1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Debug.h>
29 #include <utils/Log.h>
30 #include <audio_utils/primitives.h>
31
32 #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here
33 #include "AudioResamplerFirProcess.h"
34 #include "AudioResamplerFirProcessNeon.h"
35 #include "AudioResamplerFirProcessSSE.h"
36 #include "AudioResamplerFirGen.h" // requires math.h
37 #include "AudioResamplerDyn.h"
38
39 //#define DEBUG_RESAMPLER
40
41 // use this for our buffer alignment. Should be at least 32 bytes.
42 constexpr size_t CACHE_LINE_SIZE = 64;
43
44 namespace android {
45
46 /*
47 * InBuffer is a type agnostic input buffer.
48 *
49 * Layout of the state buffer for halfNumCoefs=8.
50 *
51 * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
52 * S I R
53 *
54 * S = mState
55 * I = mImpulse
56 * R = mRingFull
57 * p = past samples, convoluted with the (p)ositive side of sinc()
58 * n = future samples, convoluted with the (n)egative side of sinc()
59 * r = extra space for implementing the ring buffer
60 */
61
62 template<typename TC, typename TI, typename TO>
InBuffer()63 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
64 : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
65 {
66 }
67
68 template<typename TC, typename TI, typename TO>
~InBuffer()69 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
70 {
71 init();
72 }
73
74 template<typename TC, typename TI, typename TO>
init()75 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
76 {
77 free(mState);
78 mState = NULL;
79 mImpulse = NULL;
80 mRingFull = NULL;
81 mStateCount = 0;
82 }
83
84 // resizes the state buffer to accommodate the appropriate filter length
85 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)86 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
87 {
88 // calculate desired state size
89 size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
90
91 // check if buffer needs resizing
92 if (mState
93 && stateCount == mStateCount
94 && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
95 return;
96 }
97
98 // create new buffer
99 TI* state = NULL;
100 (void)posix_memalign(
101 reinterpret_cast<void **>(&state),
102 CACHE_LINE_SIZE /* alignment */,
103 stateCount * sizeof(*state));
104 memset(state, 0, stateCount*sizeof(*state));
105
106 // attempt to preserve state
107 if (mState) {
108 TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
109 TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
110 TI* dst = state;
111
112 if (srcLo < mState) {
113 dst += mState-srcLo;
114 srcLo = mState;
115 }
116 if (srcHi > mState + mStateCount) {
117 srcHi = mState + mStateCount;
118 }
119 memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
120 free(mState);
121 }
122
123 // set class member vars
124 mState = state;
125 mStateCount = stateCount;
126 mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
127 mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
128 }
129
130 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
131 template<typename TC, typename TI, typename TO>
132 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)133 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
134 const TI* const in, const size_t inputIndex)
135 {
136 TI* head = impulse + halfNumCoefs*CHANNELS;
137 for (size_t i=0 ; i<CHANNELS ; i++) {
138 head[i] = in[inputIndex*CHANNELS + i];
139 }
140 }
141
142 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
143 template<typename TC, typename TI, typename TO>
144 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)145 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
146 const TI* const in, const size_t inputIndex)
147 {
148 impulse += CHANNELS;
149
150 if (CC_UNLIKELY(impulse >= mRingFull)) {
151 const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
152 memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
153 impulse -= shiftDown;
154 }
155 readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
156 }
157
158 template<typename TC, typename TI, typename TO>
reset()159 void AudioResamplerDyn<TC, TI, TO>::InBuffer::reset()
160 {
161 // clear resampler state
162 if (mState != nullptr) {
163 memset(mState, 0, mStateCount * sizeof(TI));
164 }
165 }
166
167 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)168 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
169 int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
170 {
171 int bits = 0;
172 int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
173 static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
174 for (int i=lscale; i; ++bits, i>>=1)
175 ;
176 mL = L;
177 mShift = kNumPhaseBits - bits;
178 mHalfNumCoefs = halfNumCoefs;
179 }
180
181 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)182 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
183 int inChannelCount, int32_t sampleRate, src_quality quality)
184 : AudioResampler(inChannelCount, sampleRate, quality),
185 mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
186 mCoefBuffer(NULL)
187 {
188 mVolumeSimd[0] = mVolumeSimd[1] = 0;
189 // The AudioResampler base class assumes we are always ready for 1:1 resampling.
