1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "EffectReverb"
18 //#define LOG_NDEBUG 0
19 
20 #include <stdbool.h>
21 #include <stdlib.h>
22 #include <string.h>
23 
24 #include <log/log.h>
25 
26 #include "EffectReverb.h"
27 #include "EffectsMath.h"
28 
29 // effect_handle_t interface implementation for reverb effect
30 const struct effect_interface_s gReverbInterface = {
31         Reverb_Process,
32         Reverb_Command,
33         Reverb_GetDescriptor,
34         NULL
35 };
36 
37 // Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
38 static const effect_descriptor_t gAuxEnvReverbDescriptor = {
39         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
40         {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
41         EFFECT_CONTROL_API_VERSION,
42         // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
43         EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
44         0, // TODO
45         33,
46         "Aux Environmental Reverb",
47         "The Android Open Source Project"
48 };
49 
50 // Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
51 static const effect_descriptor_t gInsertEnvReverbDescriptor = {
52         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
53         {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
54         EFFECT_CONTROL_API_VERSION,
55         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
56         0, // TODO
57         33,
58         "Insert Environmental reverb",
59         "The Android Open Source Project"
60 };
61 
62 // Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
63 static const effect_descriptor_t gAuxPresetReverbDescriptor = {
64         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
65         {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
66         EFFECT_CONTROL_API_VERSION,
67         EFFECT_FLAG_TYPE_AUXILIARY,
68         0, // TODO
69         33,
70         "Aux Preset Reverb",
71         "The Android Open Source Project"
72 };
73 
74 // Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
75 static const effect_descriptor_t gInsertPresetReverbDescriptor = {
76         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
77         {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
78         EFFECT_CONTROL_API_VERSION,
79         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
80         0, // TODO
81         33,
82         "Insert Preset Reverb",
83         "The Android Open Source Project"
84 };
85 
86 // gDescriptors contains pointers to all defined effect descriptor in this library
87 static const effect_descriptor_t * const gDescriptors[] = {
88         &gAuxEnvReverbDescriptor,
89         &gInsertEnvReverbDescriptor,
90         &gAuxPresetReverbDescriptor,
91         &gInsertPresetReverbDescriptor
92 };
93 
94 /*----------------------------------------------------------------------------
95  * Effect API implementation
96  *--------------------------------------------------------------------------*/
97 
98 /*--- Effect Library Interface Implementation ---*/
99 
EffectCreate(const effect_uuid_t * uuid,int32_t sessionId,int32_t ioId,effect_handle_t * pHandle)100 int EffectCreate(const effect_uuid_t *uuid,
101         int32_t sessionId,
102         int32_t ioId,
103         effect_handle_t *pHandle) {
104     int ret;
105     int i;
106     reverb_module_t *module;
107     const effect_descriptor_t *desc;
108     int aux = 0;
109     int preset = 0;
110 
111     ALOGV("EffectLibCreateEffect start");
112 
113     if (pHandle == NULL || uuid == NULL) {
114         return -EINVAL;
115     }
116 
117     for (i = 0; gDescriptors[i] != NULL; i++) {
118         desc = gDescriptors[i];
119         if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
120                 == 0) {
121             break;
122         }
123     }
124 
125     if (gDescriptors[i] == NULL) {
126         return -ENOENT;
127     }
128 
129     module = malloc(sizeof(reverb_module_t));
130 
131     module->itfe = &gReverbInterface;
132 
133     module->context.mState = REVERB_STATE_UNINITIALIZED;
134 
135     if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
136         preset = 1;
137     }
138     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
139         aux = 1;
140     }
141     ret = Reverb_Init(module, aux, preset);
142     if (ret < 0) {
143         ALOGW("EffectLibCreateEffect() init failed");
144         free(module);
145         return ret;
146     }
147 
148     *pHandle = (effect_handle_t) module;
149 
150     module->context.mState = REVERB_STATE_INITIALIZED;
151 
152     ALOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
153 
154     return 0;
155 }
156 
EffectRelease(effect_handle_t handle)157 int EffectRelease(effect_handle_t handle) {
158     reverb_module_t *pRvbModule = (reverb_module_t *)handle;
159 
160     ALOGV("EffectLibReleaseEffect %p", handle);
161     if (handle == NULL) {
162         return -EINVAL;
163     }
164 
165     pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
166 
167     free(pRvbModule);
168     return 0;
169 }
170 
EffectGetDescriptor(const effect_uuid_t * uuid,effect_descriptor_t * pDescriptor)171 int EffectGetDescriptor(const effect_uuid_t *uuid,
172                         effect_descriptor_t *pDescriptor) {
173     int i;
174     int length = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
175 
176     if (pDescriptor == NULL || uuid == NULL){
177         ALOGV("EffectGetDescriptor() called with NULL pointer");
178         return -EINVAL;
179     }
180 
181     for (i = 0; i < length; i++) {
182         if (memcmp(uuid, &gDescriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) {
183             *pDescriptor = *gDescriptors[i];
184             ALOGV("EffectGetDescriptor - UUID matched Reverb type %d, UUID = %x",
185                  i, gDescriptors[i]->uuid.timeLow);
186             return 0;
187         }
188     }
189 
190     return -EINVAL;
191 } /* end EffectGetDescriptor */
192 
193 /*--- Effect Control Interface Implementation ---*/
194 
Reverb_Process(effect_handle_t self,audio_buffer_t * inBuffer,audio_buffer_t * outBuffer)195 static int Reverb_Process(effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
196     reverb_object_t *pReverb;
197     int16_t *pSrc, *pDst;
198     reverb_module_t *pRvbModule = (reverb_module_t *)self;
199 
200     if (pRvbModule == NULL) {
201         return -EINVAL;
202     }
203 
204     if (inBuffer == NULL || inBuffer->raw == NULL ||
205         outBuffer == NULL || outBuffer->raw == NULL ||
206         inBuffer->frameCount != outBuffer->frameCount) {
207         return -EINVAL;
208     }
209 
210     pReverb = (reverb_object_t*) &pRvbModule->context;
211 
212     if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
213         return -EINVAL;
214     }
215     if (pReverb->mState == REVERB_STATE_INITIALIZED) {
216         return -ENODATA;
217     }
218 
219     //if bypassed or the preset forces the signal to be completely dry
220     if (pReverb->m_bBypass != 0) {
221         if (inBuffer->raw != outBuffer->raw) {
222             int16_t smp;
223             pSrc = inBuffer->s16;
224             pDst = outBuffer->s16;
225             size_t count = inBuffer->frameCount;
226             if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
227                 count *= 2;
228                 while (count--) {
229                     *pDst++ = *pSrc++;
230                 }
231             } else {
232                 while (count--) {
233                     smp = *pSrc++;
234                     *pDst++ = smp;
235                     *pDst++ = smp;
236                 }
237             }
238         }
239         return 0;
240     }
241 
242     if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
243         ReverbUpdateRoom(pReverb, true);
244     }
245 
246     pSrc = inBuffer->s16;
247     pDst = outBuffer->s16;
248     size_t numSamples = outBuffer->frameCount;
249     while (numSamples) {
250         uint32_t processedSamples;
251         if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
252             processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
253         } else {
254             processedSamples = numSamples;
255         }
256 
257         /* increment update counter */
258         pReverb->m_nUpdateCounter += (int16_t) processedSamples;
259         /* check if update counter needs to be reset */
260         if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
261             /* update interval has elapsed, so reset counter */
262             pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
263             ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
264 
265         } /* end if m_nUpdateCounter >= update interval */
266 
267         Reverb(pReverb, processedSamples, pDst, pSrc);
268 
269         numSamples -= processedSamples;
270         if (pReverb->m_Aux) {
271             pSrc += processedSamples;
272         } else {
273             pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
274         }
275         pDst += processedSamples * NUM_OUTPUT_CHANNELS;
276     }
277 
278     return 0;
279 }
280 
281 
Reverb_Command(effect_handle_t self,uint32_t cmdCode,uint32_t cmdSize,void * pCmdData,uint32_t * replySize,void * pReplyData)282 static int Reverb_Command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
283         void *pCmdData, uint32_t *replySize, void *pReplyData) {
284     reverb_module_t *pRvbModule = (reverb_module_t *) self;
285     reverb_object_t *pReverb;
286     int retsize;
287 
288     if (pRvbModule == NULL ||
289             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
290         return -EINVAL;
291     }
292 
293     pReverb = (reverb_object_t*) &pRvbModule->context;
294 
295     ALOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
296 
297     switch (cmdCode) {
298     case EFFECT_CMD_INIT:
299         if (pReplyData == NULL || *replySize != sizeof(int)) {
300             return -EINVAL;
301         }
302         *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
303         if (*(int *) pReplyData == 0) {
304             pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
305         }
306         break;
307     case EFFECT_CMD_SET_CONFIG:
308         if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
309                 || pReplyData == NULL || *replySize != sizeof(int)) {
310             return -EINVAL;
311         }
312         *(int *) pReplyData = Reverb_setConfig(pRvbModule,
313                 (effect_config_t *)pCmdData, false);
314         break;
315     case EFFECT_CMD_GET_CONFIG:
316         if (pReplyData == NULL || *replySize != sizeof(effect_config_t)) {
317             return -EINVAL;
318         }
319         Reverb_getConfig(pRvbModule, (effect_config_t *) pCmdData);
320         break;
321     case EFFECT_CMD_RESET:
322         Reverb_Reset(pReverb, false);
323         break;
324     case EFFECT_CMD_GET_PARAM:
325         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
326 
327         if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
328             pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
329             return -EINVAL;
330         }
