1 /******************************************************************************
2  *
3  *  Copyright 2014 Google, Inc.
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 #include "internal_include/bt_target.h"
20 
21 #define LOG_TAG "bt_osi_alarm"
22 
23 #include "osi/include/alarm.h"
24 
25 #include <base/cancelable_callback.h>
26 #include <base/logging.h>
27 #include <base/message_loop/message_loop.h>
28 #include <errno.h>
29 #include <fcntl.h>
30 #include <inttypes.h>
31 #include <malloc.h>
32 #include <pthread.h>
33 #include <signal.h>
34 #include <string.h>
35 #include <time.h>
36 
37 #include <hardware/bluetooth.h>
38 
39 #include <mutex>
40 
41 #include "osi/include/allocator.h"
42 #include "osi/include/fixed_queue.h"
43 #include "osi/include/list.h"
44 #include "osi/include/log.h"
45 #include "osi/include/osi.h"
46 #include "osi/include/semaphore.h"
47 #include "osi/include/thread.h"
48 #include "osi/include/wakelock.h"
49 
50 using base::Bind;
51 using base::CancelableClosure;
52 using base::MessageLoop;
53 
54 extern base::MessageLoop* get_message_loop();
55 
56 // Callback and timer threads should run at RT priority in order to ensure they
57 // meet audio deadlines.  Use this priority for all audio/timer related thread.
58 static const int THREAD_RT_PRIORITY = 1;
59 
60 typedef struct {
61   size_t count;
62   period_ms_t total_ms;
63   period_ms_t max_ms;
64 } stat_t;
65 
66 // Alarm-related information and statistics
67 typedef struct {
68   const char* name;
69   size_t scheduled_count;
70   size_t canceled_count;
71   size_t rescheduled_count;
72   size_t total_updates;
73   period_ms_t last_update_ms;
74   stat_t overdue_scheduling;
75   stat_t premature_scheduling;
76 } alarm_stats_t;
77 
78 /* Wrapper around CancellableClosure that let it be embedded in structs, without
79  * need to define copy operator. */
80 struct CancelableClosureInStruct {
81   base::CancelableClosure i;
82 
operator =CancelableClosureInStruct83   CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
84     if (!in.i.callback().is_null()) i.Reset(in.i.callback());
85     return *this;
86   }
87 };
88 
89 struct alarm_t {
90   // The mutex is held while the callback for this alarm is being executed.
91   // It allows us to release the coarse-grained monitor lock while a
92   // potentially long-running callback is executing. |alarm_cancel| uses this
93   // mutex to provide a guarantee to its caller that the callback will not be
94   // in progress when it returns.
95   std::recursive_mutex* callback_mutex;
96   period_ms_t creation_time;
97   period_ms_t period;
98   period_ms_t deadline;
99   period_ms_t prev_deadline;  // Previous deadline - used for accounting of
100                               // periodic timers
101   bool is_periodic;
102   fixed_queue_t* queue;  // The processing queue to add this alarm to
103   alarm_callback_t callback;
104   void* data;
105   alarm_stats_t stats;
106 
107   bool for_msg_loop;  // True, if the alarm should be processed on message loop
108   CancelableClosureInStruct closure;  // posted to message loop for processing
109 };
110 
111 // If the next wakeup time is less than this threshold, we should acquire
112 // a wakelock instead of setting a wake alarm so we're not bouncing in
113 // and out of suspend frequently. This value is externally visible to allow
114 // unit tests to run faster. It should not be modified by production code.
115 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
116 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
117 
118 #if (KERNEL_MISSING_CLOCK_BOOTTIME_ALARM == TRUE)
119 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME;
120 #else
121 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME_ALARM;
122 #endif
123 
124 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
125 // functions execute serially and not concurrently. As a result, this mutex
126 // also protects the |alarms| list.