190 // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
191 // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
192 mInSampleRate = 0;
193 mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
194
195 // fetch property based resampling parameters
196 mPropertyEnableAtSampleRate = property_get_int32(
197 "ro.audio.resampler.psd.enable_at_samplerate", mPropertyEnableAtSampleRate);
198 mPropertyHalfFilterLength = property_get_int32(
199 "ro.audio.resampler.psd.halflength", mPropertyHalfFilterLength);
200 mPropertyStopbandAttenuation = property_get_int32(
201 "ro.audio.resampler.psd.stopband", mPropertyStopbandAttenuation);
202 mPropertyCutoffPercent = property_get_int32(
203 "ro.audio.resampler.psd.cutoff_percent", mPropertyCutoffPercent);
204 }
205
206 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()207 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
208 {
209 free(mCoefBuffer);
210 }
211
212 template<typename TC, typename TI, typename TO>
init()213 void AudioResamplerDyn<TC, TI, TO>::init()
214 {
215 mFilterSampleRate = 0; // always trigger new filter generation
216 mInBuffer.init();
217 }
218
219 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)220 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
221 {
222 AudioResampler::setVolume(left, right);
223 if (is_same<TO, float>::value || is_same<TO, double>::value) {
224 mVolumeSimd[0] = static_cast<TO>(left);
225 mVolumeSimd[1] = static_cast<TO>(right);
226 } else { // integer requires scaling to U4_28 (rounding down)
227 // integer volumes are clamped to 0 to UNITY_GAIN so there
228 // are no issues with signed overflow.
229 mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
230 mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
231 }
232 }
233
234 // TODO: update to C++11
235
max(T a,T b)236 template<typename T> T max(T a, T b) {return a > b ? a : b;}
237
absdiff(T a,T b)238 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
239
240 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)241 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
242 double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
243 {
244 // compute the normalized transition bandwidth
245 const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
246 const double halfbw = tbw / 2.;
247
248 double fcr; // compute fcr, the 3 dB amplitude cut-off.
249 if (inSampleRate < outSampleRate) { // upsample
250 fcr = max(0.5 * tbwCheat - halfbw, halfbw);
251 } else { // downsample
252 fcr = max(0.5 * tbwCheat * outSampleRate / inSampleRate - halfbw, halfbw);
253 }
254 createKaiserFir(c, stopBandAtten, fcr);
255 }
256
257 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,double fcr)258 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
259 double stopBandAtten, double fcr) {
260 // compute the normalized transition bandwidth
261 const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
262 const int phases = c.mL;
263 const int halfLength = c.mHalfNumCoefs;
264
265 // create buffer
266 TC *coefs = nullptr;
267 int ret = posix_memalign(
268 reinterpret_cast<void **>(&coefs),
269 CACHE_LINE_SIZE /* alignment */,
270 (phases + 1) * halfLength * sizeof(TC));
271 LOG_ALWAYS_FATAL_IF(ret != 0, "Cannot allocate buffer memory, ret %d", ret);
272 c.mFirCoefs = coefs;
273 free(mCoefBuffer);
274 mCoefBuffer = coefs;
275
276 // square the computed minimum passband value (extra safety).
277 double attenuation =
278 computeWindowedSincMinimumPassbandValue(stopBandAtten);
279 attenuation *= attenuation;
280
281 // design filter
282 firKaiserGen(coefs, phases, halfLength, stopBandAtten, fcr, attenuation);
283
284 // update the design criteria
285 mNormalizedCutoffFrequency = fcr;
286 mNormalizedTransitionBandwidth = tbw;
287 mFilterAttenuation = attenuation;
288 mStopbandAttenuationDb = stopBandAtten;
289 mPassbandRippleDb = computeWindowedSincPassbandRippleDb(stopBandAtten);
290
291 #if 0
292 // Keep this debug code in case an app causes resampler design issues.
293 const double halfbw = tbw / 2.;
294 // print basic filter stats
295 ALOGD("L:%d hnc:%d stopBandAtten:%lf fcr:%lf atten:%lf tbw:%lf\n",
296 c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, attenuation, tbw);
297
298 // test the filter and report results.
299 // Since this is a polyphase filter, normalized fp and fs must be scaled.
