client
895      request <code class="varname">VG_USERREQ__DRD_STOP_TRACE_ADDR</code>. Do no longer
896      trace load and store activity for the specified address range.
897    </p></li>
898<li class="listitem"><p>
899      The macro <code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> tells DRD to
900      insert a mark. Insert this macro just after an access to the variable at
901      the specified address has been performed.
902    </p></li>
903<li class="listitem"><p>
904      The macro <code class="literal">ANNOTATE_HAPPENS_AFTER(addr)</code> tells DRD that
905      the next access to the variable at the specified address should be
906      considered to have happened after the access just before the latest
907      <code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> annotation that
908      references the same variable. The purpose of these two macros is to tell
909      DRD about the order of inter-thread memory accesses implemented via
910      atomic memory operations. See
911      also <code class="literal">drd/tests/annotate_smart_pointer.cpp</code> for an
912      example.
913    </p></li>
914<li class="listitem"><p>
915      The macro <code class="literal">ANNOTATE_RWLOCK_CREATE(rwlock)</code> tells DRD
916      that the object at address <code class="literal">rwlock</code> is a
917      reader-writer synchronization object that is not a
918      <code class="literal">pthread_rwlock_t</code> synchronization object.  See
919      also <code class="literal">drd/tests/annotate_rwlock.c</code> for an example.
920    </p></li>
921<li class="listitem"><p>
922      The macro <code class="literal">ANNOTATE_RWLOCK_DESTROY(rwlock)</code> tells DRD
923      that the reader-writer synchronization object at
924      address <code class="literal">rwlock</code> has been destroyed.
925    </p></li>
926<li class="listitem"><p>
927      The macro <code class="literal">ANNOTATE_WRITERLOCK_ACQUIRED(rwlock)</code> tells
928      DRD that a writer lock has been acquired on the reader-writer
929      synchronization object at address <code class="literal">rwlock</code>.
930    </p></li>
931<li class="listitem"><p>
932      The macro <code class="literal">ANNOTATE_READERLOCK_ACQUIRED(rwlock)</code> tells
933      DRD that a reader lock has been acquired on the reader-writer
934      synchronization object at address <code class="literal">rwlock</code>.
935    </p></li>
936<li class="listitem"><p>
937      The macro <code class="literal">ANNOTATE_RWLOCK_ACQUIRED(rwlock, is_w)</code>
938      tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
939      a reader lock (when <code class="literal">is_w == 0</code>) has been acquired on
940      the reader-writer synchronization object at
941      address <code class="literal">rwlock</code>.
942    </p></li>
943<li class="listitem"><p>
944      The macro <code class="literal">ANNOTATE_WRITERLOCK_RELEASED(rwlock)</code> tells
945      DRD that a writer lock has been released on the reader-writer
946      synchronization object at address <code class="literal">rwlock</code>.
947    </p></li>
948<li class="listitem"><p>
949      The macro <code class="literal">ANNOTATE_READERLOCK_RELEASED(rwlock)</code> tells
950      DRD that a reader lock has been released on the reader-writer
951      synchronization object at address <code class="literal">rwlock</code>.
952    </p></li>
953<li class="listitem"><p>
954      The macro <code class="literal">ANNOTATE_RWLOCK_RELEASED(rwlock, is_w)</code>
955      tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
956      a reader lock (when <code class="literal">is_w == 0</code>) has been released on
957      the reader-writer synchronization object at
958      address <code class="literal">rwlock</code>.
959    </p></li>
960<li class="listitem"><p>
961      The macro <code class="literal">ANNOTATE_BARRIER_INIT(barrier, count,
962      reinitialization_allowed)</code> tells DRD that a new barrier object
963      at the address <code class="literal">barrier</code> has been initialized,
964      that <code class="literal">count</code> threads participate in each barrier and
965      also whether or not barrier reinitialization without intervening
966      destruction should be reported as an error. See
967      also <code class="literal">drd/tests/annotate_barrier.c</code> for an example.
968    </p></li>
969<li class="listitem"><p>
970      The macro <code class="literal">ANNOTATE_BARRIER_DESTROY(barrier)</code>
971      tells DRD that a barrier object is about to be destroyed.
972    </p></li>
973<li class="listitem"><p>
974      The macro <code class="literal">ANNOTATE_BARRIER_WAIT_BEFORE(barrier)</code>
975      tells DRD that waiting for a barrier will start.