127 static std::mutex alarms_mutex;
128 static list_t* alarms;
129 static timer_t timer;
130 static timer_t wakeup_timer;
131 static bool timer_set;
132 
133 // All alarm callbacks are dispatched from |dispatcher_thread|
134 static thread_t* dispatcher_thread;
135 static bool dispatcher_thread_active;
136 static semaphore_t* alarm_expired;
137 
138 // Default alarm callback thread and queue
139 static thread_t* default_callback_thread;
140 static fixed_queue_t* default_callback_queue;
141 
142 static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
143 static bool lazy_initialize(void);
144 static period_ms_t now(void);
145 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
146                                alarm_callback_t cb, void* data,
147                                fixed_queue_t* queue, bool for_msg_loop);
148 static void alarm_cancel_internal(alarm_t* alarm);
149 static void remove_pending_alarm(alarm_t* alarm);
150 static void schedule_next_instance(alarm_t* alarm);
151 static void reschedule_root_alarm(void);
152 static void alarm_queue_ready(fixed_queue_t* queue, void* context);
153 static void timer_callback(void* data);
154 static void callback_dispatch(void* context);
155 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
156 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
157                                     period_ms_t deadline_ms);
158 // Registers |queue| for processing alarm callbacks on |thread|.
159 // |queue| may not be NULL. |thread| may not be NULL.
160 static void alarm_register_processing_queue(fixed_queue_t* queue,
161                                             thread_t* thread);
162 
update_stat(stat_t * stat,period_ms_t delta)163 static void update_stat(stat_t* stat, period_ms_t delta) {
164   if (stat->max_ms < delta) stat->max_ms = delta;
165   stat->total_ms += delta;
166   stat->count++;
167 }
168 
alarm_new(const char * name)169 alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
170 
alarm_new_periodic(const char * name)171 alarm_t* alarm_new_periodic(const char* name) {
172   return alarm_new_internal(name, true);
173 }
174 
alarm_new_internal(const char * name,bool is_periodic)175 static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
176   // Make sure we have a list we can insert alarms into.
177   if (!alarms && !lazy_initialize()) {
178     CHECK(false);  // if initialization failed, we should not continue
179     return NULL;
180   }
181 
182   alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
183 
184   ret->callback_mutex = new std::recursive_mutex;
185   ret->is_periodic = is_periodic;
186   ret->stats.name = osi_strdup(name);
187 
188   ret->for_msg_loop = false;
189   // placement new
190   new (&ret->closure) CancelableClosureInStruct();
191 
192   // NOTE: The stats were reset by osi_calloc() above
193 
194   return ret;
195 }
196 
alarm_free(alarm_t * alarm)197 void alarm_free(alarm_t* alarm) {
198   if (!alarm) return;
199 
200   alarm_cancel(alarm);
201   delete alarm->callback_mutex;
202   osi_free((void*)alarm->stats.name);
203   alarm->closure.~CancelableClosureInStruct();
204   osi_free(alarm);
205 }
206 
alarm_get_remaining_ms(const alarm_t * alarm)207 period_ms_t alarm_get_remaining_ms(const alarm_t* alarm) {
208   CHECK(alarm != NULL);
209   period_ms_t remaining_ms = 0;
210   period_ms_t just_now = now();
211 
212   std::lock_guard<std::mutex> lock(alarms_mutex);
213   if (alarm->deadline > just_now) remaining_ms = alarm->deadline - just_now;
214 
215   return remaining_ms;
216 }
217 
alarm_set(alarm_t * alarm,period_ms_t interval_ms,alarm_callback_t cb,void * data)218 void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
219                void* data) {
220   alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue,
221                      false);
222 }
223 
alarm_set_on_mloop(alarm_t * alarm,period_ms_t interval_ms,alarm_callback_t cb,void * data)224 void alarm_set_on_mloop(alarm_t* alarm, period_ms_t interval_ms,
225                         alarm_callback_t cb, void* data) {
226   alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
227 }
228 
229 // Runs in exclusion with alarm_cancel and timer_callback.