300 const double fp = (fcr - halfbw) / phases;
301 const double fs = (fcr + halfbw) / phases;
302
303 double passMin, passMax, passRipple;
304 double stopMax, stopRipple;
305
306 const int32_t passSteps = 1000;
307
308 testFir(coefs, c.mL, c.mHalfNumCoefs, fp, fs, passSteps, passSteps * c.ML /*stopSteps*/,
309 passMin, passMax, passRipple, stopMax, stopRipple);
310 ALOGD("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
311 ALOGD("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
312 #endif
313 }
314
315 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)316 static int gcd(int n, int m)
317 {
318 if (m == 0) {
319 return n;
320 }
321 return gcd(m, n % m);
322 }
323
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)324 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
325 int32_t filterSampleRate, int32_t outSampleRate)
326 {
327
328 // different upsampling ratios do not need a filter change.
329 if (filterSampleRate != 0
330 && filterSampleRate < outSampleRate
331 && newSampleRate < outSampleRate)
332 return true;
333
334 // check design criteria again if downsampling is detected.
335 int pdiff = absdiff(newSampleRate, prevSampleRate);
336 int adiff = absdiff(newSampleRate, filterSampleRate);
337
338 // allow up to 6% relative change increments.
339 // allow up to 12% absolute change increments (from filter design)
340 return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
341 }
342
343 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)344 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
345 {
346 if (mInSampleRate == inSampleRate) {
347 return;
348 }
349 int32_t oldSampleRate = mInSampleRate;
350 uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
351 bool useS32 = false;
352
353 mInSampleRate = inSampleRate;
354
355 // TODO: Add precalculated Equiripple filters
356
357 if (mFilterQuality != getQuality() ||
358 !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
359 mFilterSampleRate = inSampleRate;
360 mFilterQuality = getQuality();
361
362 double stopBandAtten;
363 double tbwCheat = 1.; // how much we "cheat" into aliasing
364 int halfLength;
365 double fcr = 0.;
366
367 // Begin Kaiser Filter computation
368 //
369 // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
370 // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
371 //
372 // For s32 we keep the stop band attenuation at the same as 16b resolution, about
373 // 96-98dB
374 //
375
376 if (mPropertyEnableAtSampleRate >= 0 && mSampleRate >= mPropertyEnableAtSampleRate) {
377 // An alternative method which allows allows a greater fcr
378 // at the expense of potential aliasing.
379 halfLength = mPropertyHalfFilterLength;
380 stopBandAtten = mPropertyStopbandAttenuation;
381 useS32 = true;
382 fcr = mInSampleRate <= mSampleRate
383 ? 0.5 : 0.5 * mSampleRate / mInSampleRate;
384 fcr *= mPropertyCutoffPercent / 100.;
385 } else {
386 if (mFilterQuality == DYN_HIGH_QUALITY) {
387 // 32b coefficients, 64 length
388 useS32 = true;
389 stopBandAtten = 98.;
390 if (inSampleRate >= mSampleRate * 4) {
391 halfLength = 48;
392 } else if (inSampleRate >= mSampleRate * 2) {
393 halfLength = 40;
394 } else {
395 halfLength = 32;
396 }
397 } else if (mFilterQuality == DYN_LOW_QUALITY) {
398 // 16b coefficients, 16-32 length
399 useS32 = false;
400 stopBandAtten = 80.;
401 if (inSampleRate >= mSampleRate * 4) {
402 halfLength = 24;
403 } else if (inSampleRate >= mSampleRate * 2) {
404 halfLength = 16;
405 } else {
406 halfLength = 8;
407 }
408 if (inSampleRate <= mSampleRate) {
409 tbwCheat = 1.05;
410 } else {
411 tbwCheat = 1.03;
412 }
413 } else { // DYN_MED_QUALITY
414 // 16b coefficients, 32-64 length
415 // note: > 64 length filters with 16b coefs can have quantization noise problems
416 useS32 = false;
417 stopBandAtten = 84.;
418 if (inSampleRate >= mSampleRate * 4) {
419 halfLength = 32;
420 } else if (inSampleRate >= mSampleRate * 2) {
421 halfLength = 24;
422 } else {
423 halfLength = 16;
424 }
425 if (inSampleRate <= mSampleRate) {
426 tbwCheat = 1.03;
427 } else {
428 tbwCheat = 1.01;
429 }
430 }
431 }
432
433 // determine the number of polyphases in the filterbank.