976    </p></li>
977<li class="listitem"><p>
978      The macro <code class="literal">ANNOTATE_BARRIER_WAIT_AFTER(barrier)</code>
979      tells DRD that waiting for a barrier has finished.
980    </p></li>
981<li class="listitem"><p>
982      The macro <code class="literal">ANNOTATE_BENIGN_RACE_SIZED(addr, size,
983      descr)</code> tells DRD that any races detected on the specified
984      address are benign and hence should not be
985      reported. The <code class="literal">descr</code> argument is ignored but can be
986      used to document why data races on <code class="literal">addr</code> are benign.
987    </p></li>
988<li class="listitem"><p>
989      The macro <code class="literal">ANNOTATE_BENIGN_RACE_STATIC(var, descr)</code>
990      tells DRD that any races detected on the specified static variable are
991      benign and hence should not be reported. The <code class="literal">descr</code>
992      argument is ignored but can be used to document why data races
993      on <code class="literal">var</code> are benign. Note: this macro can only be
994      used in C++ programs and not in C programs.
995    </p></li>
996<li class="listitem"><p>
997      The macro <code class="literal">ANNOTATE_IGNORE_READS_BEGIN</code> tells
998      DRD to ignore all memory loads performed by the current thread.
999    </p></li>
1000<li class="listitem"><p>
1001      The macro <code class="literal">ANNOTATE_IGNORE_READS_END</code> tells
1002      DRD to stop ignoring the memory loads performed by the current thread.
1003    </p></li>
1004<li class="listitem"><p>
1005      The macro <code class="literal">ANNOTATE_IGNORE_WRITES_BEGIN</code> tells
1006      DRD to ignore all memory stores performed by the current thread.
1007    </p></li>
1008<li class="listitem"><p>
1009      The macro <code class="literal">ANNOTATE_IGNORE_WRITES_END</code> tells
1010      DRD to stop ignoring the memory stores performed by the current thread.
1011    </p></li>
1012<li class="listitem"><p>
1013      The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN</code> tells
1014      DRD to ignore all memory accesses performed by the current thread.
1015    </p></li>
1016<li class="listitem"><p>
1017      The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_END</code> tells
1018      DRD to stop ignoring the memory accesses performed by the current thread.
1019    </p></li>
1020<li class="listitem"><p>
1021      The macro <code class="literal">ANNOTATE_NEW_MEMORY(addr, size)</code> tells
1022      DRD that the specified memory range has been allocated by a custom
1023      memory allocator in the client program and that the client program
1024      will start using this memory range.
1025    </p></li>
1026<li class="listitem"><p>
1027      The macro <code class="literal">ANNOTATE_THREAD_NAME(name)</code> tells DRD to
1028      associate the specified name with the current thread and to include this
1029      name in the error messages printed by DRD.
1030    </p></li>
1031<li class="listitem"><p>
1032      The macros <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code> and
1033      <code class="literal">VALGRIND_FREELIKE_BLOCK</code> from the Valgrind core are
1034      implemented;  they are described in
1035      <a class="xref" href="manual-core-adv.html#manual-core-adv.clientreq" title="3.1.�The Client Request mechanism">The Client Request mechanism</a>.
1036    </p></li>
1037</ul></div>
1038<p>
1039</p>
1040<p>
1041Note: if you compiled Valgrind yourself, the header file
1042<code class="literal">&lt;valgrind/drd.h&gt;</code> will have been installed in
1043the directory <code class="literal">/usr/include</code> by the command
1044<code class="literal">make install</code>. If you obtained Valgrind by
1045installing it as a package however, you will probably have to install
1046another package with a name like <code class="literal">valgrind-devel</code>
1047before Valgrind's header files are available.
