1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_LAYER_H
18 #define ANDROID_LAYER_H
19 
20 #include <sys/types.h>
21 
22 #include <utils/RefBase.h>
23 #include <utils/String8.h>
24 #include <utils/Timers.h>
25 
26 #include <ui/FloatRect.h>
27 #include <ui/FrameStats.h>
28 #include <ui/GraphicBuffer.h>
29 #include <ui/PixelFormat.h>
30 #include <ui/Region.h>
31 
32 #include <gui/ISurfaceComposerClient.h>
33 #include <gui/LayerState.h>
34 #include <gui/BufferQueue.h>
35 
36 #include <list>
37 #include <cstdint>
38 
39 #include "Client.h"
40 #include "FrameTracker.h"
41 #include "LayerVector.h"
42 #include "MonitoredProducer.h"
43 #include "SurfaceFlinger.h"
44 #include "TimeStats/TimeStats.h"
45 #include "Transform.h"
46 
47 #include <layerproto/LayerProtoHeader.h>
48 #include "DisplayHardware/HWComposer.h"
49 #include "DisplayHardware/HWComposerBufferCache.h"
50 #include "RenderArea.h"
51 #include "RenderEngine/Mesh.h"
52 #include "RenderEngine/Texture.h"
53 
54 #include <math/vec4.h>
55 #include <vector>
56 
57 using namespace android::surfaceflinger;
58 
59 namespace android {
60 
61 // ---------------------------------------------------------------------------
62 
63 class Client;
64 class Colorizer;
65 class DisplayDevice;
66 class GraphicBuffer;
67 class SurfaceFlinger;
68 class LayerDebugInfo;
69 class LayerBE;
70 
71 namespace impl {
72 class SurfaceInterceptor;
73 }
74 
75 // ---------------------------------------------------------------------------
76 
77 struct CompositionInfo {
78     HWC2::Composition compositionType;
79     sp<GraphicBuffer> mBuffer = nullptr;
80     int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT;
81     struct {
82         HWComposer* hwc;
83         sp<Fence> fence;
84         HWC2::BlendMode blendMode;
85         Rect displayFrame;
86         float alpha;
87         FloatRect sourceCrop;
88         HWC2::Transform transform;
89         int z;
90         int type;
91         int appId;
92         Region visibleRegion;
93         Region surfaceDamage;
94         sp<NativeHandle> sidebandStream;
95         android_dataspace dataspace;
96         hwc_color_t color;
97     } hwc;
98     struct {
99         RE::RenderEngine* renderEngine;
100         Mesh* mesh;
101     } renderEngine;
102 };
103 
104 class LayerBE {
105 public:
106     LayerBE();
107 
108     // The mesh used to draw the layer in GLES composition mode
109     Mesh mMesh;
110 
111     // HWC items, accessed from the main thread
112     struct HWCInfo {
HWCInfoHWCInfo113         HWCInfo()
114               : hwc(nullptr),
115                 layer(nullptr),
116                 forceClientComposition(false),
117                 compositionType(HWC2::Composition::Invalid),
118                 clearClientTarget(false),
119                 transform(HWC2::Transform::None) {}
120 
121         HWComposer* hwc;
122         HWC2::Layer* layer;
123         bool forceClientComposition;
124         HWC2::Composition compositionType;
125         bool clearClientTarget;
126         Rect displayFrame;
127         FloatRect sourceCrop;
128         HWComposerBufferCache bufferCache;
129         HWC2::Transform transform;
130     };
131 
132     // A layer can be attached to multiple displays when operating in mirror mode
133     // (a.k.a: when several displays are attached with equal layerStack). In this
134     // case we need to keep track. In non-mirror mode, a layer will have only one
135     // HWCInfo. This map key is a display layerStack.
