1 //===- X86PLT.cpp ---------------------------------------------------------===//
2 //
3 //                     The MCLinker Project
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 #include "X86GOTPLT.h"
10 #include "X86PLT.h"
11 
12 #include "mcld/LD/LDSection.h"
13 #include "mcld/LinkerConfig.h"
14 #include "mcld/Support/MsgHandling.h"
15 
16 #include <llvm/Support/ELF.h>
17 #include <llvm/Support/Casting.h>
18 
19 namespace mcld {
20 
21 //===----------------------------------------------------------------------===//
22 // PLT entry data
23 //===----------------------------------------------------------------------===//
X86_32DynPLT0(SectionData & pParent)24 X86_32DynPLT0::X86_32DynPLT0(SectionData& pParent)
25     : PLT::Entry<sizeof(x86_32_dyn_plt0)>(pParent) {
26 }
27 
X86_32DynPLT1(SectionData & pParent)28 X86_32DynPLT1::X86_32DynPLT1(SectionData& pParent)
29     : PLT::Entry<sizeof(x86_32_dyn_plt1)>(pParent) {
30 }
31 
X86_32ExecPLT0(SectionData & pParent)32 X86_32ExecPLT0::X86_32ExecPLT0(SectionData& pParent)
33     : PLT::Entry<sizeof(x86_32_exec_plt0)>(pParent) {
34 }
35 
X86_32ExecPLT1(SectionData & pParent)36 X86_32ExecPLT1::X86_32ExecPLT1(SectionData& pParent)
37     : PLT::Entry<sizeof(x86_32_exec_plt1)>(pParent) {
38 }
39 
X86_64PLT0(SectionData & pParent)40 X86_64PLT0::X86_64PLT0(SectionData& pParent)
41     : PLT::Entry<sizeof(x86_64_plt0)>(pParent) {
42 }
43 
X86_64PLT1(SectionData & pParent)44 X86_64PLT1::X86_64PLT1(SectionData& pParent)
45     : PLT::Entry<sizeof(x86_64_plt1)>(pParent) {
46 }
47 
48 //===----------------------------------------------------------------------===//
49 // X86PLT
50 //===----------------------------------------------------------------------===//
X86PLT(LDSection & pSection,const LinkerConfig & pConfig,int got_size)51 X86PLT::X86PLT(LDSection& pSection, const LinkerConfig& pConfig, int got_size)
52     : PLT(pSection), m_Config(pConfig) {
53   assert(LinkerConfig::DynObj == m_Config.codeGenType() ||
54          LinkerConfig::Exec == m_Config.codeGenType() ||
55          LinkerConfig::Binary == m_Config.codeGenType());
56 
57   if (got_size == 32) {
58     if (LinkerConfig::DynObj == m_Config.codeGenType()) {
59       m_PLT0 = x86_32_dyn_plt0;
60       m_PLT1 = x86_32_dyn_plt1;
61       m_PLT0Size = sizeof(x86_32_dyn_plt0);
62       m_PLT1Size = sizeof(x86_32_dyn_plt1);
63       // create PLT0
64       new X86_32DynPLT0(*m_pSectionData);
65     } else {
66       m_PLT0 = x86_32_exec_plt0;
67       m_PLT1 = x86_32_exec_plt1;
68       m_PLT0Size = sizeof(x86_32_exec_plt0);
69       m_PLT1Size = sizeof(x86_32_exec_plt1);
70       // create PLT0
71       new X86_32ExecPLT0(*m_pSectionData);
72     }
73   } else {
74     assert(got_size == 64);
75     m_PLT0 = x86_64_plt0;
76     m_PLT1 = x86_64_plt1;
77     m_PLT0Size = sizeof(x86_64_plt0);
78     m_PLT1Size = sizeof(x86_64_plt1);
79     // create PLT0
80     new X86_64PLT0(*m_pSectionData);
81   }
82 }
83 
~X86PLT()84 X86PLT::~X86PLT() {
85 }
86 
finalizeSectionSize()87 void X86PLT::finalizeSectionSize() {
88   uint64_t size = 0;
89   // plt0 size
90   size = getPLT0()->size();
91 
92   // get first plt1 entry
93   X86PLT::iterator it = begin();
94   ++it;
95   if (end() != it) {
96     // plt1 size
97     PLTEntryBase* plt1 = &(llvm::cast<PLTEntryBase>(*it));
98     size += (m_pSectionData->size() - 1) * plt1->size();
99   }
100   m_Section.setSize(size);
101 
102   uint32_t offset = 0;
103   SectionData::iterator frag, fragEnd = m_pSectionData->end();
104   for (frag = m_pSectionData->begin(); frag != fragEnd; ++frag) {
105     frag->setOffset(offset);
106     offset += frag->size();
107   }
108 }
109 
hasPLT1() const110 bool X86PLT::hasPLT1() const {
111   return (m_pSectionData->size() > 1);
112 }
113 
create()114 PLTEntryBase* X86PLT::create() {
