1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define TRACE_TAG SYSDEPS
18 
19 #include "sysdeps.h"
20 
21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22 #include <windows.h>
23 
24 #include <errno.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 
28 #include <algorithm>
29 #include <memory>
30 #include <mutex>
31 #include <string>
32 #include <unordered_map>
33 #include <vector>
34 
35 #include <cutils/sockets.h>
36 
37 #include <android-base/errors.h>
38 #include <android-base/logging.h>
39 #include <android-base/stringprintf.h>
40 #include <android-base/strings.h>
41 #include <android-base/utf8.h>
42 
43 #include "adb.h"
44 #include "adb_utils.h"
45 
46 extern void fatal(const char *fmt, ...);
47 
48 /* forward declarations */
49 
50 typedef const struct FHClassRec_* FHClass;
51 typedef struct FHRec_* FH;
52 typedef struct EventHookRec_* EventHook;
53 
54 typedef struct FHClassRec_ {
55     void (*_fh_init)(FH);
56     int (*_fh_close)(FH);
57     int (*_fh_lseek)(FH, int, int);
58     int (*_fh_read)(FH, void*, int);
59     int (*_fh_write)(FH, const void*, int);
60 } FHClassRec;
61 
62 static void _fh_file_init(FH);
63 static int _fh_file_close(FH);
64 static int _fh_file_lseek(FH, int, int);
65 static int _fh_file_read(FH, void*, int);
66 static int _fh_file_write(FH, const void*, int);
67 
68 static const FHClassRec _fh_file_class = {
69     _fh_file_init,
70     _fh_file_close,
71     _fh_file_lseek,
72     _fh_file_read,
73     _fh_file_write,
74 };
75 
76 static void _fh_socket_init(FH);
77 static int _fh_socket_close(FH);
78 static int _fh_socket_lseek(FH, int, int);
79 static int _fh_socket_read(FH, void*, int);
80 static int _fh_socket_write(FH, const void*, int);
81 
82 static const FHClassRec _fh_socket_class = {
83     _fh_socket_init,
84     _fh_socket_close,
85     _fh_socket_lseek,
86     _fh_socket_read,
87     _fh_socket_write,
88 };
89 
90 #define assert(cond)                                                                       \
91     do {                                                                                   \
92         if (!(cond)) fatal("assertion failed '%s' on %s:%d\n", #cond, __FILE__, __LINE__); \
93     } while (0)
94 
operator ()(HANDLE h)95 void handle_deleter::operator()(HANDLE h) {
96     // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
97     // implying that NULL is a valid handle, but this is probably impossible.
98     // Other APIs like CreateEvent() are documented to return NULL on error,
99     // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
100     // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
101     // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
102     // only need to check for INVALID_HANDLE_VALUE.
103     if (h != INVALID_HANDLE_VALUE) {
104         if (!CloseHandle(h)) {
105             D("CloseHandle(%p) failed: %s", h,
106               android::base::SystemErrorCodeToString(GetLastError()).c_str());
107         }
108     }
109 }
110 
111 /**************************************************************************/
112 /**************************************************************************/
113 /*****                                                                *****/
114 /*****    common file descriptor handling                             *****/
115 /*****                                                                *****/
116 /**************************************************************************/
117 /**************************************************************************/
118 
119 typedef struct FHRec_
120 {
121     FHClass    clazz;
122     int        used;
123     int        eof;
124     union {
125         HANDLE      handle;
126         SOCKET      socket;
127     } u;
128 
129     char  name[32];
130 } FHRec;
131 
132 #define  fh_handle  u.handle
133 #define  fh_socket  u.socket
134 
135 #define  WIN32_FH_BASE    2048
136 #define  WIN32_MAX_FHS    2048
137 
138 static  std::mutex&  _win32_lock = *new std::mutex();
139 static  FHRec        _win32_fhs[ WIN32_MAX_FHS ];
140 static  int          _win32_fh_next;  // where to start search for free FHRec
141 
142 static FH
_fh_from_int(int fd,const char * func)143 _fh_from_int( int   fd, const char*   func )
144 {
145     FH  f;
146 
147     fd -= WIN32_FH_BASE;
148 
149     if (fd < 0 || fd >= WIN32_MAX_FHS) {
150         D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
151            func );
152         errno = EBADF;
153         return NULL;
154     }
155 
156     f = &_win32_fhs[fd];
157 
158     if (f->used == 0) {
159         D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
160            func );
161         errno = EBADF;
162         return NULL;
163     }
164 
165     return f;
166 }
167 
168 
169 static int
_fh_to_int(FH f)170 _fh_to_int( FH  f )
171 {
172     if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
173         return (int)(f - _win32_fhs) + WIN32_FH_BASE;
174 
175     return -1;
176 }
177 
178 static FH
_fh_alloc(FHClass clazz)179 _fh_alloc( FHClass  clazz )
180 {
181     FH   f = NULL;
182 
183     std::lock_guard<std::mutex> lock(_win32_lock);
184 
185     for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
186         if (_win32_fhs[i].clazz == NULL) {
187             f = &_win32_fhs[i];
188             _win32_fh_next = i + 1;
189             f->clazz = clazz;
190             f->used = 1;
191             f->eof = 0;
192             f->name[0] = '\0';
193             clazz->_fh_init(f);
194             return f;
195         }
196     }
197 
198     D("_fh_alloc: no more free file descriptors");
199     errno = EMFILE;  // Too many open files
200     return nullptr;
201 }
202 
203 
204 static int
_fh_close(FH f)205 _fh_close( FH   f )
206 {
207     // Use lock so that closing only happens once and so that _fh_alloc can't
208     // allocate a FH that we're in the middle of closing.