alarm_set_internal(alarm_t * alarm,period_ms_t period,alarm_callback_t cb,void * data,fixed_queue_t * queue,bool for_msg_loop)230 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
231                                alarm_callback_t cb, void* data,
232                                fixed_queue_t* queue, bool for_msg_loop) {
233   CHECK(alarms != NULL);
234   CHECK(alarm != NULL);
235   CHECK(cb != NULL);
236 
237   std::lock_guard<std::mutex> lock(alarms_mutex);
238 
239   alarm->creation_time = now();
240   alarm->period = period;
241   alarm->queue = queue;
242   alarm->callback = cb;
243   alarm->data = data;
244   alarm->for_msg_loop = for_msg_loop;
245 
246   schedule_next_instance(alarm);
247   alarm->stats.scheduled_count++;
248 }
249 
alarm_cancel(alarm_t * alarm)250 void alarm_cancel(alarm_t* alarm) {
251   CHECK(alarms != NULL);
252   if (!alarm) return;
253 
254   {
255     std::lock_guard<std::mutex> lock(alarms_mutex);
256     alarm_cancel_internal(alarm);
257   }
258 
259   // If the callback for |alarm| is in progress, wait here until it completes.
260   std::lock_guard<std::recursive_mutex> lock(*alarm->callback_mutex);
261 }
262 
263 // Internal implementation of canceling an alarm.
264 // The caller must hold the |alarms_mutex|
alarm_cancel_internal(alarm_t * alarm)265 static void alarm_cancel_internal(alarm_t* alarm) {
266   bool needs_reschedule =
267       (!list_is_empty(alarms) && list_front(alarms) == alarm);
268 
269   remove_pending_alarm(alarm);
270 
271   alarm->deadline = 0;
272   alarm->prev_deadline = 0;
273   alarm->callback = NULL;
274   alarm->data = NULL;
275   alarm->stats.canceled_count++;
276   alarm->queue = NULL;
277 
278   if (needs_reschedule) reschedule_root_alarm();
279 }
280 
alarm_is_scheduled(const alarm_t * alarm)281 bool alarm_is_scheduled(const alarm_t* alarm) {
282   if ((alarms == NULL) || (alarm == NULL)) return false;
283   return (alarm->callback != NULL);
284 }
285 
alarm_cleanup(void)286 void alarm_cleanup(void) {
287   // If lazy_initialize never ran there is nothing else to do
288   if (!alarms) return;
289 
290   dispatcher_thread_active = false;
291   semaphore_post(alarm_expired);
292   thread_free(dispatcher_thread);
293   dispatcher_thread = NULL;
294 
295   std::lock_guard<std::mutex> lock(alarms_mutex);
296 
297   fixed_queue_free(default_callback_queue, NULL);
298   default_callback_queue = NULL;
299   thread_free(default_callback_thread);
300   default_callback_thread = NULL;
301 
302   timer_delete(wakeup_timer);
303   timer_delete(timer);
304   semaphore_free(alarm_expired);
305   alarm_expired = NULL;
306 
307   list_free(alarms);
308   alarms = NULL;
309 }
310 
lazy_initialize(void)311 static bool lazy_initialize(void) {
312   CHECK(alarms == NULL);
313 
314   // timer_t doesn't have an invalid value so we must track whether
315   // the |timer| variable is valid ourselves.