331         effect_param_t *rep = (effect_param_t *) pReplyData;
332         memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
333         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
334         rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
335                 rep->data + sizeof(int32_t));
336         *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
337         break;
338     case EFFECT_CMD_SET_PARAM:
339         ALOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
340                 cmdSize, pCmdData, *replySize, pReplyData);
341         if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
342                 || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
343             return -EINVAL;
344         }
345         effect_param_t *cmd = (effect_param_t *) pCmdData;
346         *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
347                 cmd->vsize, cmd->data + sizeof(int32_t));
348         break;
349     case EFFECT_CMD_ENABLE:
350         if (pReplyData == NULL || *replySize != sizeof(int)) {
351             return -EINVAL;
352         }
353         if (pReverb->mState != REVERB_STATE_INITIALIZED) {
354             return -ENOSYS;
355         }
356         pReverb->mState = REVERB_STATE_ACTIVE;
357         ALOGV("EFFECT_CMD_ENABLE() OK");
358         *(int *)pReplyData = 0;
359         break;
360     case EFFECT_CMD_DISABLE:
361         if (pReplyData == NULL || *replySize != sizeof(int)) {
362             return -EINVAL;
363         }
364         if (pReverb->mState != REVERB_STATE_ACTIVE) {
365             return -ENOSYS;
366         }
367         pReverb->mState = REVERB_STATE_INITIALIZED;
368         ALOGV("EFFECT_CMD_DISABLE() OK");
369         *(int *)pReplyData = 0;
370         break;
371     case EFFECT_CMD_SET_DEVICE:
372         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
373             return -EINVAL;
374         }
375         ALOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
376         break;
377     case EFFECT_CMD_SET_VOLUME: {
378         // audio output is always stereo => 2 channel volumes
379         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
380             return -EINVAL;
381         }
382         float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
383         float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
384         ALOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
385         break;
386         }
387     case EFFECT_CMD_SET_AUDIO_MODE:
388         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
389             return -EINVAL;
390         }
391         ALOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
392         break;
393     default:
394         ALOGW("Reverb_Command invalid command %d",cmdCode);
395         return -EINVAL;
396     }
397 
398     return 0;
399 }
400 
Reverb_GetDescriptor(effect_handle_t self,effect_descriptor_t * pDescriptor)401 int Reverb_GetDescriptor(effect_handle_t   self,
402                                     effect_descriptor_t *pDescriptor)
403 {
404     reverb_module_t *pRvbModule = (reverb_module_t *) self;
405     reverb_object_t *pReverb;
406     const effect_descriptor_t *desc;
407 
408     if (pRvbModule == NULL ||
409             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
410         return -EINVAL;
411     }
412 
413     pReverb = (reverb_object_t*) &pRvbModule->context;
414 
415     if (pReverb->m_Aux) {
416         if (pReverb->m_Preset) {
417             desc = &gAuxPresetReverbDescriptor;
418         } else {
419             desc = &gAuxEnvReverbDescriptor;
420         }
421     } else {
422         if (pReverb->m_Preset) {
423             desc = &gInsertPresetReverbDescriptor;
424         } else {
425             desc = &gInsertEnvReverbDescriptor;
426         }
427     }
428 
429     *pDescriptor = *desc;
430 
431     return 0;
432 }   /* end Reverb_getDescriptor */
433 
434 /*----------------------------------------------------------------------------
435  * Reverb internal functions
436  *--------------------------------------------------------------------------*/
437 
438 /*----------------------------------------------------------------------------
439  * Reverb_Init()
440  *----------------------------------------------------------------------------
441  * Purpose:
442  * Initialize reverb context and apply default parameters
443  *
444  * Inputs:
445  *  pRvbModule    - pointer to reverb effect module
446  *  aux           - indicates if the reverb is used as auxiliary (1) or insert (0)
447  *  preset        - indicates if the reverb is used in preset (1) or environmental (0) mode
448  *
449  * Outputs:
450  *
451  * Side Effects:
452  *
453  *----------------------------------------------------------------------------
454  */
455 
Reverb_Init(reverb_module_t * pRvbModule,int aux,int preset)456 int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
457     int ret;
458 
459     ALOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
460 
461     memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
462 
463     pRvbModule->context.m_Aux = (uint16_t)aux;
464     pRvbModule->context.m_Preset = (uint16_t)preset;
465 
466     pRvbModule->config.inputCfg.samplingRate = 44100;
467     if (aux) {
468         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
469     } else {
470         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
471     }
472     pRvbModule->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
473     pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
474     pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
475     pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
476     pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
477     pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
478     pRvbModule->config.outputCfg.samplingRate = 44100;
479     pRvbModule->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
480     pRvbModule->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
481     pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
482     pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
483     pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
484     pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
485     pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
486 
487     ret = Reverb_setConfig(pRvbModule, &pRvbModule->config, true);
488     if (ret < 0) {
489         ALOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
490     }
491 
492     return ret;
493 }
494 
495 /*----------------------------------------------------------------------------
496  * Reverb_setConfig()
497  *----------------------------------------------------------------------------
498  * Purpose:
499  *  Set input and output audio configuration.
500  *
501  * Inputs:
502  *  pRvbModule    - pointer to reverb effect module
503  *  pConfig       - pointer to effect_config_t structure containing input
504  *              and output audio parameters configuration
505  *  init          - true if called from init function
506  * Outputs:
507  *
508  * Side Effects:
509  *
510  *----------------------------------------------------------------------------
511  */
512 
Reverb_setConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig,bool init)513 int Reverb_setConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig,
514         bool init) {
515     reverb_object_t *pReverb = &pRvbModule->context;
516     int bufferSizeInSamples;
517     int updatePeriodInSamples;
518     int xfadePeriodInSamples;
519 
520     // Check configuration compatibility with build options
521     if (pConfig->inputCfg.samplingRate
522         != pConfig->outputCfg.samplingRate
523         || pConfig->outputCfg.channels != OUTPUT_CHANNELS
524         || pConfig->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT
525         || pConfig->outputCfg.format != AUDIO_FORMAT_PCM_16_BIT) {
526         ALOGV("Reverb_setConfig invalid config");
527         return -EINVAL;
528     }
529     if ((pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_MONO)) ||
530         (!pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO))) {
531         ALOGV("Reverb_setConfig invalid config");
532         return -EINVAL;
533     }
534 
535     pRvbModule->config = *pConfig;
536 
537     pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
538 
539     switch (pReverb->m_nSamplingRate) {
540     case 8000:
541         pReverb->m_nUpdatePeriodInBits = 5;
542         bufferSizeInSamples = 4096;
543         pReverb->m_nCosWT_5KHz = -23170;
544         break;
545     case 16000:
546         pReverb->m_nUpdatePeriodInBits = 6;
547         bufferSizeInSamples = 8192;
548         pReverb->m_nCosWT_5KHz = -12540;
549         break;
550     case 22050:
551         pReverb->m_nUpdatePeriodInBits = 7;
552         bufferSizeInSamples = 8192;
553         pReverb->m_nCosWT_5KHz = 4768;
554         break;
555     case 32000:
556         pReverb->m_nUpdatePeriodInBits = 7;
557         bufferSizeInSamples = 16384;
558         pReverb->m_nCosWT_5KHz = 18205;
559         break;
560     case 44100:
561         pReverb->m_nUpdatePeriodInBits = 8;
562         bufferSizeInSamples = 16384;
563         pReverb->m_nCosWT_5KHz = 24799;
564         break;
565     case 48000:
566         pReverb->m_nUpdatePeriodInBits = 8;
567         bufferSizeInSamples = 16384;
568         pReverb->m_nCosWT_5KHz = 25997;
569         break;
570     default:
571         ALOGV("Reverb_setConfig invalid sampling rate %d", pReverb->m_nSamplingRate);
572         return -EINVAL;
573     }
574 
575     // Define a mask for circular addressing, so that array index
576     // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
577     // The buffer size MUST be a power of two
578     pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
579     /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
580     updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
581     /*
582      calculate the update counter by bitwise ANDING with this value to
583      generate a 2^n modulo value
584      */
585     pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
586 
587     xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
588             * (double) pReverb->m_nSamplingRate);
589 
590     // set xfade parameters
591     pReverb->m_nPhaseIncrement
592             = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
593                     / (int16_t) updatePeriodInSamples));
594 
595     if (init) {
596         ReverbReadInPresets(pReverb);
597 
598         // for debugging purposes, allow noise generator
599         pReverb->m_bUseNoise = true;
600 
601         // for debugging purposes, allow bypass
602         pReverb->m_bBypass = 0;
603 
604         pReverb->m_nNextRoom = 1;
605 
606         pReverb->m_nNoise = (int16_t) 0xABCD;
607     }
608 
609     Reverb_Reset(pReverb, init);
610 
611     return 0;
612 }
613 
614 /*----------------------------------------------------------------------------
615  * Reverb_getConfig()
616  *----------------------------------------------------------------------------
617  * Purpose:
618  *  Get input and output audio configuration.