434 // for 16b, it is desirable to have 2^(16/2) = 256 phases.
435 // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
436 //
437 // We are a bit more lax on this.
438
439 int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
440
441 // TODO: Once dynamic sample rate change is an option, the code below
442 // should be modified to execute only when dynamic sample rate change is enabled.
443 //
444 // as above, #phases less than 63 is too few phases for accurate linear interpolation.
445 // we increase the phases to compensate, but more phases means more memory per
446 // filter and more time to compute the filter.
447 //
448 // if we know that the filter will be used for dynamic sample rate changes,
449 // that would allow us skip this part for fixed sample rate resamplers.
450 //
451 while (phases<63) {
452 phases *= 2; // this code only needed to support dynamic rate changes
453 }
454
455 if (phases>=256) { // too many phases, always interpolate
456 phases = 127;
457 }
458
459 // create the filter
460 mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
461 if (fcr > 0.) {
462 createKaiserFir(mConstants, stopBandAtten, fcr);
463 } else {
464 createKaiserFir(mConstants, stopBandAtten,
465 inSampleRate, mSampleRate, tbwCheat);
466 }
467 } // End Kaiser filter
468
469 // update phase and state based on the new filter.
470 const Constants& c(mConstants);
471 mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
472 const uint32_t phaseWrapLimit = c.mL << c.mShift;
473 // try to preserve as much of the phase fraction as possible for on-the-fly changes
474 mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
475 * phaseWrapLimit / oldPhaseWrapLimit;
476 mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
477 mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
478 * inSampleRate / mSampleRate);
479
480 // determine which resampler to use
481 // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
482 int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
483 if (locked) {
484 mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
485 }
486
487 // stride is the minimum number of filter coefficients processed per loop iteration.
488 // We currently only allow a stride of 16 to match with SIMD processing.
489 // This means that the filter length must be a multiple of 16,
490 // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
491 //
492 // Note: A stride of 2 is achieved with non-SIMD processing.
493 int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
494 LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
495 LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
496 "Resampler channels(%d) must be between 1 to 8", mChannelCount);
497 // stride 16 (falls back to stride 2 for machines that do not support NEON)
498 if (locked) {
499 switch (mChannelCount) {
500 case 1:
501 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
502 break;
503 case 2:
504 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
505 break;
506 case 3:
507 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
508 break;
509 case 4:
510 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
511 break;
512 case 5:
513 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
514 break;
515 case 6:
516 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
517 break;
518 case 7:
519 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
520 break;
521 case 8:
522 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
523 break;
524 }
525 } else {
526 switch (mChannelCount) {
527 case 1:
528 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
529 break;
530 case 2:
531 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
532 break;
533 case 3:
534 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
535 break;
536 case 4:
537 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
538 break;
539 case 5:
540 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
541 break;
542 case 6:
543 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
544 break;
545 case 7:
546 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
547 break;
548 case 8:
549 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
550 break;
551 }
552 }
553 #ifdef DEBUG_RESAMPLER
554 printf("channels:%d %s stride:%d %s coef:%d shift:%d\n",
555 mChannelCount, locked ? "locked" : "interpolated",
556 stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
557 #endif
558 }
559
560 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)561 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
562 AudioBufferProvider* provider)
563 {
564 return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
565 }
566
567 template<typename TC, typename TI, typename TO>
568 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)569 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
570 AudioBufferProvider* provider)
571 {
572 // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
573 const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
574 const Constants& c(mConstants);
575 const TC* const coefs = mConstants.mFirCoefs;
576 TI* impulse = mInBuffer.getImpulse();
577 size_t inputIndex = 0;
578 uint32_t phaseFraction = mPhaseFraction;
579 const uint32_t phaseIncrement = mPhaseIncrement;
580 size_t outputIndex = 0;
581 size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
582 const uint32_t phaseWrapLimit = c.mL << c.mShift;
583 size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
584 / phaseWrapLimit;
585 // sanity check that inFrameCount is in signed 32 bit integer range.
586 ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
587
588 //ALOGV("inFrameCount:%d outFrameCount:%d"
589 // " phaseIncrement:%u phaseFraction:%u phaseWrapLimit:%u",
590 // inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
591
592 // NOTE: be very careful when modifying the code here. register
593 // pressure is very high and a small change might cause the compiler
594 // to generate far less efficient code.