1048</p>
1049</div>
1050<div class="sect2">
1051<div class="titlepage"><div><div><h3 class="title">
1052<a name="drd-manual.C++11"></a>8.2.6.�Debugging C++11 Programs</h3></div></div></div>
1053<p>If you want to use the C++11 class std::thread you will need to do the
1054  following to annotate the std::shared_ptr&lt;&gt; objects used in the
1055  implementation of that class:
1056</p>
1057<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1058<li class="listitem">
1059<p>Add the following code at the start of a common header or at the
1060    start of each source file, before any C++ header files are included:</p>
1061<pre class="programlisting">
1062#include &lt;valgrind/drd.h&gt;
1063#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(addr) ANNOTATE_HAPPENS_BEFORE(addr)
1064#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(addr)  ANNOTATE_HAPPENS_AFTER(addr)
1065</pre>
1066</li>
1067<li class="listitem"><p>Download the gcc source code and from source file
1068    libstdc++-v3/src/c++11/thread.cc copy the implementation of the
1069    <code class="computeroutput">execute_native_thread_routine()</code>
1070    and <code class="computeroutput">std::thread::_M_start_thread()</code>
1071    functions into a source file that is linked with your application. Make
1072    sure that also in this source file the
1073    _GLIBCXX_SYNCHRONIZATION_HAPPENS_*() macros are defined properly.</p></li>
1074</ul></div>
1075<p>
1076</p>
1077<p>For more information, see also <span class="emphasis"><em>The
1078GNU C++ Library Manual, Debugging Support</em></span>
1079(<a class="ulink" href="http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html" target="_top">http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html</a>).</p>
1080</div>
1081<div class="sect2">
1082<div class="titlepage"><div><div><h3 class="title">
1083<a name="drd-manual.gnome"></a>8.2.7.�Debugging GNOME Programs</h3></div></div></div>
1084<p>
1085GNOME applications use the threading primitives provided by the
1086<code class="computeroutput">glib</code> and
1087<code class="computeroutput">gthread</code> libraries. These libraries
1088are built on top of POSIX threads, and hence are directly supported by
1089DRD. Please keep in mind that you have to call
1090<code class="function">g_thread_init</code> before creating any threads, or
1091DRD will report several data races on glib functions. See also the
1092<a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Threads.html" target="_top">GLib
1093Reference Manual</a> for more information about
1094<code class="function">g_thread_init</code>.
1095</p>
1096<p>
1097One of the many facilities provided by the <code class="literal">glib</code>
1098library is a block allocator, called <code class="literal">g_slice</code>. You
1099have to disable this block allocator when using DRD by adding the
1100following to the shell environment variables:
1101<code class="literal">G_SLICE=always-malloc</code>. See also the <a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html" target="_top">GLib
1102Reference Manual</a> for more information.
1103</p>
1104</div>
1105<div class="sect2">
1106<div class="titlepage"><div><div><h3 class="title">
1107<a name="drd-manual.boost.thread"></a>8.2.8.�Debugging Boost.Thread Programs</h3></div></div></div>
1108<p>
1109The Boost.Thread library is the threading library included with the
1110cross-platform Boost Libraries. This threading library is an early
1111implementation of the upcoming C++0x threading library.
1112</p>
1113<p>
1114Applications that use the Boost.Thread library should run fine under DRD.
1115</p>
1116<p>
1117More information about Boost.Thread can be found here:
1118</p>
1119<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1120<li class="listitem"><p>
1121      Anthony Williams, <a class="ulink" href="http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html" target="_top">Boost.Thread</a>
1122      Library Documentation, Boost website, 2007.
1123    </p></li>
1124<li class="listitem"><p>
1125      Anthony Williams, <a class="ulink" href="http://www.ddj.com/cpp/211600441" target="_top">What's New in Boost
1126      Threads?</a>, Recent changes to the Boost Thread library,
1127      Dr. Dobbs Magazine, October 2008.
1128    </p></li>
1129</ul></div>
1130<p>
1131</p>
1132</div>
1133<div class="sect2">
1134<div class="titlepage"><div><div><h3 class="title">
1135<a name="drd-manual.openmp"></a>8.2.9.�Debugging OpenMP Programs</h3></div></div></div>
1136<p>
1137OpenMP stands for <span class="emphasis"><em>Open Multi-Processing</em></span>. The OpenMP
1138standard consists of a set of compiler directives for C, C++ and Fortran
1139programs that allows a compiler to transform a sequential program into a
1140parallel program. OpenMP is well suited for HPC applications and allows to
1141work at a higher level compared to direct use of the POSIX threads API. While
1142OpenMP ensures that the POSIX API is used correctly, OpenMP programs can still
1143contain data races. So it definitely makes sense to verify OpenMP programs
1144with a thread checking tool.