316   bool timer_initialized = false;
317   bool wakeup_timer_initialized = false;
318 
319   std::lock_guard<std::mutex> lock(alarms_mutex);
320 
321   alarms = list_new(NULL);
322   if (!alarms) {
323     LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
324     goto error;
325   }
326 
327   if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
328   timer_initialized = true;
329 
330   if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
331   wakeup_timer_initialized = true;
332 
333   alarm_expired = semaphore_new(0);
334   if (!alarm_expired) {
335     LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
336     goto error;
337   }
338 
339   default_callback_thread =
340       thread_new_sized("alarm_default_callbacks", SIZE_MAX);
341   if (default_callback_thread == NULL) {
342     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks thread.",
343               __func__);
344     goto error;
345   }
346   thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
347   default_callback_queue = fixed_queue_new(SIZE_MAX);
348   if (default_callback_queue == NULL) {
349     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks queue.",
350               __func__);
351     goto error;
352   }
353   alarm_register_processing_queue(default_callback_queue,
354                                   default_callback_thread);
355 
356   dispatcher_thread_active = true;
357   dispatcher_thread = thread_new("alarm_dispatcher");
358   if (!dispatcher_thread) {
359     LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
360     goto error;
361   }
362   thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
363   thread_post(dispatcher_thread, callback_dispatch, NULL);
364   return true;
365 
366 error:
367   fixed_queue_free(default_callback_queue, NULL);
368   default_callback_queue = NULL;
369   thread_free(default_callback_thread);
370   default_callback_thread = NULL;
371 
372   thread_free(dispatcher_thread);
373   dispatcher_thread = NULL;
374 
375   dispatcher_thread_active = false;
376 
377   semaphore_free(alarm_expired);
378   alarm_expired = NULL;
379 
380   if (wakeup_timer_initialized) timer_delete(wakeup_timer);
381 
382   if (timer_initialized) timer_delete(timer);
383 
384   list_free(alarms);
385   alarms = NULL;
386 
387   return false;
388 }
389 
now(void)390 static period_ms_t now(void) {
391   CHECK(alarms != NULL);
392 
393   struct timespec ts;
394   if (clock_gettime(CLOCK_ID, &ts) == -1) {
395     LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__,
396               strerror(errno));
397     return 0;
398   }
399 
400   return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
401 }
402 
403 // Remove alarm from internal alarm list and the processing queue
404 // The caller must hold the |alarms_mutex|
remove_pending_alarm(alarm_t * alarm)405 static void remove_pending_alarm(alarm_t* alarm) {
406   list_remove(alarms, alarm);
407 
408   if (alarm->for_msg_loop) {
409     alarm->closure.i.Cancel();
410   } else {
411     while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
412       // Remove all repeated alarm instances from the queue.
413       // NOTE: We are defensive here - we shouldn't have repeated alarm
414       // instances
415     }
416   }
417 }
418 
419 // Must be called with |alarms_mutex| held
schedule_next_instance(alarm_t * alarm)420 static void schedule_next_instance(alarm_t* alarm) {
421   // If the alarm is currently set and it's at the start of the list,
422   // we'll need to re-schedule since we've adjusted the earliest deadline.
423   bool needs_reschedule =
424       (!list_is_empty(alarms) && list_front(alarms) == alarm);
425   if (alarm->callback) remove_pending_alarm(alarm);
426 
427   // Calculate the next deadline for this alarm
428   period_ms_t just_now = now();
429   period_ms_t ms_into_period = 0;
430   if ((alarm->is_periodic) && (alarm->period != 0))
431     ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
432   alarm->deadline = just_now + (alarm->period - ms_into_period);
433 
434   // Add it into the timer list sorted by deadline (earliest deadline first).
435   if (list_is_empty(alarms) ||
436       ((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
437     list_prepend(alarms, alarm);
438   } else {
439     for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
440          node = list_next(node)) {
441       list_node_t* next = list_next(node);
442       if (next == list_end(alarms) ||
443           ((alarm_t*)list_node(next))->deadline > alarm->deadline) {
444         list_insert_after(alarms, node, alarm);
445         break;
446       }
447     }
448   }
449 
450   // If the new alarm has the earliest deadline, we need to re-evaluate our
451   // schedule.
452   if (needs_reschedule ||
453       (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
454     reschedule_root_alarm();
455   }
456 }
457 
458 // NOTE: must be called with |alarms_mutex| held
reschedule_root_alarm(void)459 static void reschedule_root_alarm(void) {
460   CHECK(alarms != NULL);
461 
462   const bool timer_was_set = timer_set;
463   alarm_t* next;
464   int64_t next_expiration;
465 
466   // If used in a zeroed state, disarms the timer.