619  *
620  * Inputs:
621  *  pRvbModule    - pointer to reverb effect module
622  *  pConfig       - pointer to effect_config_t structure containing input
623  *              and output audio parameters configuration
624  * Outputs:
625  *
626  * Side Effects:
627  *
628  *----------------------------------------------------------------------------
629  */
630 
Reverb_getConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig)631 void Reverb_getConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig)
632 {
633     *pConfig = pRvbModule->config;
634 }
635 
636 /*----------------------------------------------------------------------------
637  * Reverb_Reset()
638  *----------------------------------------------------------------------------
639  * Purpose:
640  *  Reset internal states and clear delay lines.
641  *
642  * Inputs:
643  *  pReverb    - pointer to reverb context
644  *  init       - true if called from init function
645  *
646  * Outputs:
647  *
648  * Side Effects:
649  *
650  *----------------------------------------------------------------------------
651  */
652 
Reverb_Reset(reverb_object_t * pReverb,bool init)653 void Reverb_Reset(reverb_object_t *pReverb, bool init) {
654     int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
655     int maxApSamples;
656     int maxDelaySamples;
657     int maxEarlySamples;
658     int ap1In;
659     int delay0In;
660     int delay1In;
661     int32_t i;
662     uint16_t nOffset;
663 
664     maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
665     maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
666             >> 16);
667     maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
668             >> 16);
669 
670     ap1In = (AP0_IN + maxApSamples + GUARD);
671     delay0In = (ap1In + maxApSamples + GUARD);
672     delay1In = (delay0In + maxDelaySamples + GUARD);
673     // Define the max offsets for the end points of each section
674     // i.e., we don't expect a given section's taps to go beyond
675     // the following limits
676 
677     pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
678     pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
679 
680     pReverb->m_sAp0.m_zApIn = AP0_IN;
681 
682     pReverb->m_zD0In = delay0In;
683 
684     pReverb->m_sAp1.m_zApIn = ap1In;
685 
686     pReverb->m_zD1In = delay1In;
687 
688     pReverb->m_zOutLpfL = 0;
689     pReverb->m_zOutLpfR = 0;
690 
691     pReverb->m_nRevFbkR = 0;
692     pReverb->m_nRevFbkL = 0;
693 
694     // set base index into circular buffer
695     pReverb->m_nBaseIndex = 0;
696 
697     // clear the reverb delay line
698     for (i = 0; i < bufferSizeInSamples; i++) {
699         pReverb->m_nDelayLine[i] = 0;
700     }
701 
702     ReverbUpdateRoom(pReverb, init);
703 
704     pReverb->m_nUpdateCounter = 0;
705 
706     pReverb->m_nPhase = -32768;
707 
708     pReverb->m_nSin = 0;
709     pReverb->m_nCos = 0;
710     pReverb->m_nSinIncrement = 0;
711     pReverb->m_nCosIncrement = 0;
712 
713     // set delay tap lengths
714     nOffset = ReverbCalculateNoise(pReverb);
715 
716     pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
717             + nOffset;
718 
719     nOffset = ReverbCalculateNoise(pReverb);
720 
721     pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
722             - nOffset;
723 
724     nOffset = ReverbCalculateNoise(pReverb);
725 
726     pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
727             - nOffset;
728 
729     nOffset = ReverbCalculateNoise(pReverb);
730 
731     pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
732             + nOffset;
733 }
734 
735 /*----------------------------------------------------------------------------
736  * Reverb_getParameter()
737  *----------------------------------------------------------------------------
738  * Purpose:
739  * Get a Reverb parameter
740  *
741  * Inputs:
742  *  pReverb       - handle to instance data
743  *  param         - parameter
744  *  pValue        - pointer to variable to hold retrieved value
745  *  pSize         - pointer to value size: maximum size as input
746  *
747  * Outputs:
748  *  *pValue updated with parameter value
749  *  *pSize updated with actual value size
750  *
751  *
752  * Side Effects:
753  *
754  *----------------------------------------------------------------------------
755  */
Reverb_getParameter(reverb_object_t * pReverb,int32_t param,uint32_t * pSize,void * pValue)756 int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, uint32_t *pSize,
757         void *pValue) {
758     int32_t *pValue32;
759     int16_t *pValue16;
760     t_reverb_settings *pProperties;
761     int32_t i;
762     int32_t temp;
763     int32_t temp2;
764     uint32_t size;
765 
766     if (pReverb->m_Preset) {
767         if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
768             return -EINVAL;
769         }
770         size = sizeof(int16_t);
771         pValue16 = (int16_t *)pValue;
772         // REVERB_PRESET_NONE is mapped to bypass
773         if (pReverb->m_bBypass != 0) {
774             *pValue16 = (int16_t)REVERB_PRESET_NONE;
775         } else {
776             *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
777         }
778         ALOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
779     } else {
780         switch (param) {
781         case REVERB_PARAM_ROOM_LEVEL:
782         case REVERB_PARAM_ROOM_HF_LEVEL:
783         case REVERB_PARAM_DECAY_HF_RATIO:
784         case REVERB_PARAM_REFLECTIONS_LEVEL:
785         case REVERB_PARAM_REVERB_LEVEL:
786         case REVERB_PARAM_DIFFUSION:
787         case REVERB_PARAM_DENSITY:
788             size = sizeof(int16_t);
789             break;
790 
791         case REVERB_PARAM_BYPASS:
792         case REVERB_PARAM_DECAY_TIME:
793         case REVERB_PARAM_REFLECTIONS_DELAY:
794         case REVERB_PARAM_REVERB_DELAY:
795             size = sizeof(int32_t);
796             break;
797 
798         case REVERB_PARAM_PROPERTIES:
799             size = sizeof(t_reverb_settings);
800             break;
801 
802         default:
803             return -EINVAL;
804         }
805 
806         if (*pSize < size) {
807             return -EINVAL;
808         }
809 
810         pValue32 = (int32_t *) pValue;
811         pValue16 = (int16_t *) pValue;
812         pProperties = (t_reverb_settings *) pValue;
813 
814         switch (param) {
815         case REVERB_PARAM_BYPASS:
816             *pValue32 = (int32_t) pReverb->m_bBypass;
817             break;
818 
819         case REVERB_PARAM_PROPERTIES:
820             pValue16 = &pProperties->roomLevel;
821             /* FALL THROUGH */
822 
823         case REVERB_PARAM_ROOM_LEVEL:
824             // Convert m_nRoomLpfFwd to millibels
825             temp = (pReverb->m_nRoomLpfFwd << 15)
826                     / (32767 - pReverb->m_nRoomLpfFbk);
827             *pValue16 = Effects_Linear16ToMillibels(temp);
828 
829             ALOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
830 
831             if (param == REVERB_PARAM_ROOM_LEVEL) {
832                 break;
833             }
834             pValue16 = &pProperties->roomHFLevel;
835             /* FALL THROUGH */
836 
837         case REVERB_PARAM_ROOM_HF_LEVEL:
838             // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
839             // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
840             // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
841             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
842 
843             temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
844             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
845             temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
846                     << 1;
847             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
848             temp = 32767 + temp - temp2;
849             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
850             temp = Effects_Sqrt(temp) * 181;
851             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
852             temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
853 
854             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
855 
856             *pValue16 = Effects_Linear16ToMillibels(temp);
857 
858             if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
859                 break;
860             }
861             pValue32 = (int32_t *)&pProperties->decayTime;
862             /* FALL THROUGH */
863 
864         case REVERB_PARAM_DECAY_TIME:
865             // Calculate reverb feedback path gain
866             temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
867             temp = Effects_Linear16ToMillibels(temp);
868 
869             // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
870             temp = (-6000 * pReverb->m_nLateDelay) / temp;
871 
872             // Convert samples to ms
873             *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
874 
875             ALOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
876 
877             if (param == REVERB_PARAM_DECAY_TIME) {
878                 break;
879             }
880             pValue16 = &pProperties->decayHFRatio;
881             /* FALL THROUGH */
882 
883         case REVERB_PARAM_DECAY_HF_RATIO:
884             // If r is the decay HF ratio  (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
885             //       DT_5000Hz = DT_0Hz * r
886             //  and  G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
887             // r = G_0Hz/G_5000Hz in millibels
888             // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
889             // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
890             // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
891             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
892             if (pReverb->m_nRvbLpfFbk == 0) {
893                 *pValue16 = 1000;
894                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
895             } else {
896                 temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
897                 temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
898                         << 1;
899                 temp = 32767 + temp - temp2;
900                 temp = Effects_Sqrt(temp) * 181;
901                 temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
902                 // The linear gain at 0Hz is b0 / (a1 + 1)
903                 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
904                         - pReverb->m_nRvbLpfFbk);
905 
906                 temp = Effects_Linear16ToMillibels(temp);
907                 temp2 = Effects_Linear16ToMillibels(temp2);
908                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
909 
910                 if (temp == 0)
911                     temp = 1;
912                 temp = (int16_t) ((1000 * temp2) / temp);
913                 if (temp > 1000)
914                     temp = 1000;
915 
916                 *pValue16 = temp;
917                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
918             }