1145</p>
1146<p>
1147DRD supports OpenMP shared-memory programs generated by GCC. GCC
1148supports OpenMP since version 4.2.0.  GCC's runtime support
1149for OpenMP programs is provided by a library called
1150<code class="literal">libgomp</code>. The synchronization primitives implemented
1151in this library use Linux' futex system call directly, unless the
1152library has been configured with the
1153<code class="literal">--disable-linux-futex</code> option. DRD only supports
1154libgomp libraries that have been configured with this option and in
1155which symbol information is present. For most Linux distributions this
1156means that you will have to recompile GCC. See also the script
1157<code class="literal">drd/scripts/download-and-build-gcc</code> in the
1158Valgrind source tree for an example of how to compile GCC. You will
1159also have to make sure that the newly compiled
1160<code class="literal">libgomp.so</code> library is loaded when OpenMP programs
1161are started. This is possible by adding a line similar to the
1162following to your shell startup script:
1163</p>
1164<pre class="programlisting">
1165export LD_LIBRARY_PATH=~/gcc-4.4.0/lib64:~/gcc-4.4.0/lib:
1166</pre>
1167<p>
1168As an example, the test OpenMP test program
1169<code class="literal">drd/tests/omp_matinv</code> triggers a data race
1170when the option -r has been specified on the command line. The data
1171race is triggered by the following code:
1172</p>
1173<pre class="programlisting">
1174#pragma omp parallel for private(j)
1175for (j = 0; j &lt; rows; j++)
1176{
1177  if (i != j)
1178  {
1179    const elem_t factor = a[j * cols + i];
1180    for (k = 0; k &lt; cols; k++)
1181    {
1182      a[j * cols + k] -= a[i * cols + k] * factor;
1183    }
1184  }
1185}
1186</pre>
1187<p>
1188The above code is racy because the variable <code class="literal">k</code> has
1189not been declared private. DRD will print the following error message
1190for the above code:
1191</p>
1192<pre class="programlisting">
1193$ valgrind --tool=drd --check-stack-var=yes --read-var-info=yes drd/tests/omp_matinv 3 -t 2 -r
1194...
1195Conflicting store by thread 1/1 at 0x7fefffbc4 size 4
1196   at 0x4014A0: gj.omp_fn.0 (omp_matinv.c:203)
1197   by 0x401211: gj (omp_matinv.c:159)
1198   by 0x40166A: invert_matrix (omp_matinv.c:238)
1199   by 0x4019B4: main (omp_matinv.c:316)
1200Location 0x7fefffbc4 is 0 bytes inside local var "k"
1201declared at omp_matinv.c:160, in frame #0 of thread 1
1202...
1203</pre>
1204<p>
1205In the above output the function name <code class="function">gj.omp_fn.0</code>
1206has been generated by GCC from the function name
1207<code class="function">gj</code>. The allocation context information shows that the
1208data race has been caused by modifying the variable <code class="literal">k</code>.
1209</p>
1210<p>
1211Note: for GCC versions before 4.4.0, no allocation context information is
1212shown. With these GCC versions the most usable information in the above output
1213is the source file name and the line number where the data race has been
1214detected (<code class="literal">omp_matinv.c:203</code>).
1215</p>
1216<p>
1217For more information about OpenMP, see also
1218<a class="ulink" href="http://openmp.org/" target="_top">openmp.org</a>.
1219</p>
1220</div>
1221<div class="sect2">
1222<div class="titlepage"><div><div><h3 class="title">
1223<a name="drd-manual.cust-mem-alloc"></a>8.2.10.�DRD and Custom Memory Allocators</h3></div></div></div>
1224<p>
1225DRD tracks all memory allocation events that happen via the
1226standard memory allocation and deallocation functions
1227(<code class="function">malloc</code>, <code class="function">free</code>,
1228<code class="function">new</code> and <code class="function">delete</code>), via entry
1229and exit of stack frames or that have been annotated with Valgrind's
1230memory pool client requests. DRD uses memory allocation and deallocation
1231information for two purposes:
1232</p>
1233<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1234<li class="listitem"><p>
1235      To know where the scope ends of POSIX objects that have not been
1236      destroyed explicitly. It is e.g. not required by the POSIX
1237      threads standard to call
1238      <code class="function">pthread_mutex_destroy</code> before freeing the
1239      memory in which a mutex object resides.
1240    </p></li>
1241<li class="listitem"><p>
1242      To know where the scope of variables ends. If e.g. heap memory
1243      has been used by one thread, that thread frees that memory, and
1244      another thread allocates and starts using that memory, no data
1245      races must be reported for that memory.