467   struct itimerspec timer_time;
468   memset(&timer_time, 0, sizeof(timer_time));
469 
470   if (list_is_empty(alarms)) goto done;
471 
472   next = static_cast<alarm_t*>(list_front(alarms));
473   next_expiration = next->deadline - now();
474   if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
475     if (!timer_set) {
476       if (!wakelock_acquire()) {
477         LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock", __func__);
478         goto done;
479       }
480     }
481 
482     timer_time.it_value.tv_sec = (next->deadline / 1000);
483     timer_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
484 
485     // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
486     // for timers with *_ALARM clock IDs. Although the man page states that the
487     // timer would be canceled, the current behavior (as of Linux kernel 3.17)
488     // is that the callback is issued immediately. The only way to cancel an
489     // *_ALARM timer is to delete the timer. But unfortunately, deleting and
490     // re-creating a timer is rather expensive; every timer_create(2) spawns a
491     // new thread. So we simply set the timer to fire at the largest possible
492     // time.
493     //
494     // If we've reached this code path, we're going to grab a wake lock and
495     // wait for the next timer to fire. In that case, there's no reason to
496     // have a pending wakeup timer so we simply cancel it.
497     struct itimerspec end_of_time;
498     memset(&end_of_time, 0, sizeof(end_of_time));
499     end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
500     timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
501   } else {
502     // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
503     // in kernels before 3.17 unless you have the following patch:
504     // https://lkml.org/lkml/2014/7/7/576
505     struct itimerspec wakeup_time;
506     memset(&wakeup_time, 0, sizeof(wakeup_time));
507 
508     wakeup_time.it_value.tv_sec = (next->deadline / 1000);
509     wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
510     if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
511       LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
512                 strerror(errno));
513   }
514 
515 done:
516   timer_set =
517       timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
518   if (timer_was_set && !timer_set) {
519     wakelock_release();
520   }
521 
522   if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
523     LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
524 
525   // If next expiration was in the past (e.g. short timer that got context
526   // switched) then the timer might have diarmed itself. Detect this case and
527   // work around it by manually signalling the |alarm_expired| semaphore.
528   //
529   // It is possible that the timer was actually super short (a few
530   // milliseconds) and the timer expired normally before we called
531   // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
532   // alarm. Nothing bad should happen in that case though since the callback
533   // dispatch function checks to make sure the timer at the head of the list
534   // actually expired.
535   if (timer_set) {
536     struct itimerspec time_to_expire;
537     timer_gettime(timer, &time_to_expire);
538     if (time_to_expire.it_value.tv_sec == 0 &&
539         time_to_expire.it_value.tv_nsec == 0) {
540       LOG_DEBUG(
541           LOG_TAG,
542           "%s alarm expiration too close for posix timers, switching to guns",
543           __func__);
544       semaphore_post(alarm_expired);
545     }
546   }
547 }
548 
alarm_register_processing_queue(fixed_queue_t * queue,thread_t * thread)549 static void alarm_register_processing_queue(fixed_queue_t* queue,
550                                             thread_t* thread) {
551   CHECK(queue != NULL);
552   CHECK(thread != NULL);
553 
554   fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
555                                alarm_queue_ready, NULL);
556 }
557 
alarm_ready_generic(alarm_t * alarm,std::unique_lock<std::mutex> & lock)558 static void alarm_ready_generic(alarm_t* alarm,
559                                 std::unique_lock<std::mutex>& lock) {
560   if (alarm == NULL) {
561     return;  // The alarm was probably canceled
562   }
563   //
564   // If the alarm is not periodic, we've fully serviced it now, and can reset
565   // some of its internal state. This is useful to distinguish between expired
566   // alarms and active ones.