919 
920             if (param == REVERB_PARAM_DECAY_HF_RATIO) {
921                 break;
922             }
923             pValue16 = &pProperties->reflectionsLevel;
924             /* FALL THROUGH */
925 
926         case REVERB_PARAM_REFLECTIONS_LEVEL:
927             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
928 
929             ALOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
930             if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
931                 break;
932             }
933             pValue32 = (int32_t *)&pProperties->reflectionsDelay;
934             /* FALL THROUGH */
935 
936         case REVERB_PARAM_REFLECTIONS_DELAY:
937             // convert samples to ms
938             *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
939 
940             ALOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
941 
942             if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
943                 break;
944             }
945             pValue16 = &pProperties->reverbLevel;
946             /* FALL THROUGH */
947 
948         case REVERB_PARAM_REVERB_LEVEL:
949             // Convert linear gain to millibels
950             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
951 
952             ALOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
953 
954             if (param == REVERB_PARAM_REVERB_LEVEL) {
955                 break;
956             }
957             pValue32 = (int32_t *)&pProperties->reverbDelay;
958             /* FALL THROUGH */
959 
960         case REVERB_PARAM_REVERB_DELAY:
961             // convert samples to ms
962             *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
963 
964             ALOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
965 
966             if (param == REVERB_PARAM_REVERB_DELAY) {
967                 break;
968             }
969             pValue16 = &pProperties->diffusion;
970             /* FALL THROUGH */
971 
972         case REVERB_PARAM_DIFFUSION:
973             temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
974                     / AP0_GAIN_RANGE);
975 
976             if (temp < 0)
977                 temp = 0;
978             if (temp > 1000)
979                 temp = 1000;
980 
981             *pValue16 = temp;
982             ALOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
983 
984             if (param == REVERB_PARAM_DIFFUSION) {
985                 break;
986             }
987             pValue16 = &pProperties->density;
988             /* FALL THROUGH */
989 
990         case REVERB_PARAM_DENSITY:
991             // Calculate AP delay in time units
992             temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
993                     / pReverb->m_nSamplingRate;
994 
995             temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
996 
997             if (temp < 0)
998                 temp = 0;
999             if (temp > 1000)
1000                 temp = 1000;
1001 
1002             *pValue16 = temp;
1003 
1004             ALOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
1005             break;
1006 
1007         default:
1008             break;
1009         }
1010     }
1011 
1012     *pSize = size;
1013 
1014     ALOGV("Reverb_getParameter, context %p, param %d, value %d",
1015             pReverb, param, *(int *)pValue);
1016 
1017     return 0;
1018 } /* end Reverb_getParameter */
1019 
1020 /*----------------------------------------------------------------------------
1021  * Reverb_setParameter()
1022  *----------------------------------------------------------------------------
1023  * Purpose:
1024  * Set a Reverb parameter
1025  *
1026  * Inputs:
1027  *  pReverb       - handle to instance data
1028  *  param         - parameter
1029  *  pValue        - pointer to parameter value
1030  *  size          - value size
1031  *
1032  * Outputs:
1033  *
1034  *
1035  * Side Effects:
1036  *
1037  *----------------------------------------------------------------------------
1038  */
Reverb_setParameter(reverb_object_t * pReverb,int32_t param,uint32_t size,void * pValue)1039 int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, uint32_t size,
1040         void *pValue) {
1041     int32_t value32;
1042     int16_t value16;
1043     t_reverb_settings *pProperties;
1044     int32_t i;
1045     int32_t temp;
1046     int32_t temp2;
1047     reverb_preset_t *pPreset;
1048     int maxSamples;
1049     int32_t averageDelay;
1050     uint32_t paramSize;
1051 
1052     ALOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
1053             pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
1054 
1055     if (pReverb->m_Preset) {
1056         if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
1057             return -EINVAL;
1058         }
1059         value16 = *(int16_t *)pValue;
1060         ALOGV("set REVERB_PARAM_PRESET, preset %d", value16);
1061         if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
1062             return -EINVAL;
1063         }
1064         // REVERB_PRESET_NONE is mapped to bypass
1065         if (value16 == REVERB_PRESET_NONE) {
1066             pReverb->m_bBypass = 1;
1067         } else {
1068             pReverb->m_bBypass = 0;
1069             pReverb->m_nNextRoom = value16 - 1;
1070         }
1071     } else {
1072         switch (param) {
1073         case REVERB_PARAM_ROOM_LEVEL:
1074         case REVERB_PARAM_ROOM_HF_LEVEL:
1075         case REVERB_PARAM_DECAY_HF_RATIO:
1076         case REVERB_PARAM_REFLECTIONS_LEVEL:
1077         case REVERB_PARAM_REVERB_LEVEL:
1078         case REVERB_PARAM_DIFFUSION:
1079         case REVERB_PARAM_DENSITY:
1080             paramSize = sizeof(int16_t);
1081             break;
1082 
1083         case REVERB_PARAM_BYPASS:
1084         case REVERB_PARAM_DECAY_TIME:
1085         case REVERB_PARAM_REFLECTIONS_DELAY:
1086         case REVERB_PARAM_REVERB_DELAY:
1087             paramSize = sizeof(int32_t);
1088             break;
1089 
1090         case REVERB_PARAM_PROPERTIES:
1091             paramSize = sizeof(t_reverb_settings);
1092             break;
1093 
1094         default:
1095             return -EINVAL;
1096         }
1097 
1098         if (size != paramSize) {
1099             return -EINVAL;
1100         }
1101 
1102         if (paramSize == sizeof(int16_t)) {
1103             value16 = *(int16_t *) pValue;
1104         } else if (paramSize == sizeof(int32_t)) {
1105             value32 = *(int32_t *) pValue;
1106         } else {
1107             pProperties = (t_reverb_settings *) pValue;
1108         }
1109 
1110         pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1111 
1112         switch (param) {
1113         case REVERB_PARAM_BYPASS:
1114             pReverb->m_bBypass = (uint16_t)value32;
1115             break;
1116 
1117         case REVERB_PARAM_PROPERTIES:
1118             value16 = pProperties->roomLevel;
1119             /* FALL THROUGH */
1120 
1121         case REVERB_PARAM_ROOM_LEVEL:
1122             // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
1123             if (value16 > 0)
1124                 return -EINVAL;
1125 
1126             temp = Effects_MillibelsToLinear16(value16);
1127 
1128             pReverb->m_nRoomLpfFwd
1129                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
1130 
1131             ALOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
1132             if (param == REVERB_PARAM_ROOM_LEVEL)
1133                 break;
1134             value16 = pProperties->roomHFLevel;
1135             /* FALL THROUGH */
1136 
1137         case REVERB_PARAM_ROOM_HF_LEVEL:
1138 
1139             // Limit to 0 , -40dB range because of low pass implementation
1140             if (value16 > 0 || value16 < -4000)
1141                 return -EINVAL;
1142             // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
1143             // m_nRoomLpfFbk is -a1 where a1 is the solution of:
1144             // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
1145             // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
1146             // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
1147 
1148             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1149             // while changing HF level
1150             temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
1151                     - pReverb->m_nRoomLpfFbk);
1152             if (value16 == 0) {
1153                 pReverb->m_nRoomLpfFbk = 0;
1154             } else {
1155                 int32_t dG2, b, delta;
1156 
1157                 // dG^2
1158                 temp = Effects_MillibelsToLinear16(value16);
1159                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
1160                 temp = (1 << 30) / temp;
1161                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1162                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1163                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1164                 // b = 2*(C-dG^2)/(1-dG^2)
1165                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1166                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1167                         / ((int64_t) 32767 - (int64_t) dG2));
1168 
1169                 // delta = b^2 - 4
1170                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1171                         + 2)));
1172 
1173                 ALOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1174 
1175                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1176                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1177                 pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1178             }
1179             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1180                     temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1181 
1182             pReverb->m_nRoomLpfFwd
1183                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1184             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1185 
1186             if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1187                 break;
1188             value32 = pProperties->decayTime;
1189             /* FALL THROUGH */
1190 
1191         case REVERB_PARAM_DECAY_TIME:
1192 
1193             // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1194             // convert ms to samples
1195             value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1196 
1197             // calculate valid decay time range as a function of current reverb delay and
1198             // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1199             // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1200             // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1201             averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1202             averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1203                     + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1204 
1205             temp = (-6000 * averageDelay) / value32;