209     std::lock_guard<std::mutex> lock(_win32_lock);
210 
211     int offset = f - _win32_fhs;
212     if (_win32_fh_next > offset) {
213         _win32_fh_next = offset;
214     }
215 
216     if (f->used) {
217         f->clazz->_fh_close( f );
218         f->name[0] = '\0';
219         f->eof     = 0;
220         f->used    = 0;
221         f->clazz   = NULL;
222     }
223     return 0;
224 }
225 
226 // Deleter for unique_fh.
227 class fh_deleter {
228  public:
operator ()(struct FHRec_ * fh)229   void operator()(struct FHRec_* fh) {
230     // We're called from a destructor and destructors should not overwrite
231     // errno because callers may do:
232     //   errno = EBLAH;
233     //   return -1; // calls destructor, which should not overwrite errno
234     const int saved_errno = errno;
235     _fh_close(fh);
236     errno = saved_errno;
237   }
238 };
239 
240 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
241 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
242 
243 /**************************************************************************/
244 /**************************************************************************/
245 /*****                                                                *****/
246 /*****    file-based descriptor handling                              *****/
247 /*****                                                                *****/
248 /**************************************************************************/
249 /**************************************************************************/
250 
_fh_file_init(FH f)251 static void _fh_file_init( FH  f ) {
252     f->fh_handle = INVALID_HANDLE_VALUE;
253 }
254 
_fh_file_close(FH f)255 static int _fh_file_close( FH  f ) {
256     CloseHandle( f->fh_handle );
257     f->fh_handle = INVALID_HANDLE_VALUE;
258     return 0;
259 }
260 
_fh_file_read(FH f,void * buf,int len)261 static int _fh_file_read( FH  f,  void*  buf, int   len ) {
262     DWORD  read_bytes;
263 
264     if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
265         D( "adb_read: could not read %d bytes from %s", len, f->name );
266         errno = EIO;
267         return -1;
268     } else if (read_bytes < (DWORD)len) {
269         f->eof = 1;
270     }
271     return (int)read_bytes;
272 }
273 
_fh_file_write(FH f,const void * buf,int len)274 static int _fh_file_write( FH  f,  const void*  buf, int   len ) {
275     DWORD  wrote_bytes;
276 
277     if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
278         D( "adb_file_write: could not write %d bytes from %s", len, f->name );
279         errno = EIO;
280         return -1;
281     } else if (wrote_bytes < (DWORD)len) {
282         f->eof = 1;
283     }
284     return  (int)wrote_bytes;
285 }
286 
_fh_file_lseek(FH f,int pos,int origin)287 static int _fh_file_lseek( FH  f, int  pos, int  origin ) {
288     DWORD  method;
289     DWORD  result;
290 
291     switch (origin)
292     {
293         case SEEK_SET:  method = FILE_BEGIN; break;
294         case SEEK_CUR:  method = FILE_CURRENT; break;
295         case SEEK_END:  method = FILE_END; break;
296         default:
297             errno = EINVAL;
298             return -1;
299     }
300 
301     result = SetFilePointer( f->fh_handle, pos, NULL, method );
302     if (result == INVALID_SET_FILE_POINTER) {
303         errno = EIO;
304         return -1;
305     } else {
306         f->eof = 0;
307     }
308     return (int)result;
309 }
310 
311 
312 /**************************************************************************/
313 /**************************************************************************/
314 /*****                                                                *****/
315 /*****    file-based descriptor handling                              *****/
316 /*****                                                                *****/
317 /**************************************************************************/
318 /**************************************************************************/
319 
adb_open(const char * path,int options)320 int  adb_open(const char*  path, int  options)
321 {
322     FH  f;
323 
324     DWORD  desiredAccess       = 0;
325     DWORD  shareMode           = FILE_SHARE_READ | FILE_SHARE_WRITE;
326 
327     switch (options) {
328         case O_RDONLY:
329             desiredAccess = GENERIC_READ;
330             break;
331         case O_WRONLY:
332             desiredAccess = GENERIC_WRITE;
333             break;
334         case O_RDWR:
335             desiredAccess = GENERIC_READ | GENERIC_WRITE;
336             break;
337         default:
338             D("adb_open: invalid options (0x%0x)", options);
339             errno = EINVAL;
340             return -1;
341     }