1246    </p></li>
1247</ul></div>
1248<p>
1249</p>
1250<p>
1251It is essential for correct operation of DRD that the tool knows about
1252memory allocation and deallocation events. When analyzing a client program
1253with DRD that uses a custom memory allocator, either instrument the custom
1254memory allocator with the <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code>
1255and <code class="literal">VALGRIND_FREELIKE_BLOCK</code> macros or disable the
1256custom memory allocator.
1257</p>
1258<p>
1259As an example, the GNU libstdc++ library can be configured
1260to use standard memory allocation functions instead of memory pools by
1261setting the environment variable
1262<code class="literal">GLIBCXX_FORCE_NEW</code>. For more information, see also
1263the <a class="ulink" href="http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt04ch11.html" target="_top">libstdc++
1264manual</a>.
1265</p>
1266</div>
1267<div class="sect2">
1268<div class="titlepage"><div><div><h3 class="title">
1269<a name="drd-manual.drd-versus-memcheck"></a>8.2.11.�DRD Versus Memcheck</h3></div></div></div>
1270<p>
1271It is essential for correct operation of DRD that there are no memory
1272errors such as dangling pointers in the client program. Which means that
1273it is a good idea to make sure that your program is Memcheck-clean
1274before you analyze it with DRD. It is possible however that some of
1275the Memcheck reports are caused by data races. In this case it makes
1276sense to run DRD before Memcheck.
1277</p>
1278<p>
1279So which tool should be run first? In case both DRD and Memcheck
1280complain about a program, a possible approach is to run both tools
1281alternatingly and to fix as many errors as possible after each run of
1282each tool until none of the two tools prints any more error messages.
1283</p>
1284</div>
1285<div class="sect2">
1286<div class="titlepage"><div><div><h3 class="title">
1287<a name="drd-manual.resource-requirements"></a>8.2.12.�Resource Requirements</h3></div></div></div>
1288<p>
1289The requirements of DRD with regard to heap and stack memory and the
1290effect on the execution time of client programs are as follows:
1291</p>
1292<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1293<li class="listitem"><p>
1294      When running a program under DRD with default DRD options,
1295      between 1.1 and 3.6 times more memory will be needed compared to
1296      a native run of the client program. More memory will be needed
1297      if loading debug information has been enabled
1298      (<code class="literal">--read-var-info=yes</code>).
1299    </p></li>
1300<li class="listitem"><p>
1301      DRD allocates some of its temporary data structures on the stack
1302      of the client program threads. This amount of data is limited to
1303      1 - 2 KB. Make sure that thread stacks are sufficiently large.
1304    </p></li>
1305<li class="listitem"><p>
1306      Most applications will run between 20 and 50 times slower under
1307      DRD than a native single-threaded run. The slowdown will be most
1308      noticeable for applications which perform frequent mutex lock /
1309      unlock operations.
1310    </p></li>
1311</ul></div>
1312<p>
1313</p>
1314</div>
1315<div class="sect2">
1316<div class="titlepage"><div><div><h3 class="title">
1317<a name="drd-manual.effective-use"></a>8.2.13.�Hints and Tips for Effective Use of DRD</h3></div></div></div>
1318<p>
1319The following information may be helpful when using DRD:
1320</p>
1321<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1322<li class="listitem"><p>
1323      Make sure that debug information is present in the executable
1324      being analyzed, such that DRD can print function name and line
1325      number information in stack traces. Most compilers can be told
1326      to include debug information via compiler option
1327      <code class="option">-g</code>.
1328    </p></li>
1329<li class="listitem"><p>
1330      Compile with option <code class="option">-O1</code> instead of
1331      <code class="option">-O0</code>. This will reduce the amount of generated
1332      code, may reduce the amount of debug info and will speed up
1333      DRD's processing of the client program. For more information,
1334      see also <a class="xref" href="manual-core.html#manual-core.started" title="2.2.�Getting started">Getting started</a>.
1335    </p></li>
1336<li class="listitem"><p>
1337      If DRD reports any errors on libraries that are part of your
1338      Linux distribution like e.g. <code class="literal">libc.so</code> or
1339      <code class="literal">libstdc++.so</code>, installing the debug packages
1340      for these libraries will make the output of DRD a lot more
1341      detailed.