567   //
568   alarm_callback_t callback = alarm->callback;
569   void* data = alarm->data;
570   period_ms_t deadline = alarm->deadline;
571   if (alarm->is_periodic) {
572     // The periodic alarm has been rescheduled and alarm->deadline has been
573     // updated, hence we need to use the previous deadline.
574     deadline = alarm->prev_deadline;
575   } else {
576     alarm->deadline = 0;
577     alarm->callback = NULL;
578     alarm->data = NULL;
579     alarm->queue = NULL;
580   }
581 
582   std::lock_guard<std::recursive_mutex> cb_lock(*alarm->callback_mutex);
583   lock.unlock();
584 
585   // Update the statistics
586   update_scheduling_stats(&alarm->stats, now(), deadline);
587 
588   // NOTE: Do NOT access "alarm" after the callback, as a safety precaution
589   // in case the callback itself deleted the alarm.
590   callback(data);
591 }
592 
alarm_ready_mloop(alarm_t * alarm)593 static void alarm_ready_mloop(alarm_t* alarm) {
594   std::unique_lock<std::mutex> lock(alarms_mutex);
595   alarm_ready_generic(alarm, lock);
596 }
597 
alarm_queue_ready(fixed_queue_t * queue,UNUSED_ATTR void * context)598 static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
599   CHECK(queue != NULL);
600 
601   std::unique_lock<std::mutex> lock(alarms_mutex);
602   alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
603   alarm_ready_generic(alarm, lock);
604 }
605 
606 // Callback function for wake alarms and our posix timer
timer_callback(UNUSED_ATTR void * ptr)607 static void timer_callback(UNUSED_ATTR void* ptr) {
608   semaphore_post(alarm_expired);
609 }
610 
611 // Function running on |dispatcher_thread| that performs the following:
612 //   (1) Receives a signal using |alarm_exired| that the alarm has expired
613 //   (2) Dispatches the alarm callback for processing by the corresponding
614 // thread for that alarm.
callback_dispatch(UNUSED_ATTR void * context)615 static void callback_dispatch(UNUSED_ATTR void* context) {
616   while (true) {
617     semaphore_wait(alarm_expired);
618     if (!dispatcher_thread_active) break;
619 
620     std::lock_guard<std::mutex> lock(alarms_mutex);
621     alarm_t* alarm;
622 
623     // Take into account that the alarm may get cancelled before we get to it.
624     // We're done here if there are no alarms or the alarm at the front is in
625     // the future. Exit right away since there's nothing left to do.
626     if (list_is_empty(alarms) ||
627         (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
628       reschedule_root_alarm();
629       continue;
630     }
631 
632     list_remove(alarms, alarm);
633 
634     if (alarm->is_periodic) {
635       alarm->prev_deadline = alarm->deadline;
636       schedule_next_instance(alarm);
637       alarm->stats.rescheduled_count++;
638     }
639     reschedule_root_alarm();
640 
641     // Enqueue the alarm for processing
642     if (alarm->for_msg_loop) {
643       if (!get_message_loop()) {
644         LOG_ERROR(LOG_TAG, "%s: message loop already NULL. Alarm: %s", __func__,
645                   alarm->stats.name);
646         continue;
647       }
648 
649       alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
650       get_message_loop()->task_runner()->PostTask(FROM_HERE,
651                                                   alarm->closure.i.callback());
652     } else {
653       fixed_queue_enqueue(alarm->queue, alarm);
654     }
655   }
656 
657   LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
658 }
659 
timer_create_internal(const clockid_t clock_id,timer_t * timer)660 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
661   CHECK(timer != NULL);
662 
663   struct sigevent sigevent;
664   // create timer with RT priority thread
665   pthread_attr_t thread_attr;
666   pthread_attr_init(&thread_attr);
667   pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
668   struct sched_param param;
669   param.sched_priority = THREAD_RT_PRIORITY;