342 
343     f = _fh_alloc( &_fh_file_class );
344     if ( !f ) {
345         return -1;
346     }
347 
348     std::wstring path_wide;
349     if (!android::base::UTF8ToWide(path, &path_wide)) {
350         return -1;
351     }
352     f->fh_handle = CreateFileW( path_wide.c_str(), desiredAccess, shareMode,
353                                 NULL, OPEN_EXISTING, 0, NULL );
354 
355     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
356         const DWORD err = GetLastError();
357         _fh_close(f);
358         D( "adb_open: could not open '%s': ", path );
359         switch (err) {
360             case ERROR_FILE_NOT_FOUND:
361                 D( "file not found" );
362                 errno = ENOENT;
363                 return -1;
364 
365             case ERROR_PATH_NOT_FOUND:
366                 D( "path not found" );
367                 errno = ENOTDIR;
368                 return -1;
369 
370             default:
371                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
372                 errno = ENOENT;
373                 return -1;
374         }
375     }
376 
377     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
378     D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) );
379     return _fh_to_int(f);
380 }
381 
382 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)383 int  adb_creat(const char*  path, int  mode)
384 {
385     FH  f;
386 
387     f = _fh_alloc( &_fh_file_class );
388     if ( !f ) {
389         return -1;
390     }
391 
392     std::wstring path_wide;
393     if (!android::base::UTF8ToWide(path, &path_wide)) {
394         return -1;
395     }
396     f->fh_handle = CreateFileW( path_wide.c_str(), GENERIC_WRITE,
397                                 FILE_SHARE_READ | FILE_SHARE_WRITE,
398                                 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
399                                 NULL );
400 
401     if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
402         const DWORD err = GetLastError();
403         _fh_close(f);
404         D( "adb_creat: could not open '%s': ", path );
405         switch (err) {
406             case ERROR_FILE_NOT_FOUND:
407                 D( "file not found" );
408                 errno = ENOENT;
409                 return -1;
410 
411             case ERROR_PATH_NOT_FOUND:
412                 D( "path not found" );
413                 errno = ENOTDIR;
414                 return -1;
415 
416             default:
417                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
418                 errno = ENOENT;
419                 return -1;
420         }
421     }
422     snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
423     D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) );
424     return _fh_to_int(f);
425 }
426 
427 
adb_read(int fd,void * buf,int len)428 int  adb_read(int  fd, void* buf, int len)
429 {
430     FH     f = _fh_from_int(fd, __func__);
431 
432     if (f == NULL) {
433         return -1;
434     }
435 
436     return f->clazz->_fh_read( f, buf, len );
437 }
438 
439 
adb_write(int fd,const void * buf,int len)440 int  adb_write(int  fd, const void*  buf, int  len)
441 {
442     FH     f = _fh_from_int(fd, __func__);
443 
444     if (f == NULL) {
445         return -1;
446     }
447 
448     return f->clazz->_fh_write(f, buf, len);
449 }
450 
451 
adb_lseek(int fd,int pos,int where)452 int  adb_lseek(int  fd, int  pos, int  where)
453 {
454     FH     f = _fh_from_int(fd, __func__);
455 
456     if (!f) {
457         return -1;
458     }
459 
460     return f->clazz->_fh_lseek(f, pos, where);
461 }
462 
463 
adb_close(int fd)464 int  adb_close(int  fd)
465 {
466     FH   f = _fh_from_int(fd, __func__);
467 
468     if (!f) {
469         return -1;
470     }
471 
472     D( "adb_close: %s", f->name);
473     _fh_close(f);
474     return 0;
475 }
476 
477 /**************************************************************************/
478 /**************************************************************************/
479 /*****                                                                *****/
480 /*****    socket-based file descriptors                               *****/
481 /*****                                                                *****/
482 /**************************************************************************/
483 /**************************************************************************/
484 
485 #undef setsockopt
486 
_socket_set_errno(const DWORD err)487 static void _socket_set_errno( const DWORD err ) {
488     // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
489     // lot of POSIX and socket error codes, some of the resulting error codes
490     // are mapped to strings by adb_strerror().