1206             ALOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1207             if (temp < -4000 || temp > -100)
1208                 return -EINVAL;
1209 
1210             // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1211             // xfade and sum gain (max +9dB)
1212             temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1213             temp = Effects_MillibelsToLinear16(temp);
1214 
1215             // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1216             pReverb->m_nRvbLpfFwd
1217                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1218 
1219             ALOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1220 
1221             if (param == REVERB_PARAM_DECAY_TIME)
1222                 break;
1223             value16 = pProperties->decayHFRatio;
1224             /* FALL THROUGH */
1225 
1226         case REVERB_PARAM_DECAY_HF_RATIO:
1227 
1228             // We limit max value to 1000 because reverb filter is lowpass only
1229             if (value16 < 100 || value16 > 1000)
1230                 return -EINVAL;
1231             // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1232 
1233             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1234             // while changing HF level
1235             temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1236 
1237             if (value16 == 1000) {
1238                 pReverb->m_nRvbLpfFbk = 0;
1239             } else {
1240                 int32_t dG2, b, delta;
1241 
1242                 temp = Effects_Linear16ToMillibels(temp2);
1243                 // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1244 
1245                 value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1246                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1247 
1248                 temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1249 
1250                 if (temp < -4000) {
1251                     ALOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1252                     temp = -4000;
1253                 }
1254 
1255                 temp = Effects_MillibelsToLinear16(temp);
1256                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1257                 // dG^2
1258                 temp = (temp2 << 15) / temp;
1259                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1260 
1261                 // b = 2*(C-dG^2)/(1-dG^2)
1262                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1263                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1264                         / ((int64_t) 32767 - (int64_t) dG2));
1265 
1266                 // delta = b^2 - 4
1267                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1268                         + 2)));
1269 
1270                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1271                 pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1272 
1273                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1274 
1275             }
1276 
1277             ALOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1278 
1279             pReverb->m_nRvbLpfFwd
1280                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1281 
1282             if (param == REVERB_PARAM_DECAY_HF_RATIO)
1283                 break;
1284             value16 = pProperties->reflectionsLevel;
1285             /* FALL THROUGH */
1286 
1287         case REVERB_PARAM_REFLECTIONS_LEVEL:
1288             // We limit max value to 0 because gain is limited to 0dB
1289             if (value16 > 0 || value16 < -6000)
1290                 return -EINVAL;
1291 
1292             // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1293             value16 = Effects_MillibelsToLinear16(value16);
1294             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1295                 pReverb->m_sEarlyL.m_nGain[i]
1296                         = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1297                 pReverb->m_sEarlyR.m_nGain[i]
1298                         = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1299             }
1300             pReverb->m_nEarlyGain = value16;
1301             ALOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1302 
1303             if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1304                 break;
1305             value32 = pProperties->reflectionsDelay;
1306             /* FALL THROUGH */
1307 
1308         case REVERB_PARAM_REFLECTIONS_DELAY:
1309             // We limit max value MAX_EARLY_TIME
1310             // convert ms to time units
1311             temp = (value32 * 65536) / 1000;
1312             if (temp < 0 || temp > MAX_EARLY_TIME)
1313                 return -EINVAL;
1314 
1315             maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1316                     >> 16;
1317             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1318             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1319                 temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1320                         * pReverb->m_nSamplingRate) >> 16);
1321                 if (temp2 > maxSamples)
1322                     temp2 = maxSamples;
1323                 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1324                 temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1325                         * pReverb->m_nSamplingRate) >> 16);
1326                 if (temp2 > maxSamples)
1327                     temp2 = maxSamples;
1328                 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1329             }
1330             pReverb->m_nEarlyDelay = temp;
1331 
1332             ALOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1333 
1334             // Convert milliseconds to sample count => m_nEarlyDelay
1335             if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1336                 break;
1337             value16 = pProperties->reverbLevel;
1338             /* FALL THROUGH */
1339 
1340         case REVERB_PARAM_REVERB_LEVEL:
1341             // We limit max value to 0 because gain is limited to 0dB
1342             if (value16 > 0 || value16 < -6000)
1343                 return -EINVAL;
1344             // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1345             pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1346 
1347             ALOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1348 
1349             if (param == REVERB_PARAM_REVERB_LEVEL)
1350                 break;
1351             value32 = pProperties->reverbDelay;
1352             /* FALL THROUGH */
1353 
1354         case REVERB_PARAM_REVERB_DELAY:
1355             // We limit max value to MAX_DELAY_TIME
1356             // convert ms to time units
1357             temp = (value32 * 65536) / 1000;
1358             if (temp < 0 || temp > MAX_DELAY_TIME)
1359                 return -EINVAL;
1360 
1361             maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1362                     >> 16;
1363             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1364             if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1365                 temp = maxSamples - pReverb->m_nMaxExcursion;
1366             }
1367             if (temp < pReverb->m_nMaxExcursion) {
1368                 temp = pReverb->m_nMaxExcursion;
1369             }
1370 
1371             temp -= pReverb->m_nLateDelay;
1372             pReverb->m_nDelay0Out += temp;
1373             pReverb->m_nDelay1Out += temp;
1374             pReverb->m_nLateDelay += temp;
1375 
1376             ALOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1377 
1378             // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1379             if (param == REVERB_PARAM_REVERB_DELAY)
1380                 break;
1381 
1382             value16 = pProperties->diffusion;
1383             /* FALL THROUGH */
1384 
1385         case REVERB_PARAM_DIFFUSION:
1386             if (value16 < 0 || value16 > 1000)
1387                 return -EINVAL;
1388 
1389             // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1390             pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1391                     * AP0_GAIN_RANGE) / 1000;
1392             pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1393                     * AP1_GAIN_RANGE) / 1000;
1394 
1395             ALOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1396 
1397             if (param == REVERB_PARAM_DIFFUSION)
1398                 break;
1399 
1400             value16 = pProperties->density;
1401             /* FALL THROUGH */
1402 
1403         case REVERB_PARAM_DENSITY:
1404             if (value16 < 0 || value16 > 1000)
1405                 return -EINVAL;
1406 
1407             // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1408             maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1409 
1410             temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1411             /*lint -e{702} shift for performance */
1412             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1413             if (temp > maxSamples)
1414                 temp = maxSamples;
1415             pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1416 
1417             ALOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1418 
1419             temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1420             /*lint -e{702} shift for performance */
1421             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1422             if (temp > maxSamples)
1423                 temp = maxSamples;
1424             pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1425 
1426             ALOGV("Ap1 delay smps %d", temp);
1427 
1428             break;
1429 
1430         default:
1431             break;
1432         }
1433     }
1434 
1435     return 0;
1436 } /* end Reverb_setParameter */
1437 
1438 /*----------------------------------------------------------------------------
1439  * ReverbUpdateXfade
1440  *----------------------------------------------------------------------------
1441  * Purpose:
1442  * Update the xfade parameters as required
1443  *
1444  * Inputs:
1445  * nNumSamplesToAdd - number of samples to write to buffer
1446  *
1447  * Outputs:
1448  *
1449  *
1450  * Side Effects:
1451  * - xfade parameters will be changed
1452  *
1453  *----------------------------------------------------------------------------
1454  */
ReverbUpdateXfade(reverb_object_t * pReverb,int nNumSamplesToAdd)1455 static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1456     uint16_t nOffset;
1457     int16_t tempCos;
1458     int16_t tempSin;
1459 
1460     if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1461         /* update interval has elapsed, so reset counter */
1462         pReverb->m_nXfadeCounter = 0;
1463 
1464         // Pin the sin,cos values to min / max values to ensure that the
1465         // modulated taps' coefs are zero (thus no clicks)
1466         if (pReverb->m_nPhaseIncrement > 0) {
1467             // if phase increment > 0, then sin -> 1, cos -> 0
1468             pReverb->m_nSin = 32767;