136     std::unordered_map<int32_t, HWCInfo> mHwcLayers;
137 
138     CompositionInfo compositionInfo;
139 };
140 
141 class Layer : public virtual RefBase {
142     static int32_t sSequence;
143 
144 public:
getBE()145     LayerBE& getBE() { return mBE; }
getBE()146     LayerBE& getBE() const { return mBE; }
147     mutable bool contentDirty;
148     // regions below are in window-manager space
149     Region visibleRegion;
150     Region coveredRegion;
151     Region visibleNonTransparentRegion;
152     Region surfaceDamageRegion;
153 
154     // Layer serial number.  This gives layers an explicit ordering, so we
155     // have a stable sort order when their layer stack and Z-order are
156     // the same.
157     int32_t sequence;
158 
159     enum { // flags for doTransaction()
160         eDontUpdateGeometryState = 0x00000001,
161         eVisibleRegion = 0x00000002,
162     };
163 
164     struct Geometry {
165         uint32_t w;
166         uint32_t h;
167         Transform transform;
168 
169         inline bool operator==(const Geometry& rhs) const {
170             return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
171                     (transform.ty() == rhs.transform.ty());
172         }
173         inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
174     };
175 
176     struct State {
177         Geometry active;
178         Geometry requested;
179         int32_t z;
180 
181         // The identifier of the layer stack this layer belongs to. A layer can
182         // only be associated to a single layer stack. A layer stack is a
183         // z-ordered group of layers which can be associated to one or more
184         // displays. Using the same layer stack on different displays is a way
185         // to achieve mirroring.
186         uint32_t layerStack;
187 
188         uint8_t flags;
189         uint8_t reserved[2];
190         int32_t sequence; // changes when visible regions can change
191         bool modified;
192 
193         // Crop is expressed in layer space coordinate.
194         Rect crop;
195         Rect requestedCrop;
196 
197         // finalCrop is expressed in display space coordinate.
198         Rect finalCrop;
199         Rect requestedFinalCrop;
200 
201         // If set, defers this state update until the identified Layer
202         // receives a frame with the given frameNumber
203         wp<Layer> barrierLayer;
204         uint64_t frameNumber;
205 
206         // the transparentRegion hint is a bit special, it's latched only
207         // when we receive a buffer -- this is because it's "content"
208         // dependent.
209         Region activeTransparentRegion;
210         Region requestedTransparentRegion;
211 
212         int32_t appId;
213         int32_t type;
214 
215         // If non-null, a Surface this Surface's Z-order is interpreted relative to.
216         wp<Layer> zOrderRelativeOf;
217 
218         // A list of surfaces whose Z-order is interpreted relative to ours.
219         SortedVector<wp<Layer>> zOrderRelatives;
220 
221         half4 color;
222     };
223 
224     Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
225           uint32_t h, uint32_t flags);
226     virtual ~Layer();
227 
setPrimaryDisplayOnly()228     void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
229 
230     // ------------------------------------------------------------------------
231     // Geometry setting functions.
232     //
233     // The following group of functions are used to specify the layers
234     // bounds, and the mapping of the texture on to those bounds. According
235     // to various settings changes to them may apply immediately, or be delayed until
236     // a pending resize is completed by the producer submitting a buffer. For example
237     // if we were to change the buffer size, and update the matrix ahead of the
238     // new buffer arriving, then we would be stretching the buffer to a different
239     // aspect before and after the buffer arriving, which probably isn't what we wanted.
240     //
241     // The first set of geometry functions are controlled by the scaling mode, described
242     // in window.h. The scaling mode may be set by the client, as it submits buffers.
243     // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
244     //
245     // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
246     // matrix updates will not be applied while a resize is pending
247     // and the size and transform will remain in their previous state
248     // until a new buffer is submitted. If the scaling mode is another value
249     // then the old-buffer will immediately be scaled to the pending size
250     // and the new matrix will be immediately applied following this scaling
251     // transformation.
252 
253     // Set the default buffer size for the assosciated Producer, in pixels. This is
254     // also the rendered size of the layer prior to any transformations. Parent
255     // or local matrix transformations will not affect the size of the buffer,
256     // but may affect it's on-screen size or clipping.