115   if (LinkerConfig::DynObj == m_Config.codeGenType())
116     return new X86_32DynPLT1(*m_pSectionData);
117   else
118     return new X86_32ExecPLT1(*m_pSectionData);
119 }
120 
getPLT0() const121 PLTEntryBase* X86PLT::getPLT0() const {
122   iterator first = m_pSectionData->getFragmentList().begin();
123 
124   assert(first != m_pSectionData->getFragmentList().end() &&
125          "FragmentList is empty, getPLT0 failed!");
126 
127   PLTEntryBase* plt0 = &(llvm::cast<PLTEntryBase>(*first));
128 
129   return plt0;
130 }
131 
132 //===----------------------------------------------------------------------===//
133 // X86_32PLT
134 //===----------------------------------------------------------------------===//
X86_32PLT(LDSection & pSection,X86_32GOTPLT & pGOTPLT,const LinkerConfig & pConfig)135 X86_32PLT::X86_32PLT(LDSection& pSection,
136                      X86_32GOTPLT& pGOTPLT,
137                      const LinkerConfig& pConfig)
138     : X86PLT(pSection, pConfig, 32), m_GOTPLT(pGOTPLT) {
139 }
140 
141 // FIXME: It only works on little endian machine.
applyPLT0()142 void X86_32PLT::applyPLT0() {
143   PLTEntryBase* plt0 = getPLT0();
144 
145   unsigned char* data = 0;
146   data = static_cast<unsigned char*>(malloc(plt0->size()));
147 
148   if (!data)
149     fatal(diag::fail_allocate_memory_plt);
150 
151   memcpy(data, m_PLT0, plt0->size());
152 
153   if (m_PLT0 == x86_32_exec_plt0) {
154     uint32_t* offset = reinterpret_cast<uint32_t*>(data + 2);
155     *offset = m_GOTPLT.addr() + 4;
156     offset = reinterpret_cast<uint32_t*>(data + 8);
157     *offset = m_GOTPLT.addr() + 8;
158   }
159 
160   plt0->setValue(data);
161 }
162 
163 // FIXME: It only works on little endian machine.
applyPLT1()164 void X86_32PLT::applyPLT1() {
165   assert(m_Section.addr() && ".plt base address is NULL!");
166 
167   X86PLT::iterator it = m_pSectionData->begin();
168   X86PLT::iterator ie = m_pSectionData->end();
169   assert(it != ie && "FragmentList is empty, applyPLT1 failed!");
170 
171   uint64_t GOTEntrySize = X86_32GOTEntry::EntrySize;
172 
173   // Skip GOT0
174   uint64_t GOTEntryOffset = GOTEntrySize * X86GOTPLT0Num;
175   if (LinkerConfig::Exec == m_Config.codeGenType())
176     GOTEntryOffset += m_GOTPLT.addr();
177 
178   // skip PLT0
179   uint64_t PLTEntryOffset = m_PLT0Size;
180   ++it;
181 
182   PLTEntryBase* plt1 = 0;
183 
184   uint64_t PLTRelOffset = 0;
185 
186   while (it != ie) {
187     plt1 = &(llvm::cast<PLTEntryBase>(*it));
188     unsigned char* data;
189     data = static_cast<unsigned char*>(malloc(plt1->size()));
190 
191     if (!data)
192       fatal(diag::fail_allocate_memory_plt);
193 
194     memcpy(data, m_PLT1, plt1->size());
195 
196     uint32_t* offset;
197 
198     offset = reinterpret_cast<uint32_t*>(data + 2);
199     *offset = GOTEntryOffset;
200     GOTEntryOffset += GOTEntrySize;
201 
202     offset = reinterpret_cast<uint32_t*>(data + 7);
203     *offset = PLTRelOffset;
204     PLTRelOffset += sizeof(llvm::ELF::Elf32_Rel);
205 
206     offset = reinterpret_cast<uint32_t*>(data + 12);
207     *offset = -(PLTEntryOffset + 12 + 4);
208     PLTEntryOffset += m_PLT1Size;
209 
210     plt1->setValue(data);
211     ++it;
212   }
213 }
214 
215 //===----------------------------------------------------------------------===//
216 // X86_64PLT
217 //===----------------------------------------------------------------------===//
X86_64PLT(LDSection & pSection,X86_64GOTPLT & pGOTPLT,const LinkerConfig & pConfig)218 X86_64PLT::X86_64PLT(LDSection& pSection,
219                      X86_64GOTPLT& pGOTPLT,
220                      const LinkerConfig& pConfig)
221     : X86PLT(pSection, pConfig, 64), m_GOTPLT(pGOTPLT) {
222 }
223 
224 // FIXME: It only works on little endian machine.