1469             pReverb->m_nCos = 0;
1470 
1471             // reset the phase to match the sin, cos values
1472             pReverb->m_nPhase = 32767;
1473 
1474             // modulate the cross taps because their tap coefs are zero
1475             nOffset = ReverbCalculateNoise(pReverb);
1476 
1477             pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1478                     - pReverb->m_nMaxExcursion + nOffset;
1479 
1480             nOffset = ReverbCalculateNoise(pReverb);
1481 
1482             pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1483                     - pReverb->m_nMaxExcursion - nOffset;
1484         } else {
1485             // if phase increment < 0, then sin -> 0, cos -> 1
1486             pReverb->m_nSin = 0;
1487             pReverb->m_nCos = 32767;
1488 
1489             // reset the phase to match the sin, cos values
1490             pReverb->m_nPhase = -32768;
1491 
1492             // modulate the self taps because their tap coefs are zero
1493             nOffset = ReverbCalculateNoise(pReverb);
1494 
1495             pReverb->m_zD0Self = pReverb->m_nDelay0Out
1496                     - pReverb->m_nMaxExcursion - nOffset;
1497 
1498             nOffset = ReverbCalculateNoise(pReverb);
1499 
1500             pReverb->m_zD1Self = pReverb->m_nDelay1Out
1501                     - pReverb->m_nMaxExcursion + nOffset;
1502 
1503         } // end if-else (pReverb->m_nPhaseIncrement > 0)
1504 
1505         // Reverse the direction of the sin,cos so that the
1506         // tap whose coef was previously increasing now decreases
1507         // and vice versa
1508         pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1509 
1510     } // end if counter >= update interval
1511 
1512     //compute what phase will be next time
1513     pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1514 
1515     //calculate what the new sin and cos need to reach by the next update
1516     ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1517 
1518     //calculate the per-sample increment required to get there by the next update
1519     /*lint -e{702} shift for performance */
1520     pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1521             >> pReverb->m_nUpdatePeriodInBits;
1522 
1523     /*lint -e{702} shift for performance */
1524     pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1525             >> pReverb->m_nUpdatePeriodInBits;
1526 
1527     /* increment update counter */
1528     pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1529 
1530     return 0;
1531 
1532 } /* end ReverbUpdateXfade */
1533 
1534 /*----------------------------------------------------------------------------
1535  * ReverbCalculateNoise
1536  *----------------------------------------------------------------------------
1537  * Purpose:
1538  * Calculate a noise sample and limit its value
1539  *
1540  * Inputs:
1541  * nMaxExcursion - noise value is limited to this value
1542  * pnNoise - return new noise sample in this (not limited)
1543  *
1544  * Outputs:
1545  * new limited noise value
1546  *
1547  * Side Effects:
1548  * - *pnNoise noise value is updated
1549  *
1550  *----------------------------------------------------------------------------
1551  */
ReverbCalculateNoise(reverb_object_t * pReverb)1552 static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1553     int16_t nNoise = pReverb->m_nNoise;
1554 
1555     // calculate new noise value
1556     if (pReverb->m_bUseNoise) {
1557         nNoise = (int16_t) (nNoise * 5 + 1);
1558     } else {
1559         nNoise = 0;
1560     }
1561 
1562     pReverb->m_nNoise = nNoise;
1563     // return the limited noise value
1564     return (pReverb->m_nMaxExcursion & nNoise);
1565 
1566 } /* end ReverbCalculateNoise */
1567 
1568 /*----------------------------------------------------------------------------
1569  * ReverbCalculateSinCos
1570  *----------------------------------------------------------------------------
1571  * Purpose:
1572  * Calculate a new sin and cosine value based on the given phase
1573  *
1574  * Inputs:
1575  * nPhase   - phase angle
1576  * pnSin    - input old value, output new value
1577  * pnCos    - input old value, output new value
1578  *
1579  * Outputs:
1580  *
1581  * Side Effects:
1582  * - *pnSin, *pnCos are updated
1583  *
1584  *----------------------------------------------------------------------------
1585  */
ReverbCalculateSinCos(int16_t nPhase,int16_t * pnSin,int16_t * pnCos)1586 static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1587     int32_t nTemp;
1588     int32_t nNetAngle;
1589 
1590     //  -1 <=  nPhase  < 1
1591     // However, for the calculation, we need a value
1592     // that ranges from -1/2 to +1/2, so divide the phase by 2
1593     /*lint -e{702} shift for performance */
1594     nNetAngle = nPhase >> 1;
1595 
1596     /*
1597      Implement the following
1598      sin(x) = (2-4*c)*x^2 + c + x
1599      cos(x) = (2-4*c)*x^2 + c - x
1600 
1601      where  c = 1/sqrt(2)
1602      using the a0 + x*(a1 + x*a2) approach
1603      */
1604 
1605     /* limit the input "angle" to be between -0.5 and +0.5 */
1606     if (nNetAngle > EG1_HALF) {
1607         nNetAngle = EG1_HALF;
1608     } else if (nNetAngle < EG1_MINUS_HALF) {
1609         nNetAngle = EG1_MINUS_HALF;
1610     }
1611 
1612     /* calculate sin */
1613     nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1614     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1615     *pnSin = (int16_t) SATURATE_EG1(nTemp);
1616 
1617     /* calculate cos */
1618     nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1619     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1620     *pnCos = (int16_t) SATURATE_EG1(nTemp);
1621 
1622     return 0;
1623 } /* end ReverbCalculateSinCos */
1624 
1625 /*----------------------------------------------------------------------------
1626  * Reverb
1627  *----------------------------------------------------------------------------
1628  * Purpose:
1629  * apply reverb to the given signal
1630  *
1631  * Inputs:
1632  * nNu
1633  * pnSin    - input old value, output new value
1634  * pnCos    - input old value, output new value
1635  *
1636  * Outputs:
1637  * number of samples actually reverberated
1638  *
1639  * Side Effects:
1640  *
1641  *----------------------------------------------------------------------------
1642  */
Reverb(reverb_object_t * pReverb,int nNumSamplesToAdd,short * pOutputBuffer,short * pInputBuffer)1643 static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1644         short *pOutputBuffer, short *pInputBuffer) {
1645     int32_t i;
1646     int32_t nDelayOut0;
1647     int32_t nDelayOut1;
1648     uint16_t nBase;
1649 
1650     uint32_t nAddr;
1651     int32_t nTemp1;
1652     int32_t nTemp2;
1653     int32_t nApIn;
1654     int32_t nApOut;
1655 
1656     int32_t j;
1657     int32_t nEarlyOut;
1658 
1659     int32_t tempValue;
1660 
1661     // get the base address
1662     nBase = pReverb->m_nBaseIndex;
1663 
1664     for (i = 0; i < nNumSamplesToAdd; i++) {
1665         // ********** Left Allpass - start
1666         nApIn = *pInputBuffer;
1667         if (!pReverb->m_Aux) {
1668             pInputBuffer++;
1669         }
1670         // store to early delay line
1671         nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1672         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1673 
1674         // left input = (left dry * m_nLateGain) + right feedback from previous period
1675 
1676         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1677         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1678 
1679         // fetch allpass delay line out
1680         //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1681         nAddr
1682                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1683         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1684 
1685         // calculate allpass feedforward; subtract the feedforward result
1686         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1687         nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1688 
1689         // calculate allpass feedback; add the feedback result
1690         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1691         nTemp1 = SATURATE(nApIn + nTemp1);
1692 
1693         // inject into allpass delay
1694         nAddr
1695                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1696         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1697 
1698         // inject allpass output into delay line
1699         nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1700         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1701 
1702         // ********** Left Allpass - end
1703 
1704         // ********** Right Allpass - start
1705         nApIn = (*pInputBuffer++);
1706         // store to early delay line
1707         nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1708         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1709 
1710         // right input = (right dry * m_nLateGain) + left feedback from previous period
1711         /*lint -e{702} use shift for performance */
1712         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1713         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1714 
1715         // fetch allpass delay line out
1716         nAddr
1717                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1718         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1719 
1720         // calculate allpass feedforward; subtract the feedforward result
1721         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1722         nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1723 
1724         // calculate allpass feedback; add the feedback result
1725         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1726         nTemp1 = SATURATE(nApIn + nTemp1);
1727 
1728         // inject into allpass delay
1729         nAddr
1730                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1731         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1732 
1733         // inject allpass output into delay line
1734         nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1735         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1736 
1737         // ********** Right Allpass - end
1738 
1739         // ********** D0 output - start
1740         // fetch delay line self out
1741         nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1742         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1743 
1744         // calculate delay line self out
1745         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1746 
1747         // fetch delay line cross out
1748         nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1749         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1750 
1751         // calculate delay line self out
1752         nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1753 
1754         // calculate unfiltered delay out
1755         nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1756 
1757         // ********** D0 output - end