491     switch ( err ) {
492     case 0:              errno = 0; break;
493     // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
494     // case WSAEINTR:    errno = EINTR; break;
495     case WSAEFAULT:      errno = EFAULT; break;
496     case WSAEINVAL:      errno = EINVAL; break;
497     case WSAEMFILE:      errno = EMFILE; break;
498     // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
499     // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
500     // callers check specifically for EAGAIN.
501     case WSAEWOULDBLOCK: errno = EAGAIN; break;
502     case WSAENOTSOCK:    errno = ENOTSOCK; break;
503     case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
504     case WSAEOPNOTSUPP:  errno = EOPNOTSUPP; break;
505     case WSAENETDOWN:    errno = ENETDOWN; break;
506     case WSAENETRESET:   errno = ENETRESET; break;
507     // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
508     // to use EPIPE for these situations and there are some callers that look
509     // for EPIPE.
510     case WSAECONNABORTED: errno = EPIPE; break;
511     case WSAECONNRESET:  errno = ECONNRESET; break;
512     case WSAENOBUFS:     errno = ENOBUFS; break;
513     case WSAENOTCONN:    errno = ENOTCONN; break;
514     // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
515     // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
516     // considerations: Reportedly send() can return zero on timeout, and POSIX
517     // code may expect EAGAIN instead of ETIMEDOUT on timeout.
518     // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
519     case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
520     default:
521         errno = EINVAL;
522         D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
523            err, errno );
524     }
525 }
526 
adb_poll(adb_pollfd * fds,size_t nfds,int timeout)527 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
528     // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
529     int skipped = 0;
530     std::vector<WSAPOLLFD> sockets;
531     std::vector<adb_pollfd*> original;
532     for (size_t i = 0; i < nfds; ++i) {
533         FH fh = _fh_from_int(fds[i].fd, __func__);
534         if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
535             D("adb_poll received bad FD %d", fds[i].fd);
536             fds[i].revents = POLLNVAL;
537             ++skipped;
538         } else {
539             WSAPOLLFD wsapollfd = {
540                 .fd = fh->u.socket,
541                 .events = static_cast<short>(fds[i].events)
542             };
543             sockets.push_back(wsapollfd);
544             original.push_back(&fds[i]);
545         }
546     }
547 
548     if (sockets.empty()) {
549         return skipped;
550     }
551 
552     int result = WSAPoll(sockets.data(), sockets.size(), timeout);
553     if (result == SOCKET_ERROR) {
554         _socket_set_errno(WSAGetLastError());
555         return -1;
556     }
557 
558     // Map the results back onto the original set.
559     for (size_t i = 0; i < sockets.size(); ++i) {
560         original[i]->revents = sockets[i].revents;
561     }
562 
563     // WSAPoll appears to return the number of unique FDs with avaiable events, instead of how many
564     // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
565     // to do. Ignore its result and calculate the proper return value.
566     result = 0;
567     for (size_t i = 0; i < nfds; ++i) {
568         if (fds[i].revents != 0) {
569             ++result;
570         }
571     }
572     return result;
573 }
574 
_fh_socket_init(FH f)575 static void _fh_socket_init(FH f) {
576     f->fh_socket = INVALID_SOCKET;
577 }
578 
_fh_socket_close(FH f)579 static int _fh_socket_close( FH  f ) {
580     if (f->fh_socket != INVALID_SOCKET) {
581         /* gently tell any peer that we're closing the socket */
582         if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
583             // If the socket is not connected, this returns an error. We want to
584             // minimize logging spam, so don't log these errors for now.
585 #if 0
586             D("socket shutdown failed: %s",
587               android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
588 #endif
589         }
590         if (closesocket(f->fh_socket) == SOCKET_ERROR) {
591             // Don't set errno here, since adb_close will ignore it.
592             const DWORD err = WSAGetLastError();
593             D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
594         }
595         f->fh_socket = INVALID_SOCKET;
596     }
597     return 0;
598 }
599 
_fh_socket_lseek(FH f,int pos,int origin)600 static int _fh_socket_lseek( FH  f, int pos, int origin ) {
601     errno = EPIPE;
602     return -1;
603 }
604 
_fh_socket_read(FH f,void * buf,int len)605 static int _fh_socket_read(FH f, void* buf, int len) {
606     int  result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
607     if (result == SOCKET_ERROR) {
608         const DWORD err = WSAGetLastError();
609         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
610         // that to reduce spam and confusion.
611         if (err != WSAEWOULDBLOCK) {
612             D("recv fd %d failed: %s", _fh_to_int(f),
613               android::base::SystemErrorCodeToString(err).c_str());
614         }
615         _socket_set_errno(err);
616         result = -1;
617     }
618     return  result;
619 }
620 
_fh_socket_write(FH f,const void * buf,int len)621 static int _fh_socket_write(FH f, const void* buf, int len) {
622     int  result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
623     if (result == SOCKET_ERROR) {
624         const DWORD err = WSAGetLastError();
625         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
626         // that to reduce spam and confusion.