1342    </p></li>
1343<li class="listitem">
1344<p>
1345      When using C++, do not send output from more than one thread to
1346      <code class="literal">std::cout</code>. Doing so would not only
1347      generate multiple data race reports, it could also result in
1348      output from several threads getting mixed up.  Either use
1349      <code class="function">printf</code> or do the following:
1350      </p>
1351<div class="orderedlist"><ol class="orderedlist" type="1">
1352<li class="listitem"><p>Derive a class from <code class="literal">std::ostreambuf</code>
1353          and let that class send output line by line to
1354          <code class="literal">stdout</code>. This will avoid that individual
1355          lines of text produced by different threads get mixed
1356          up.</p></li>
1357<li class="listitem"><p>Create one instance of <code class="literal">std::ostream</code>
1358          for each thread. This makes stream formatting settings
1359          thread-local. Pass a per-thread instance of the class
1360          derived from <code class="literal">std::ostreambuf</code> to the
1361          constructor of each instance. </p></li>
1362<li class="listitem"><p>Let each thread send its output to its own instance of
1363          <code class="literal">std::ostream</code> instead of
1364          <code class="literal">std::cout</code>.</p></li>
1365</ol></div>
1366<p>
1367    </p>
1368</li>
1369</ul></div>
1370<p>
1371</p>
1372</div>
1373</div>
1374<div class="sect1">
1375<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1376<a name="drd-manual.Pthreads"></a>8.3.�Using the POSIX Threads API Effectively</h2></div></div></div>
1377<div class="sect2">
1378<div class="titlepage"><div><div><h3 class="title">
1379<a name="drd-manual.mutex-types"></a>8.3.1.�Mutex types</h3></div></div></div>
1380<p>
1381The Single UNIX Specification version two defines the following four
1382mutex types (see also the documentation of <a class="ulink" href="http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html" target="_top"><code class="function">pthread_mutexattr_settype</code></a>):
1383</p>
1384<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1385<li class="listitem"><p>
1386      <span class="emphasis"><em>normal</em></span>, which means that no error checking
1387      is performed, and that the mutex is non-recursive.
1388    </p></li>
1389<li class="listitem"><p>
1390      <span class="emphasis"><em>error checking</em></span>, which means that the mutex
1391      is non-recursive and that error checking is performed.
1392    </p></li>
1393<li class="listitem"><p>
1394      <span class="emphasis"><em>recursive</em></span>, which means that a mutex may be
1395      locked recursively.
1396    </p></li>
1397<li class="listitem"><p>
1398      <span class="emphasis"><em>default</em></span>, which means that error checking
1399      behavior is undefined, and that the behavior for recursive
1400      locking is also undefined. Or: portable code must neither
1401      trigger error conditions through the Pthreads API nor attempt to
1402      lock a mutex of default type recursively.
1403    </p></li>
1404</ul></div>
1405<p>
1406</p>
1407<p>
1408In complex applications it is not always clear from beforehand which
1409mutex will be locked recursively and which mutex will not be locked
1410recursively. Attempts lock a non-recursive mutex recursively will
1411result in race conditions that are very hard to find without a thread
1412checking tool. So either use the error checking mutex type and
1413consistently check the return value of Pthread API mutex calls, or use
1414the recursive mutex type.
1415</p>
1416</div>
1417<div class="sect2">
1418<div class="titlepage"><div><div><h3 class="title">
1419<a name="drd-manual.condvar"></a>8.3.2.�Condition variables</h3></div></div></div>
1420<p>
1421A condition variable allows one thread to wake up one or more other
1422threads. Condition variables are often used to notify one or more
1423threads about state changes of shared data. Unfortunately it is very
1424easy to introduce race conditions by using condition variables as the
1425only means of state information propagation. A better approach is to
1426let threads poll for changes of a state variable that is protected by
1427a mutex, and to use condition variables only as a thread wakeup
1428mechanism. See also the source file
1429<code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
1430example of how to implement this concept in C++. The monitor concept
1431used in this example is a well known and very useful concept -- see
1432also Wikipedia for more information about the <a class="ulink" href="http://en.wikipedia.org/wiki/Monitor_(synchronization)" target="_top">monitor</a>
1433concept.