595 // Always sanity check the result with objdump or test-resample.
596
597 // the following logic is a bit convoluted to keep the main processing loop
598 // as tight as possible with register allocation.
599 while (outputIndex < outputSampleCount) {
600 //ALOGV("LOOP: inFrameCount:%d outputIndex:%d outFrameCount:%d"
601 // " phaseFraction:%u phaseWrapLimit:%u",
602 // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
603
604 // check inputIndex overflow
605 ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu",
606 inputIndex, mBuffer.frameCount);
607 // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
608 // We may not fetch a new buffer if the existing data is sufficient.
609 while (mBuffer.frameCount == 0 && inFrameCount > 0) {
610 mBuffer.frameCount = inFrameCount;
611 provider->getNextBuffer(&mBuffer);
612 if (mBuffer.raw == NULL) {
613 // We are either at the end of playback or in an underrun situation.
614 // Reset buffer to prevent pop noise at the next buffer.
615 mInBuffer.reset();
616 goto resample_exit;
617 }
618 inFrameCount -= mBuffer.frameCount;
619 if (phaseFraction >= phaseWrapLimit) { // read in data
620 mInBuffer.template readAdvance<CHANNELS>(
621 impulse, c.mHalfNumCoefs,
622 reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
623 inputIndex++;
624 phaseFraction -= phaseWrapLimit;
625 while (phaseFraction >= phaseWrapLimit) {
626 if (inputIndex >= mBuffer.frameCount) {
627 inputIndex = 0;
628 provider->releaseBuffer(&mBuffer);
629 break;
630 }
631 mInBuffer.template readAdvance<CHANNELS>(
632 impulse, c.mHalfNumCoefs,
633 reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
634 inputIndex++;
635 phaseFraction -= phaseWrapLimit;
636 }
637 }
638 }
639 const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
640 const size_t frameCount = mBuffer.frameCount;
641 const int coefShift = c.mShift;
642 const int halfNumCoefs = c.mHalfNumCoefs;
643 const TO* const volumeSimd = mVolumeSimd;
644
645 // main processing loop
646 while (CC_LIKELY(outputIndex < outputSampleCount)) {
647 // caution: fir() is inlined and may be large.
648 // output will be loaded with the appropriate values
649 //
650 // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
651 // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
652 //
653 //ALOGV("LOOP2: inFrameCount:%d outputIndex:%d outFrameCount:%d"
654 // " phaseFraction:%u phaseWrapLimit:%u",
655 // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
656 ALOG_ASSERT(phaseFraction < phaseWrapLimit);
657 fir<CHANNELS, LOCKED, STRIDE>(
658 &out[outputIndex],
659 phaseFraction, phaseWrapLimit,
660 coefShift, halfNumCoefs, coefs,
661 impulse, volumeSimd);
662
663 outputIndex += OUTPUT_CHANNELS;
664
665 phaseFraction += phaseIncrement;
666 while (phaseFraction >= phaseWrapLimit) {
667 if (inputIndex >= frameCount) {
668 goto done; // need a new buffer
669 }
670 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
671 inputIndex++;
672 phaseFraction -= phaseWrapLimit;
673 }
674 }
675 done:
676 // We arrive here when we're finished or when the input buffer runs out.
677 // Regardless we need to release the input buffer if we've acquired it.
678 if (inputIndex > 0) { // we've acquired a buffer (alternatively could check frameCount)
679 ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)",
680 inputIndex, frameCount); // must have been fully read.
681 inputIndex = 0;
682 provider->releaseBuffer(&mBuffer);
683 ALOG_ASSERT(mBuffer.frameCount == 0);
684 }
685 }
686
687 resample_exit:
688 // inputIndex must be zero in all three cases:
689 // (1) the buffer never was been acquired; (2) the buffer was
690 // released at "done:"; or (3) getNextBuffer() failed.
691 ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu phaseFraction:%u",
692 inputIndex, mBuffer.frameCount, phaseFraction);
693 ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
694 mInBuffer.setImpulse(impulse);
695 mPhaseFraction = phaseFraction;
696 return outputIndex / OUTPUT_CHANNELS;
697 }
698
699 /* instantiate templates used by AudioResampler::create */
700 template class AudioResamplerDyn<float, float, float>;
701 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
702 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
703
704 // ----------------------------------------------------------------------------
705 } // namespace android
706