627         if (err != WSAEWOULDBLOCK) {
628             D("send fd %d failed: %s", _fh_to_int(f),
629               android::base::SystemErrorCodeToString(err).c_str());
630         }
631         _socket_set_errno(err);
632         result = -1;
633     } else {
634         // According to https://code.google.com/p/chromium/issues/detail?id=27870
635         // Winsock Layered Service Providers may cause this.
636         CHECK_LE(result, len) << "Tried to write " << len << " bytes to "
637                               << f->name << ", but " << result
638                               << " bytes reportedly written";
639     }
640     return result;
641 }
642 
643 /**************************************************************************/
644 /**************************************************************************/
645 /*****                                                                *****/
646 /*****    replacement for libs/cutils/socket_xxxx.c                   *****/
647 /*****                                                                *****/
648 /**************************************************************************/
649 /**************************************************************************/
650 
651 #include <winsock2.h>
652 
653 static int  _winsock_init;
654 
655 static void
_init_winsock(void)656 _init_winsock( void )
657 {
658     // TODO: Multiple threads calling this may potentially cause multiple calls
659     // to WSAStartup() which offers no real benefit.
660     if (!_winsock_init) {
661         WSADATA  wsaData;
662         int      rc = WSAStartup( MAKEWORD(2,2), &wsaData);
663         if (rc != 0) {
664             fatal("adb: could not initialize Winsock: %s",
665                   android::base::SystemErrorCodeToString(rc).c_str());
666         }
667         _winsock_init = 1;
668 
669         // Note that we do not call atexit() to register WSACleanup to be called
670         // at normal process termination because:
671         // 1) When exit() is called, there are still threads actively using
672         //    Winsock because we don't cleanly shutdown all threads, so it
673         //    doesn't make sense to call WSACleanup() and may cause problems
674         //    with those threads.
675         // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
676         //    calls WSACleanup() which tries to unload a DLL, which tries to
677         //    grab the LoaderLock. This conflicts with the device_poll_thread
678         //    which holds the LoaderLock because AdbWinApi.dll calls
679         //    setupapi.dll which tries to load wintrust.dll which tries to load
680         //    crypt32.dll which calls atexit() which tries to acquire the C
681         //    Runtime lock that the other thread holds.
682     }
683 }
684 
685 // Map a socket type to an explicit socket protocol instead of using the socket
686 // protocol of 0. Explicit socket protocols are used by most apps and we should
687 // do the same to reduce the chance of exercising uncommon code-paths that might
688 // have problems or that might load different Winsock service providers that
689 // have problems.
GetSocketProtocolFromSocketType(int type)690 static int GetSocketProtocolFromSocketType(int type) {
691     switch (type) {
692         case SOCK_STREAM:
693             return IPPROTO_TCP;
694         case SOCK_DGRAM:
695             return IPPROTO_UDP;
696         default:
697             LOG(FATAL) << "Unknown socket type: " << type;
698             return 0;
699     }
700 }
701 
network_loopback_client(int port,int type,std::string * error)702 int network_loopback_client(int port, int type, std::string* error) {
703     struct sockaddr_in addr;
704     SOCKET s;
705 
706     unique_fh f(_fh_alloc(&_fh_socket_class));
707     if (!f) {
708         *error = strerror(errno);
709         return -1;
710     }
711 
712     if (!_winsock_init) _init_winsock();
713 
714     memset(&addr, 0, sizeof(addr));
715     addr.sin_family = AF_INET;
716     addr.sin_port = htons(port);
717     addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
718 
719     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
720     if (s == INVALID_SOCKET) {
721         const DWORD err = WSAGetLastError();
722         *error = android::base::StringPrintf("cannot create socket: %s",
723                                              android::base::SystemErrorCodeToString(err).c_str());
724         D("%s", error->c_str());
725         _socket_set_errno(err);
726         return -1;
727     }
728     f->fh_socket = s;
729 
730     if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
731         // Save err just in case inet_ntoa() or ntohs() changes the last error.
732         const DWORD err = WSAGetLastError();
733         *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
734                                              inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
735                                              android::base::SystemErrorCodeToString(err).c_str());
736         D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
737           error->c_str());
738         _socket_set_errno(err);
739         return -1;
740     }
741 
742     const int fd = _fh_to_int(f.get());
743     snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
744              port);
745     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
746     f.release();
747     return fd;
748 }
749 
750 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
_network_server(int port,int type,u_long interface_address,std::string * error)751 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
752     struct sockaddr_in addr;
753     SOCKET s;
754     int n;
755 
756     unique_fh f(_fh_alloc(&_fh_socket_class));
757     if (!f) {
758         *error = strerror(errno);
759         return -1;
760     }
761 
762     if (!_winsock_init) _init_winsock();
763 
764     memset(&addr, 0, sizeof(addr));
765     addr.sin_family = AF_INET;
766     addr.sin_port = htons(port);
767     addr.sin_addr.s_addr = htonl(interface_address);
768 
769     // TODO: Consider using dual-stack socket that can simultaneously listen on
770     // IPv4 and IPv6.