applyPLT0()225 void X86_64PLT::applyPLT0() {
226   PLTEntryBase* plt0 = getPLT0();
227 
228   unsigned char* data = 0;
229   data = static_cast<unsigned char*>(malloc(plt0->size()));
230 
231   if (!data)
232     fatal(diag::fail_allocate_memory_plt);
233 
234   memcpy(data, m_PLT0, plt0->size());
235 
236   // pushq GOT + 8(%rip)
237   uint32_t* offset = reinterpret_cast<uint32_t*>(data + 2);
238   *offset = m_GOTPLT.addr() - addr() + 8 - 6;
239   // jmq *GOT + 16(%rip)
240   offset = reinterpret_cast<uint32_t*>(data + 8);
241   *offset = m_GOTPLT.addr() - addr() + 16 - 12;
242 
243   plt0->setValue(data);
244 }
245 
246 // FIXME: It only works on little endian machine.
applyPLT1()247 void X86_64PLT::applyPLT1() {
248   assert(m_Section.addr() && ".plt base address is NULL!");
249 
250   X86PLT::iterator it = m_pSectionData->begin();
251   X86PLT::iterator ie = m_pSectionData->end();
252   assert(it != ie && "FragmentList is empty, applyPLT1 failed!");
253 
254   uint64_t GOTEntrySize = X86_64GOTEntry::EntrySize;
255 
256   // compute sym@GOTPCREL of the PLT1 entry.
257   uint64_t SymGOTPCREL = m_GOTPLT.addr();
258 
259   // Skip GOT0
260   SymGOTPCREL += GOTEntrySize * X86GOTPLT0Num;
261 
262   // skip PLT0
263   uint64_t PLTEntryOffset = m_PLT0Size;
264   ++it;
265 
266   // PC-relative to entry in PLT section.
267   SymGOTPCREL -= addr() + PLTEntryOffset + 6;
268 
269   PLTEntryBase* plt1 = 0;
270 
271   uint64_t PLTRelIndex = 0;
272 
273   while (it != ie) {
274     plt1 = &(llvm::cast<PLTEntryBase>(*it));
275     unsigned char* data;
276     data = static_cast<unsigned char*>(malloc(plt1->size()));
277 
278     if (!data)
279       fatal(diag::fail_allocate_memory_plt);
280 
281     memcpy(data, m_PLT1, plt1->size());
282 
283     uint32_t* offset;
284 
285     // jmpq *sym@GOTPCREL(%rip)
286     offset = reinterpret_cast<uint32_t*>(data + 2);
287     *offset = SymGOTPCREL;
288     SymGOTPCREL += GOTEntrySize - m_PLT1Size;
289 
290     // pushq $index
291     offset = reinterpret_cast<uint32_t*>(data + 7);
292     *offset = PLTRelIndex;
293     PLTRelIndex++;
294 
295     // jmpq plt0
296     offset = reinterpret_cast<uint32_t*>(data + 12);
297     *offset = -(PLTEntryOffset + 12 + 4);
298     PLTEntryOffset += m_PLT1Size;
299 
300     plt1->setValue(data);
301     ++it;
302   }
303 }
304 
305 }  // namespace mcld
306