1434</p>
1435</div>
1436<div class="sect2">
1437<div class="titlepage"><div><div><h3 class="title">
1438<a name="drd-manual.pctw"></a>8.3.3.�pthread_cond_timedwait and timeouts</h3></div></div></div>
1439<p>
1440Historically the function
1441<code class="function">pthread_cond_timedwait</code> only allowed the
1442specification of an absolute timeout, that is a timeout independent of
1443the time when this function was called. However, almost every call to
1444this function expresses a relative timeout. This typically happens by
1445passing the sum of
1446<code class="computeroutput">clock_gettime(CLOCK_REALTIME)</code> and a
1447relative timeout as the third argument. This approach is incorrect
1448since forward or backward clock adjustments by e.g. ntpd will affect
1449the timeout. A more reliable approach is as follows:
1450</p>
1451<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1452<li class="listitem"><p>
1453      When initializing a condition variable through
1454      <code class="function">pthread_cond_init</code>, specify that the timeout of
1455      <code class="function">pthread_cond_timedwait</code> will use the clock
1456      <code class="literal">CLOCK_MONOTONIC</code> instead of
1457      <code class="literal">CLOCK_REALTIME</code>. You can do this via
1458      <code class="computeroutput">pthread_condattr_setclock(...,
1459      CLOCK_MONOTONIC)</code>.
1460    </p></li>
1461<li class="listitem"><p>
1462      When calling <code class="function">pthread_cond_timedwait</code>, pass
1463      the sum of
1464      <code class="computeroutput">clock_gettime(CLOCK_MONOTONIC)</code>
1465      and a relative timeout as the third argument.
1466    </p></li>
1467</ul></div>
1468<p>
1469See also
1470<code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
1471example.
1472</p>
1473</div>
1474</div>
1475<div class="sect1">
1476<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1477<a name="drd-manual.limitations"></a>8.4.�Limitations</h2></div></div></div>
1478<p>DRD currently has the following limitations:</p>
1479<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
1480<li class="listitem"><p>
1481      DRD, just like Memcheck, will refuse to start on Linux
1482      distributions where all symbol information has been removed from
1483      <code class="filename">ld.so</code>. This is e.g. the case for the PPC editions
1484      of openSUSE and Gentoo. You will have to install the glibc debuginfo
1485      package on these platforms before you can use DRD. See also openSUSE
1486      bug <a class="ulink" href="http://bugzilla.novell.com/show_bug.cgi?id=396197" target="_top">
1487      396197</a> and Gentoo bug <a class="ulink" href="http://bugs.gentoo.org/214065" target="_top">214065</a>.
1488    </p></li>
1489<li class="listitem"><p>
1490      With gcc 4.4.3 and before, DRD may report data races on the C++
1491      class <code class="literal">std::string</code> in a multithreaded program. This is
1492      a know <code class="literal">libstdc++</code> issue -- see also GCC bug
1493      <a class="ulink" href="http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518" target="_top">40518</a>
1494      for more information.
1495    </p></li>
1496<li class="listitem"><p>
1497      If you compile the DRD source code yourself, you need GCC 3.0 or
1498      later. GCC 2.95 is not supported.
1499    </p></li>
1500<li class="listitem"><p>
1501      Of the two POSIX threads implementations for Linux, only the
1502      NPTL (Native POSIX Thread Library) is supported. The older
1503      LinuxThreads library is not supported.
1504    </p></li>
1505</ul></div>
1506</div>
1507<div class="sect1">
1508<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1509<a name="drd-manual.feedback"></a>8.5.�Feedback</h2></div></div></div>
1510<p>
1511If you have any comments, suggestions, feedback or bug reports about
1512DRD, feel free to either post a message on the Valgrind users mailing
1513list or to file a bug report. See also <a class="ulink" href="http://www.valgrind.org/" target="_top">http://www.valgrind.org/</a> for more information.
1514</p>
1515</div>
1516</div>
1517<div>
1518<br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
1519<tr>
1520<td rowspan="2" width="40%" align="left">
1521<a accesskey="p" href="hg-manual.html">&lt;&lt;�7.�Helgrind: a thread error detector</a>�</td>
1522<td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
1523<td rowspan="2" width="40%" align="right">�<a accesskey="n" href="ms-manual.html">9.�Massif: a heap profiler�&gt;&gt;</a>
1524</td>
1525</tr>
1526<tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
1527</table>
1528</div>
1529</body>
1530</html>
1531