771     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
772     if (s == INVALID_SOCKET) {
773         const DWORD err = WSAGetLastError();
774         *error = android::base::StringPrintf("cannot create socket: %s",
775                                              android::base::SystemErrorCodeToString(err).c_str());
776         D("%s", error->c_str());
777         _socket_set_errno(err);
778         return -1;
779     }
780 
781     f->fh_socket = s;
782 
783     // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
784     // same port, so instead use SO_EXCLUSIVEADDRUSE.
785     n = 1;
786     if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
787         const DWORD err = WSAGetLastError();
788         *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
789                                              android::base::SystemErrorCodeToString(err).c_str());
790         D("%s", error->c_str());
791         _socket_set_errno(err);
792         return -1;
793     }
794 
795     if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
796         // Save err just in case inet_ntoa() or ntohs() changes the last error.
797         const DWORD err = WSAGetLastError();
798         *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
799                                              ntohs(addr.sin_port),
800                                              android::base::SystemErrorCodeToString(err).c_str());
801         D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
802         _socket_set_errno(err);
803         return -1;
804     }
805     if (type == SOCK_STREAM) {
806         if (listen(s, SOMAXCONN) == SOCKET_ERROR) {
807             const DWORD err = WSAGetLastError();
808             *error = android::base::StringPrintf(
809                 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
810             D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
811               error->c_str());
812             _socket_set_errno(err);
813             return -1;
814         }
815     }
816     const int fd = _fh_to_int(f.get());
817     snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
818              interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
819              port);
820     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
821     f.release();
822     return fd;
823 }
824 
network_loopback_server(int port,int type,std::string * error)825 int network_loopback_server(int port, int type, std::string* error) {
826     return _network_server(port, type, INADDR_LOOPBACK, error);
827 }
828 
network_inaddr_any_server(int port,int type,std::string * error)829 int network_inaddr_any_server(int port, int type, std::string* error) {
830     return _network_server(port, type, INADDR_ANY, error);
831 }
832 
network_connect(const std::string & host,int port,int type,int timeout,std::string * error)833 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
834     unique_fh f(_fh_alloc(&_fh_socket_class));
835     if (!f) {
836         *error = strerror(errno);
837         return -1;
838     }
839 
840     if (!_winsock_init) _init_winsock();
841 
842     struct addrinfo hints;
843     memset(&hints, 0, sizeof(hints));
844     hints.ai_family = AF_UNSPEC;
845     hints.ai_socktype = type;
846     hints.ai_protocol = GetSocketProtocolFromSocketType(type);
847 
848     char port_str[16];
849     snprintf(port_str, sizeof(port_str), "%d", port);
850 
851     struct addrinfo* addrinfo_ptr = nullptr;
852 
853 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
854 // TODO: When the Android SDK tools increases the Windows system
855 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
856 #else
857 // Otherwise, keep using getaddrinfo(), or do runtime API detection
858 // with GetProcAddress("GetAddrInfoW").
859 #endif
860     if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
861         const DWORD err = WSAGetLastError();
862         *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
863                                              host.c_str(), port_str,
864                                              android::base::SystemErrorCodeToString(err).c_str());
865 
866         D("%s", error->c_str());
867         _socket_set_errno(err);
868         return -1;
869     }
870     std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo);
871     addrinfo_ptr = nullptr;
872 
873     // TODO: Try all the addresses if there's more than one? This just uses
874     // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
875     // which tries all addresses, takes a timeout and more.
876     SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
877     if (s == INVALID_SOCKET) {
878         const DWORD err = WSAGetLastError();
879         *error = android::base::StringPrintf("cannot create socket: %s",
880                                              android::base::SystemErrorCodeToString(err).c_str());
881         D("%s", error->c_str());
882         _socket_set_errno(err);
883         return -1;
884     }
885     f->fh_socket = s;
886 
887     // TODO: Implement timeouts for Windows. Seems like the default in theory
888     // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
889     if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
890         // TODO: Use WSAAddressToString or inet_ntop on address.