257     bool setSize(uint32_t w, uint32_t h);
258     // Set a 2x2 transformation matrix on the layer. This transform
259     // will be applied after parent transforms, but before any final
260     // producer specified transform.
261     bool setMatrix(const layer_state_t::matrix22_t& matrix);
262 
263     // This second set of geometry attributes are controlled by
264     // setGeometryAppliesWithResize, and their default mode is to be
265     // immediate. If setGeometryAppliesWithResize is specified
266     // while a resize is pending, then update of these attributes will
267     // be delayed until the resize completes.
268 
269     // setPosition operates in parent buffer space (pre parent-transform) or display
270     // space for top-level layers.
271     bool setPosition(float x, float y, bool immediate);
272     // Buffer space
273     bool setCrop(const Rect& crop, bool immediate);
274     // Parent buffer space/display space
275     bool setFinalCrop(const Rect& crop, bool immediate);
276 
277     // TODO(b/38182121): Could we eliminate the various latching modes by
278     // using the layer hierarchy?
279     // -----------------------------------------------------------------------
280     bool setLayer(int32_t z);
281     bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
282 
283     bool setAlpha(float alpha);
284     bool setColor(const half3& color);
285     bool setTransparentRegionHint(const Region& transparent);
286     bool setFlags(uint8_t flags, uint8_t mask);
287     bool setLayerStack(uint32_t layerStack);
288     uint32_t getLayerStack() const;
289     void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
290     void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
291     bool setOverrideScalingMode(int32_t overrideScalingMode);
292     void setInfo(int32_t type, int32_t appId);
293     bool reparentChildren(const sp<IBinder>& layer);
294     void setChildrenDrawingParent(const sp<Layer>& layer);
295     bool reparent(const sp<IBinder>& newParentHandle);
296     bool detachChildren();
297 
getDataSpace()298     ui::Dataspace getDataSpace() const { return mCurrentDataSpace; }
299 
300     // Before color management is introduced, contents on Android have to be
301     // desaturated in order to match what they appears like visually.
302     // With color management, these contents will appear desaturated, thus
303     // needed to be saturated so that they match what they are designed for
304     // visually.
305     bool isLegacyDataSpace() const;
306 
307     // If we have received a new buffer this frame, we will pass its surface
308     // damage down to hardware composer. Otherwise, we must send a region with
309     // one empty rect.
useSurfaceDamage()310     virtual void useSurfaceDamage() {}
useEmptyDamage()311     virtual void useEmptyDamage() {}
312 
313     uint32_t getTransactionFlags(uint32_t flags);
314     uint32_t setTransactionFlags(uint32_t flags);
315 
belongsToDisplay(uint32_t layerStack,bool isPrimaryDisplay)316     bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
317         return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
318     }
319 
320     void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
321     FloatRect computeBounds(const Region& activeTransparentRegion) const;
322     FloatRect computeBounds() const;
323 
getSequence()324     int32_t getSequence() const { return sequence; }
325 
326     // -----------------------------------------------------------------------
327     // Virtuals
328     virtual const char* getTypeId() const = 0;
329 
330     /*
331      * isOpaque - true if this surface is opaque
332      *
333      * This takes into account the buffer format (i.e. whether or not the
334      * pixel format includes an alpha channel) and the "opaque" flag set
335      * on the layer.  It does not examine the current plane alpha value.
336      */
isOpaque(const Layer::State &)337     virtual bool isOpaque(const Layer::State&) const { return false; }
338 
339     /*
340      * isSecure - true if this surface is secure, that is if it prevents
341      * screenshots or VNC servers.
342      */
343     bool isSecure() const;
344 
345     /*
346      * isVisible - true if this layer is visible, false otherwise
347      */
348     virtual bool isVisible() const = 0;
349 
350     /*
351      * isHiddenByPolicy - true if this layer has been forced invisible.
352      * just because this is false, doesn't mean isVisible() is true.
353      * For example if this layer has no active buffer, it may not be hidden by
354      * policy, but it still can not be visible.