670   pthread_attr_setschedparam(&thread_attr, &param);
671 
672   memset(&sigevent, 0, sizeof(sigevent));
673   sigevent.sigev_notify = SIGEV_THREAD;
674   sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
675   sigevent.sigev_notify_attributes = &thread_attr;
676   if (timer_create(clock_id, &sigevent, timer) == -1) {
677     LOG_ERROR(LOG_TAG, "%s unable to create timer with clock %d: %s", __func__,
678               clock_id, strerror(errno));
679     if (clock_id == CLOCK_BOOTTIME_ALARM) {
680       LOG_ERROR(LOG_TAG,
681                 "The kernel might not have support for "
682                 "timer_create(CLOCK_BOOTTIME_ALARM): "
683                 "https://lwn.net/Articles/429925/");
684       LOG_ERROR(LOG_TAG,
685                 "See following patches: "
686                 "https://git.kernel.org/cgit/linux/kernel/git/torvalds/"
687                 "linux.git/log/?qt=grep&q=CLOCK_BOOTTIME_ALARM");
688     }
689     return false;
690   }
691 
692   return true;
693 }
694 
update_scheduling_stats(alarm_stats_t * stats,period_ms_t now_ms,period_ms_t deadline_ms)695 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
696                                     period_ms_t deadline_ms) {
697   stats->total_updates++;
698   stats->last_update_ms = now_ms;
699 
700   if (deadline_ms < now_ms) {
701     // Overdue scheduling
702     period_ms_t delta_ms = now_ms - deadline_ms;
703     update_stat(&stats->overdue_scheduling, delta_ms);
704   } else if (deadline_ms > now_ms) {
705     // Premature scheduling
706     period_ms_t delta_ms = deadline_ms - now_ms;
707     update_stat(&stats->premature_scheduling, delta_ms);
708   }
709 }
710 
dump_stat(int fd,stat_t * stat,const char * description)711 static void dump_stat(int fd, stat_t* stat, const char* description) {
712   period_ms_t average_time_ms = 0;
713   if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
714 
715   dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
716           (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
717           (unsigned long long)average_time_ms);
718 }
719 
alarm_debug_dump(int fd)720 void alarm_debug_dump(int fd) {
721   dprintf(fd, "\nBluetooth Alarms Statistics:\n");
722 
723   std::lock_guard<std::mutex> lock(alarms_mutex);
724 
725   if (alarms == NULL) {
726     dprintf(fd, "  None\n");
727     return;
728   }
729 
730   period_ms_t just_now = now();
731 
732   dprintf(fd, "  Total Alarms: %zu\n\n", list_length(alarms));
733 
734   // Dump info for each alarm
735   for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
736        node = list_next(node)) {
737     alarm_t* alarm = (alarm_t*)list_node(node);
738     alarm_stats_t* stats = &alarm->stats;
739 
740     dprintf(fd, "  Alarm : %s (%s)\n", stats->name,
741             (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
742 
743     dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
744             "    Action counts (sched/resched/exec/cancel)",
745             stats->scheduled_count, stats->rescheduled_count,
746             stats->total_updates, stats->canceled_count);
747 
748     dprintf(fd, "%-51s: %zu / %zu\n",
749             "    Deviation counts (overdue/premature)",
750             stats->overdue_scheduling.count, stats->premature_scheduling.count);
751 
752     dprintf(fd, "%-51s: %llu / %llu / %lld\n",
753             "    Time in ms (since creation/interval/remaining)",
754             (unsigned long long)(just_now - alarm->creation_time),
755             (unsigned long long)alarm->period,
756             (long long)(alarm->deadline - just_now));
757 
758     dump_stat(fd, &stats->overdue_scheduling,
759               "    Overdue scheduling time in ms (total/max/avg)");
760 
761     dump_stat(fd, &stats->premature_scheduling,
762               "    Premature scheduling time in ms (total/max/avg)");
763 
764     dprintf(fd, "\n");
765   }
766 }
767