1758 
1759         // ********** D1 output - start
1760         // fetch delay line self out
1761         nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1762         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1763 
1764         // calculate delay line self out
1765         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1766 
1767         // fetch delay line cross out
1768         nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1769         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1770 
1771         // calculate delay line self out
1772         nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1773 
1774         // calculate unfiltered delay out
1775         nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1776 
1777         // ********** D1 output - end
1778 
1779         // ********** mixer and feedback - start
1780         // sum is fedback to right input (R + L)
1781         nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1782 
1783         // difference is feedback to left input (R - L)
1784         /*lint -e{685} lint complains that it can't saturate negative */
1785         nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1786 
1787         // ********** mixer and feedback - end
1788 
1789         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1790         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1791 
1792         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1793 
1794         // calculate filtered delay out and simultaneously update LPF state variable
1795         // filtered delay output is stored in m_nRevFbkL
1796         pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1797 
1798         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1799         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1800 
1801         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1802 
1803         // calculate filtered delay out and simultaneously update LPF state variable
1804         // filtered delay output is stored in m_nRevFbkR
1805         pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1806 
1807         // ********** start early reflection generator, left
1808         //psEarly = &(pReverb->m_sEarlyL);
1809 
1810 
1811         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1812             // fetch delay line out
1813             //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1814             nAddr
1815                     = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1816 
1817             nTemp1 = pReverb->m_nDelayLine[nAddr];
1818 
1819             // calculate reflection
1820             //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1821             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1822 
1823             nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1824 
1825         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1826 
1827         // apply lowpass to early reflections and reverb output
1828         //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1829         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1830 
1831         //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1832         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1833 
1834         // calculate filtered out and simultaneously update LPF state variable
1835         // filtered output is stored in m_zOutLpfL
1836         pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1837 
1838         //sum with output buffer
1839         tempValue = *pOutputBuffer;
1840         *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1841 
1842         // ********** end early reflection generator, left
1843 
1844         // ********** start early reflection generator, right
1845         //psEarly = &(pReverb->m_sEarlyR);
1846 
1847         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1848             // fetch delay line out
1849             nAddr
1850                     = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1851             nTemp1 = pReverb->m_nDelayLine[nAddr];
1852 
1853             // calculate reflection
1854             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1855 
1856             nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1857 
1858         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1859 
1860         // apply lowpass to early reflections
1861         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1862 
1863         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1864 
1865         // calculate filtered out and simultaneously update LPF state variable
1866         // filtered output is stored in m_zOutLpfR
1867         pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1868 
1869         //sum with output buffer
1870         tempValue = *pOutputBuffer;
1871         *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1872 
1873         // ********** end early reflection generator, right
1874 
1875         // decrement base addr for next sample period
1876         nBase--;
1877 
1878         pReverb->m_nSin += pReverb->m_nSinIncrement;
1879         pReverb->m_nCos += pReverb->m_nCosIncrement;
1880 
1881     } // end for (i=0; i < nNumSamplesToAdd; i++)
1882 
1883     // store the most up to date version
1884     pReverb->m_nBaseIndex = nBase;
1885 
1886     return 0;
1887 } /* end Reverb */
1888 
1889 /*----------------------------------------------------------------------------
1890  * ReverbUpdateRoom
1891  *----------------------------------------------------------------------------
1892  * Purpose:
1893  * Update the room's preset parameters as required
1894  *
1895  * Inputs:
1896  *
1897  * Outputs:
1898  *
1899  *
1900  * Side Effects:
1901  * - reverb paramters (fbk, fwd, etc) will be changed
1902  * - m_nCurrentRoom := m_nNextRoom
1903  *----------------------------------------------------------------------------
1904  */
ReverbUpdateRoom(reverb_object_t * pReverb,bool fullUpdate)1905 static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1906     int temp;
1907     int i;
1908     int maxSamples;
1909     int earlyDelay;
1910     int earlyGain;
1911 
1912     reverb_preset_t *pPreset =
1913             &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1914 
1915     if (fullUpdate) {
1916         pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1917         pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1918 
1919         pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1920         //stored as time based, convert to sample based
1921         pReverb->m_nLateGain = pPreset->m_nLateGain;
1922         pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1923         pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1924 
1925         // set the early reflections gains
1926         earlyGain = pPreset->m_nEarlyGain;
1927         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1928             pReverb->m_sEarlyL.m_nGain[i]
1929                     = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1930             pReverb->m_sEarlyR.m_nGain[i]
1931                     = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1932         }
1933 
1934         pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1935 
1936         pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1937         pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1938 
1939         // set the early reflections delay
1940         earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1941                 >> 16;
1942         pReverb->m_nEarlyDelay = earlyDelay;
1943         maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1944                 >> 16;
1945         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1946             //stored as time based, convert to sample based
1947             temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1948                     * pReverb->m_nSamplingRate) >> 16);
1949             if (temp > maxSamples)
1950                 temp = maxSamples;
1951             pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1952             //stored as time based, convert to sample based
1953             temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1954                     * pReverb->m_nSamplingRate) >> 16);
1955             if (temp > maxSamples)
1956                 temp = maxSamples;
1957             pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1958         }
1959 
1960         maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1961                 >> 16;
1962         //stored as time based, convert to sample based
1963         /*lint -e{702} shift for performance */
1964         temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1965         if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1966             temp = maxSamples - pReverb->m_nMaxExcursion;
1967         }
1968         temp -= pReverb->m_nLateDelay;
1969         pReverb->m_nDelay0Out += temp;
1970         pReverb->m_nDelay1Out += temp;
1971         pReverb->m_nLateDelay += temp;
1972 
1973         maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1974         //stored as time based, convert to absolute sample value
1975         temp = pPreset->m_nAp0_ApOut;
1976         /*lint -e{702} shift for performance */
1977         temp = (temp * pReverb->m_nSamplingRate) >> 16;
1978         if (temp > maxSamples)
1979             temp = maxSamples;
1980         pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1981 
1982         //stored as time based, convert to absolute sample value
1983         temp = pPreset->m_nAp1_ApOut;
1984         /*lint -e{702} shift for performance */
1985         temp = (temp * pReverb->m_nSamplingRate) >> 16;
1986         if (temp > maxSamples)
1987             temp = maxSamples;
1988         pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1989         //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
1990     }
1991 
1992     //stored as time based, convert to sample based
1993     temp = pPreset->m_nXfadeInterval;
1994     /*lint -e{702} shift for performance */
1995     temp = (temp * pReverb->m_nSamplingRate) >> 16;
1996     pReverb->m_nXfadeInterval = (uint16_t) temp;
1997     //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
1998     pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
1999 
2000     pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
2001 
2002     return 0;
2003 
2004 } /* end ReverbUpdateRoom */
2005 
2006 /*----------------------------------------------------------------------------
2007  * ReverbReadInPresets()
2008  *----------------------------------------------------------------------------
2009  * Purpose: sets global reverb preset bank to defaults
2010  *
2011  * Inputs:
2012  *
2013  * Outputs:
2014  *
2015  *----------------------------------------------------------------------------
2016  */
ReverbReadInPresets(reverb_object_t * pReverb)2017 static int ReverbReadInPresets(reverb_object_t *pReverb) {
2018 
2019     int preset;
2020 
2021     // this is for test only. OpenSL ES presets are mapped to 4 presets.