355      */
356     bool isHiddenByPolicy() const;
357 
358     /*
359      * isFixedSize - true if content has a fixed size
360      */
isFixedSize()361     virtual bool isFixedSize() const { return true; }
362 
363 
isPendingRemoval()364     bool isPendingRemoval() const { return mPendingRemoval; }
365 
366     void writeToProto(LayerProto* layerInfo,
367                       LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);
368 
369     void writeToProto(LayerProto* layerInfo, int32_t hwcId);
370 
371 protected:
372     /*
373      * onDraw - draws the surface.
374      */
375     virtual void onDraw(const RenderArea& renderArea, const Region& clip,
376                         bool useIdentityTransform) const = 0;
377 
378 public:
setDefaultBufferSize(uint32_t,uint32_t)379     virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}
380 
isHdrY410()381     virtual bool isHdrY410() const { return false; }
382 
383     void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
384     void forceClientComposition(int32_t hwcId);
385     bool getForceClientComposition(int32_t hwcId);
386     virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;
387 
388     // callIntoHwc exists so we can update our local state and call
389     // acceptDisplayChanges without unnecessarily updating the device's state
390     void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
391     HWC2::Composition getCompositionType(int32_t hwcId) const;
392     void setClearClientTarget(int32_t hwcId, bool clear);
393     bool getClearClientTarget(int32_t hwcId) const;
394     void updateCursorPosition(const sp<const DisplayDevice>& hw);
395 
396     /*
397      * called after page-flip
398      */
399     virtual void onLayerDisplayed(const sp<Fence>& releaseFence);
400 
abandon()401     virtual void abandon() {}
402 
shouldPresentNow(const DispSync &)403     virtual bool shouldPresentNow(const DispSync& /*dispSync*/) const { return false; }
setTransformHint(uint32_t)404     virtual void setTransformHint(uint32_t /*orientation*/) const { }
405 
406     /*
407      * called before composition.
408      * returns true if the layer has pending updates.
409      */
onPreComposition(nsecs_t)410     virtual bool onPreComposition(nsecs_t /*refreshStartTime*/) { return true; }
411 
412     /*
413      * called after composition.
414      * returns true if the layer latched a new buffer this frame.
415      */
onPostComposition(const std::shared_ptr<FenceTime> &,const std::shared_ptr<FenceTime> &,const CompositorTiming &)416     virtual bool onPostComposition(const std::shared_ptr<FenceTime>& /*glDoneFence*/,
417                                    const std::shared_ptr<FenceTime>& /*presentFence*/,
418                                    const CompositorTiming& /*compositorTiming*/) {
419         return false;
420     }
421 
422     // If a buffer was replaced this frame, release the former buffer
releasePendingBuffer(nsecs_t)423     virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }
424 
425 
426     /*
427      * draw - performs some global clipping optimizations
428      * and calls onDraw().
429      */
430     void draw(const RenderArea& renderArea, const Region& clip) const;
431     void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
432     void draw(const RenderArea& renderArea) const;
433 
434     /*
435      * doTransaction - process the transaction. This is a good place to figure
436      * out which attributes of the surface have changed.
437      */
438     uint32_t doTransaction(uint32_t transactionFlags);
439 
440     /*
441      * setVisibleRegion - called to set the new visible region. This gives
442      * a chance to update the new visible region or record the fact it changed.
443      */
444     void setVisibleRegion(const Region& visibleRegion);
445 
446     /*
447      * setCoveredRegion - called when the covered region changes. The covered
448      * region corresponds to any area of the surface that is covered
449      * (transparently or not) by another surface.
450      */
451     void setCoveredRegion(const Region& coveredRegion);
452 
453     /*
454      * setVisibleNonTransparentRegion - called when the visible and
455      * non-transparent region changes.
456      */
457     void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
458 
459     /*
460      * Clear the visible, covered, and non-transparent regions.
461      */
462     void clearVisibilityRegions();
463 
464     /*
465      * latchBuffer - called each time the screen is redrawn and returns whether
466      * the visible regions need to be recomputed (this is a fairly heavy
467      * operation, so this should be set only if needed). Typically this is used
468      * to figure out if the content or size of a surface has changed.