891         const DWORD err = WSAGetLastError();
892         *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
893                                              android::base::SystemErrorCodeToString(err).c_str());
894         D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
895           port_str, error->c_str());
896         _socket_set_errno(err);
897         return -1;
898     }
899 
900     const int fd = _fh_to_int(f.get());
901     snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
902              port);
903     D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
904       fd);
905     f.release();
906     return fd;
907 }
908 
adb_register_socket(SOCKET s)909 int  adb_register_socket(SOCKET s) {
910     FH f = _fh_alloc( &_fh_socket_class );
911     f->fh_socket = s;
912     return _fh_to_int(f);
913 }
914 
915 #undef accept
adb_socket_accept(int serverfd,struct sockaddr * addr,socklen_t * addrlen)916 int  adb_socket_accept(int  serverfd, struct sockaddr*  addr, socklen_t  *addrlen)
917 {
918     FH   serverfh = _fh_from_int(serverfd, __func__);
919 
920     if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
921         D("adb_socket_accept: invalid fd %d", serverfd);
922         errno = EBADF;
923         return -1;
924     }
925 
926     unique_fh fh(_fh_alloc( &_fh_socket_class ));
927     if (!fh) {
928         PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
929                        "descriptor";
930         return -1;
931     }
932 
933     fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
934     if (fh->fh_socket == INVALID_SOCKET) {
935         const DWORD err = WSAGetLastError();
936         LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
937                       " failed: " + android::base::SystemErrorCodeToString(err);
938         _socket_set_errno( err );
939         return -1;
940     }
941 
942     const int fd = _fh_to_int(fh.get());
943     snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
944     D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd );
945     fh.release();
946     return  fd;
947 }
948 
949 
adb_setsockopt(int fd,int level,int optname,const void * optval,socklen_t optlen)950 int  adb_setsockopt( int  fd, int  level, int  optname, const void*  optval, socklen_t  optlen )
951 {
952     FH   fh = _fh_from_int(fd, __func__);
953 
954     if ( !fh || fh->clazz != &_fh_socket_class ) {
955         D("adb_setsockopt: invalid fd %d", fd);
956         errno = EBADF;
957         return -1;
958     }
959 
960     // TODO: Once we can assume Windows Vista or later, if the caller is trying
961     // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
962     // auto-tuning.
963 
964     int result = setsockopt( fh->fh_socket, level, optname,
965                              reinterpret_cast<const char*>(optval), optlen );
966     if ( result == SOCKET_ERROR ) {
967         const DWORD err = WSAGetLastError();
968         D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n",
969           fd, level, optname, android::base::SystemErrorCodeToString(err).c_str());
970         _socket_set_errno( err );
971         result = -1;
972     }
973     return result;
974 }
975 
adb_getsockname(int fd,struct sockaddr * sockaddr,socklen_t * optlen)976 int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
977     FH fh = _fh_from_int(fd, __func__);
978 
979     if (!fh || fh->clazz != &_fh_socket_class) {
980         D("adb_getsockname: invalid fd %d", fd);
981         errno = EBADF;
982         return -1;
983     }
984 
985     int result = getsockname(fh->fh_socket, sockaddr, optlen);
986     if (result == SOCKET_ERROR) {
987         const DWORD err = WSAGetLastError();
988         D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
989           android::base::SystemErrorCodeToString(err).c_str());
990         _socket_set_errno(err);
991         result = -1;
992     }
993     return result;
994 }
995 
adb_socket_get_local_port(int fd)996 int adb_socket_get_local_port(int fd) {
997     sockaddr_storage addr_storage;
998     socklen_t addr_len = sizeof(addr_storage);
999 
1000     if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1001         D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno));
1002         return -1;
1003     }
1004 
1005     if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) {
1006         D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family);
1007         errno = ECONNABORTED;
1008         return -1;
1009     }
1010 
1011     return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port);
1012 }
1013 
adb_shutdown(int fd,int direction)1014 int adb_shutdown(int fd, int direction) {
1015     FH f = _fh_from_int(fd, __func__);
1016 
1017     if (!f || f->clazz != &_fh_socket_class) {
1018         D("adb_shutdown: invalid fd %d", fd);
1019         errno = EBADF;
1020         return -1;
1021     }
1022 
1023     D("adb_shutdown: %s", f->name);
1024     if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) {
1025         const DWORD err = WSAGetLastError();
1026         D("socket shutdown fd %d failed: %s", fd,
1027           android::base::SystemErrorCodeToString(err).c_str());
1028         _socket_set_errno(err);
1029         return -1;
1030     }
1031     return 0;
1032 }
1033 
1034 // Emulate socketpair(2) by binding and connecting to a socket.