2022     // REVERB_PRESET_NONE is mapped to bypass
2023     for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
2024         reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
2025         switch (preset + 1) {
2026         case REVERB_PRESET_PLATE:
2027         case REVERB_PRESET_SMALLROOM:
2028             pPreset->m_nRvbLpfFbk = 5077;
2029             pPreset->m_nRvbLpfFwd = 11076;
2030             pPreset->m_nEarlyGain = 27690;
2031             pPreset->m_nEarlyDelay = 1311;
2032             pPreset->m_nLateGain = 8191;
2033             pPreset->m_nLateDelay = 3932;
2034             pPreset->m_nRoomLpfFbk = 3692;
2035             pPreset->m_nRoomLpfFwd = 20474;
2036             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2037             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2038             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2039             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2040             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2041             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2042             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2043             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2044             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2045             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2046             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2047             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2048             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2049             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2050             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2051             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2052             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2053             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2054             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2055             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2056             pPreset->m_nMaxExcursion = 127;
2057             pPreset->m_nXfadeInterval = 6470; //6483;
2058             pPreset->m_nAp0_ApGain = 14768;
2059             pPreset->m_nAp0_ApOut = 792;
2060             pPreset->m_nAp1_ApGain = 14777;
2061             pPreset->m_nAp1_ApOut = 1191;
2062             pPreset->m_rfu4 = 0;
2063             pPreset->m_rfu5 = 0;
2064             pPreset->m_rfu6 = 0;
2065             pPreset->m_rfu7 = 0;
2066             pPreset->m_rfu8 = 0;
2067             pPreset->m_rfu9 = 0;
2068             pPreset->m_rfu10 = 0;
2069             break;
2070         case REVERB_PRESET_MEDIUMROOM:
2071         case REVERB_PRESET_LARGEROOM:
2072             pPreset->m_nRvbLpfFbk = 5077;
2073             pPreset->m_nRvbLpfFwd = 12922;
2074             pPreset->m_nEarlyGain = 27690;
2075             pPreset->m_nEarlyDelay = 1311;
2076             pPreset->m_nLateGain = 8191;
2077             pPreset->m_nLateDelay = 3932;
2078             pPreset->m_nRoomLpfFbk = 3692;
2079             pPreset->m_nRoomLpfFwd = 21703;
2080             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2081             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2082             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2083             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2084             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2085             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2086             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2087             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2088             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2089             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2090             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2091             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2092             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2093             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2094             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2095             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2096             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2097             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2098             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2099             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2100             pPreset->m_nMaxExcursion = 127;
2101             pPreset->m_nXfadeInterval = 6449;
2102             pPreset->m_nAp0_ApGain = 15691;
2103             pPreset->m_nAp0_ApOut = 774;
2104             pPreset->m_nAp1_ApGain = 16317;
2105             pPreset->m_nAp1_ApOut = 1155;
2106             pPreset->m_rfu4 = 0;
2107             pPreset->m_rfu5 = 0;
2108             pPreset->m_rfu6 = 0;
2109             pPreset->m_rfu7 = 0;
2110             pPreset->m_rfu8 = 0;
2111             pPreset->m_rfu9 = 0;
2112             pPreset->m_rfu10 = 0;
2113             break;
2114         case REVERB_PRESET_MEDIUMHALL:
2115             pPreset->m_nRvbLpfFbk = 6461;
2116             pPreset->m_nRvbLpfFwd = 14307;
2117             pPreset->m_nEarlyGain = 27690;
2118             pPreset->m_nEarlyDelay = 1311;
2119             pPreset->m_nLateGain = 8191;
2120             pPreset->m_nLateDelay = 3932;
2121             pPreset->m_nRoomLpfFbk = 3692;
2122             pPreset->m_nRoomLpfFwd = 24569;
2123             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2124             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2125             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2126             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2127             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2128             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2129             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2130             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2131             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2132             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2133             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2134             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2135             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2136             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2137             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2138             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2139             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2140             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2141             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2142             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2143             pPreset->m_nMaxExcursion = 127;
2144             pPreset->m_nXfadeInterval = 6391;
2145             pPreset->m_nAp0_ApGain = 15230;
2146             pPreset->m_nAp0_ApOut = 708;
2147             pPreset->m_nAp1_ApGain = 15547;
2148             pPreset->m_nAp1_ApOut = 1023;
2149             pPreset->m_rfu4 = 0;
2150             pPreset->m_rfu5 = 0;
2151             pPreset->m_rfu6 = 0;
2152             pPreset->m_rfu7 = 0;
2153             pPreset->m_rfu8 = 0;
2154             pPreset->m_rfu9 = 0;
2155             pPreset->m_rfu10 = 0;
2156             break;
2157         case REVERB_PRESET_LARGEHALL:
2158             pPreset->m_nRvbLpfFbk = 8307;
2159             pPreset->m_nRvbLpfFwd = 14768;
2160             pPreset->m_nEarlyGain = 27690;
2161             pPreset->m_nEarlyDelay = 1311;
2162             pPreset->m_nLateGain = 8191;
2163             pPreset->m_nLateDelay = 3932;
2164             pPreset->m_nRoomLpfFbk = 3692;
2165             pPreset->m_nRoomLpfFwd = 24569;
2166             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2167             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2168             pPreset->m_sEarlyL.m_zDelay[1] = 2163;
2169             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2170             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2171             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2172             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2173             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2174             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2175             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2176             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2177             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2178             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2179             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2180             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2181             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2182             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2183             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2184             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2185             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2186             pPreset->m_nMaxExcursion = 127;
2187             pPreset->m_nXfadeInterval = 6388;
2188             pPreset->m_nAp0_ApGain = 15691;
2189             pPreset->m_nAp0_ApOut = 711;
2190             pPreset->m_nAp1_ApGain = 16317;
2191             pPreset->m_nAp1_ApOut = 1029;
2192             pPreset->m_rfu4 = 0;
2193             pPreset->m_rfu5 = 0;
2194             pPreset->m_rfu6 = 0;
2195             pPreset->m_rfu7 = 0;
2196             pPreset->m_rfu8 = 0;
2197             pPreset->m_rfu9 = 0;
2198             pPreset->m_rfu10 = 0;
2199             break;
2200         }
2201     }
2202 
2203     return 0;
2204 }
2205 
2206 audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
2207     .tag = AUDIO_EFFECT_LIBRARY_TAG,
2208     .version = EFFECT_LIBRARY_API_VERSION,
2209     .name = "Test Equalizer Library",
2210     .implementor = "The Android Open Source Project",
2211     .create_effect = EffectCreate,
2212     .release_effect = EffectRelease,
2213     .get_descriptor = EffectGetDescriptor,
2214 };
2215