469      */
latchBuffer(bool &,nsecs_t)470     virtual Region latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) {
471         return {};
472     }
473 
isBufferLatched()474     virtual bool isBufferLatched() const { return false; }
475 
isPotentialCursor()476     bool isPotentialCursor() const { return mPotentialCursor; }
477     /*
478      * called with the state lock from a binder thread when the layer is
479      * removed from the current list to the pending removal list
480      */
481     void onRemovedFromCurrentState();
482 
483     /*
484      * called with the state lock from the main thread when the layer is
485      * removed from the pending removal list
486      */
487     void onRemoved();
488 
489     // Updates the transform hint in our SurfaceFlingerConsumer to match
490     // the current orientation of the display device.
491     void updateTransformHint(const sp<const DisplayDevice>& hw) const;
492 
493     /*
494      * returns the rectangle that crops the content of the layer and scales it
495      * to the layer's size.
496      */
497     Rect getContentCrop() const;
498 
499     /*
500      * Returns if a frame is queued.
501      */
hasQueuedFrame()502     bool hasQueuedFrame() const {
503         return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
504     }
505 
getQueuedFrameCount()506     int32_t getQueuedFrameCount() const { return mQueuedFrames; }
507 
508     // -----------------------------------------------------------------------
509 
510     bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
511     bool destroyHwcLayer(int32_t hwcId);
512     void destroyAllHwcLayers();
513 
hasHwcLayer(int32_t hwcId)514     bool hasHwcLayer(int32_t hwcId) {
515         return getBE().mHwcLayers.count(hwcId) > 0;
516     }
517 
getHwcLayer(int32_t hwcId)518     HWC2::Layer* getHwcLayer(int32_t hwcId) {
519         if (getBE().mHwcLayers.count(hwcId) == 0) {
520             return nullptr;
521         }
522         return getBE().mHwcLayers[hwcId].layer;
523     }
524 
525     // -----------------------------------------------------------------------
526 
527     void clearWithOpenGL(const RenderArea& renderArea) const;
528     void setFiltering(bool filtering);
529     bool getFiltering() const;
530 
531 
getDrawingState()532     inline const State& getDrawingState() const { return mDrawingState; }
getCurrentState()533     inline const State& getCurrentState() const { return mCurrentState; }
getCurrentState()534     inline State& getCurrentState() { return mCurrentState; }
535 
536     LayerDebugInfo getLayerDebugInfo() const;
537 
538     /* always call base class first */
539     static void miniDumpHeader(String8& result);
540     void miniDump(String8& result, int32_t hwcId) const;
541     void dumpFrameStats(String8& result) const;
542     void dumpFrameEvents(String8& result);
543     void clearFrameStats();
544     void logFrameStats();
545     void getFrameStats(FrameStats* outStats) const;
546 
getOccupancyHistory(bool)547     virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
548         return {};
549     }
550 
551     void onDisconnect();
552     void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
553                                   FrameEventHistoryDelta* outDelta);
554 
getTransformToDisplayInverse()555     virtual bool getTransformToDisplayInverse() const { return false; }
556 
557     Transform getTransform() const;
558 
559     // Returns the Alpha of the Surface, accounting for the Alpha
560     // of parent Surfaces in the hierarchy (alpha's will be multiplied
561     // down the hierarchy).
562     half getAlpha() const;
563     half4 getColor() const;
564 
565     void traverseInReverseZOrder(LayerVector::StateSet stateSet,
566                                  const LayerVector::Visitor& visitor);
567     void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
568 
569     /**
570      * Traverse only children in z order, ignoring relative layers that are not children of the
571      * parent.
572      */
573     void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
574                                   const LayerVector::Visitor& visitor);
575 
576     size_t getChildrenCount() const;
577     void addChild(const sp<Layer>& layer);
578     // Returns index if removed, or negative value otherwise
579     // for symmetry with Vector::remove
580     ssize_t removeChild(const sp<Layer>& layer);
getParent()581     sp<Layer> getParent() const { return mCurrentParent.promote(); }
hasParent()582     bool hasParent() const { return getParent() != nullptr; }
583     Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
584     bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
585     bool setChildRelativeLayer(const sp<Layer>& childLayer,
586             const sp<IBinder>& relativeToHandle, int32_t relativeZ);
587 
588     // Copy the current list of children to the drawing state. Called by
589     // SurfaceFlinger to complete a transaction.
590     void commitChildList();
591     int32_t getZ() const;
592     void pushPendingState();
593 
594 protected:
595     // constant
596     sp<SurfaceFlinger> mFlinger;
597     /*
598      * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
599      * is called.
600      */
601     class LayerCleaner {
602         sp<SurfaceFlinger> mFlinger;
603         wp<Layer> mLayer;
604 
605     protected:
~LayerCleaner()606         ~LayerCleaner() {
607             // destroy client resources
608             mFlinger->onLayerDestroyed(mLayer);
609         }
610 
611     public:
LayerCleaner(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)612         LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
613               : mFlinger(flinger), mLayer(layer) {}
614     };
615 
616     virtual void onFirstRef();
617 
618     friend class impl::SurfaceInterceptor;
619 
620     void commitTransaction(const State& stateToCommit);
621 
622     uint32_t getEffectiveUsage(uint32_t usage) const;
623 
624     FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
625     // Compute the initial crop as specified by parent layers and the
626     // SurfaceControl for this layer. Does not include buffer crop from the
627     // IGraphicBufferProducer client, as that should not affect child clipping.
628     // Returns in screen space.
629     Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
630 
631     // drawing
632     void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
633                          float alpha) const;
634 
635     void setParent(const sp<Layer>& layer);
636 
637     LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
638     void addZOrderRelative(const wp<Layer>& relative);
639     void removeZOrderRelative(const wp<Layer>& relative);
640 
641     class SyncPoint {
642     public:
SyncPoint(uint64_t frameNumber)643         explicit SyncPoint(uint64_t frameNumber)
644               : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}
645 
getFrameNumber()646         uint64_t getFrameNumber() const { return mFrameNumber; }
647 
frameIsAvailable()648         bool frameIsAvailable() const { return mFrameIsAvailable; }
649 
setFrameAvailable()650         void setFrameAvailable() { mFrameIsAvailable = true; }
651 
transactionIsApplied()652         bool transactionIsApplied() const { return mTransactionIsApplied; }
653 
setTransactionApplied()654         void setTransactionApplied() { mTransactionIsApplied = true; }
655 
656     private:
657         const uint64_t mFrameNumber;
658         std::atomic<bool> mFrameIsAvailable;
659         std::atomic<bool> mTransactionIsApplied;
660     };
661 
662     // SyncPoints which will be signaled when the correct frame is at the head
663     // of the queue and dropped after the frame has been latched. Protected by
664     // mLocalSyncPointMutex.
665     Mutex mLocalSyncPointMutex;
666     std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
667 
668     // SyncPoints which will be signaled and then dropped when the transaction
669     // is applied
670     std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
671 
672     // Returns false if the relevant frame has already been latched
673     bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
674 
675     void popPendingState(State* stateToCommit);
676     bool applyPendingStates(State* stateToCommit);
677 
678     void clearSyncPoints();
679 
680     // Returns mCurrentScaling mode (originating from the
681     // Client) or mOverrideScalingMode mode (originating from
682     // the Surface Controller) if set.
getEffectiveScalingMode()683     virtual uint32_t getEffectiveScalingMode() const { return 0; }
684 
685 public:
686     /*
687      * The layer handle is just a BBinder object passed to the client
688      * (remote process) -- we don't keep any reference on our side such that
689      * the dtor is called when the remote side let go of its reference.
690      *
691      * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
692      * this layer when the handle is destroyed.
693      */
694     class Handle : public BBinder, public LayerCleaner {
695     public:
Handle(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)696         Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
697               : LayerCleaner(flinger, layer), owner(layer) {}
698 
699         wp<Layer> owner;
700     };
701 
702     sp<IBinder> getHandle();
703     const String8& getName() const;
notifyAvailableFrames()704     virtual void notifyAvailableFrames() {}
getPixelFormat()705     virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
706     bool getPremultipledAlpha() const;
707 
708 protected:
709     // -----------------------------------------------------------------------
710     bool usingRelativeZ(LayerVector::StateSet stateSet);
711 
712     bool mPremultipliedAlpha;
713     String8 mName;
714     String8 mTransactionName; // A cached version of "TX - " + mName for systraces
715 
716     bool mPrimaryDisplayOnly = false;
717 
718     // these are protected by an external lock
719     State mCurrentState;
720     State mDrawingState;
721     volatile int32_t mTransactionFlags;
722 
723     // Accessed from main thread and binder threads
724     Mutex mPendingStateMutex;
725     Vector<State> mPendingStates;
726 
727     // thread-safe
728     volatile int32_t mQueuedFrames;
729     volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
730 
731     // Timestamp history for UIAutomation. Thread safe.
732     FrameTracker mFrameTracker;
733 
734     // Timestamp history for the consumer to query.
735     // Accessed by both consumer and producer on main and binder threads.
736     Mutex mFrameEventHistoryMutex;
737     ConsumerFrameEventHistory mFrameEventHistory;
738     FenceTimeline mAcquireTimeline;
739     FenceTimeline mReleaseTimeline;
740 
741     TimeStats& mTimeStats = TimeStats::getInstance();
742 
743     // main thread
744     int mActiveBufferSlot;
745     sp<GraphicBuffer> mActiveBuffer;
746     sp<NativeHandle> mSidebandStream;
747     ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN;
748     Rect mCurrentCrop;
749     uint32_t mCurrentTransform;
750     // We encode unset as -1.
751     int32_t mOverrideScalingMode;
752     bool mCurrentOpacity;
753     std::atomic<uint64_t> mCurrentFrameNumber;
754     bool mFrameLatencyNeeded;
755     // Whether filtering is forced on or not
756     bool mFiltering;
757     // Whether filtering is needed b/c of the drawingstate
758     bool mNeedsFiltering;
759 
760     bool mPendingRemoval = false;
761 
762     // page-flip thread (currently main thread)
763     bool mProtectedByApp; // application requires protected path to external sink
764 
765     // protected by mLock
766     mutable Mutex mLock;
767 
768     const wp<Client> mClientRef;
769 
770     // This layer can be a cursor on some displays.
771     bool mPotentialCursor;
772 
773     // Local copy of the queued contents of the incoming BufferQueue
774     mutable Mutex mQueueItemLock;
775     Condition mQueueItemCondition;
776     Vector<BufferItem> mQueueItems;
777     std::atomic<uint64_t> mLastFrameNumberReceived;
778     bool mAutoRefresh;
779     bool mFreezeGeometryUpdates;
780 
781     // Child list about to be committed/used for editing.
782     LayerVector mCurrentChildren;
783     // Child list used for rendering.
784     LayerVector mDrawingChildren;
785 
786     wp<Layer> mCurrentParent;
787     wp<Layer> mDrawingParent;
788 
789     mutable LayerBE mBE;
790 
791 private:
792     /**
793      * Returns an unsorted vector of all layers that are part of this tree.
794      * That includes the current layer and all its descendants.
795      */
796     std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet);
797     /**
798      * Traverses layers that are part of this tree in the correct z order.
799      * layersInTree must be sorted before calling this method.
800      */
801     void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
802                                        LayerVector::StateSet stateSet,
803                                        const LayerVector::Visitor& visitor);
804     LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet,
805                                           const std::vector<Layer*>& layersInTree);
806 };
807 
808 // ---------------------------------------------------------------------------
809 
810 }; // namespace android
811 
812 #endif // ANDROID_LAYER_H
813