adb_socketpair(int sv[2])1035 int adb_socketpair(int sv[2]) {
1036     int server = -1;
1037     int client = -1;
1038     int accepted = -1;
1039     int local_port = -1;
1040     std::string error;
1041 
1042     server = network_loopback_server(0, SOCK_STREAM, &error);
1043     if (server < 0) {
1044         D("adb_socketpair: failed to create server: %s", error.c_str());
1045         goto fail;
1046     }
1047 
1048     local_port = adb_socket_get_local_port(server);
1049     if (local_port < 0) {
1050         D("adb_socketpair: failed to get server port number: %s", error.c_str());
1051         goto fail;
1052     }
1053     D("adb_socketpair: bound on port %d", local_port);
1054 
1055     client = network_loopback_client(local_port, SOCK_STREAM, &error);
1056     if (client < 0) {
1057         D("adb_socketpair: failed to connect client: %s", error.c_str());
1058         goto fail;
1059     }
1060 
1061     accepted = adb_socket_accept(server, nullptr, nullptr);
1062     if (accepted < 0) {
1063         D("adb_socketpair: failed to accept: %s", strerror(errno));
1064         goto fail;
1065     }
1066     adb_close(server);
1067     sv[0] = client;
1068     sv[1] = accepted;
1069     return 0;
1070 
1071 fail:
1072     if (server >= 0) {
1073         adb_close(server);
1074     }
1075     if (client >= 0) {
1076         adb_close(client);
1077     }
1078     if (accepted >= 0) {
1079         adb_close(accepted);
1080     }
1081     return -1;
1082 }
1083 
set_file_block_mode(int fd,bool block)1084 bool set_file_block_mode(int fd, bool block) {
1085     FH fh = _fh_from_int(fd, __func__);
1086 
1087     if (!fh || !fh->used) {
1088         errno = EBADF;
1089         D("Setting nonblocking on bad file descriptor %d", fd);
1090         return false;
1091     }
1092 
1093     if (fh->clazz == &_fh_socket_class) {
1094         u_long x = !block;
1095         if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1096             int error = WSAGetLastError();
1097             _socket_set_errno(error);
1098             D("Setting %d nonblocking failed (%d)", fd, error);
1099             return false;
1100         }
1101         return true;
1102     } else {
1103         errno = ENOTSOCK;
1104         D("Setting nonblocking on non-socket %d", fd);
1105         return false;
1106     }
1107 }
1108 
set_tcp_keepalive(int fd,int interval_sec)1109 bool set_tcp_keepalive(int fd, int interval_sec) {
1110     FH fh = _fh_from_int(fd, __func__);
1111 
1112     if (!fh || fh->clazz != &_fh_socket_class) {
1113         D("set_tcp_keepalive(%d) failed: invalid fd", fd);
1114         errno = EBADF;
1115         return false;
1116     }
1117 
1118     tcp_keepalive keepalive;
1119     keepalive.onoff = (interval_sec > 0);
1120     keepalive.keepalivetime = interval_sec * 1000;
1121     keepalive.keepaliveinterval = interval_sec * 1000;
1122 
1123     DWORD bytes_returned = 0;
1124     if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1125                  &bytes_returned, nullptr, nullptr) != 0) {
1126         const DWORD err = WSAGetLastError();
1127         D("set_tcp_keepalive(%d) failed: %s", fd,
1128           android::base::SystemErrorCodeToString(err).c_str());
1129         _socket_set_errno(err);
1130         return false;
1131     }
1132 
1133     return true;
1134 }
1135 
1136 /**************************************************************************/
1137 /**************************************************************************/
1138 /*****                                                                *****/
1139 /*****      Console Window Terminal Emulation                         *****/
1140 /*****                                                                *****/
1141 /**************************************************************************/
1142 /**************************************************************************/
1143 
1144 // This reads input from a Win32 console window and translates it into Unix
1145 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1146 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
1147 // is emulated instead of xterm because it is probably more popular than xterm:
1148 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1149 // supports modern fonts, etc. It seems best to emulate the terminal that most
1150 // Android developers use because they'll fix apps (the shell, etc.) to keep
1151 // working with that terminal's emulation.
1152 //
1153 // The point of this emulation is not to be perfect or to solve all issues with
1154 // console windows on Windows, but to be better than the original code which
1155 // just called read() (which called ReadFile(), which called ReadConsoleA())
1156 // which did not support Ctrl-C, tab completion, shell input line editing
1157 // keys, server echo, and more.
1158 //
1159 // This implementation reconfigures the console with SetConsoleMode(), then
1160 // calls ReadConsoleInput() to get raw input which it remaps to Unix
1161 // terminal-style sequences which is returned via unix_read() which is used
1162 // by the 'adb shell' command.
1163 //
1164 // Code organization:
1165 //
1166 // * _get_console_handle() and unix_isatty() provide console information.
1167 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1168 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
1169 // * _console_read() is the main code of the emulation.
1170 
1171 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1172 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1173 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
_get_console_handle(int fd,DWORD * mode=nullptr)1174 static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
1175     // First check isatty(); this is very fast and eliminates most non-console
1176     // FDs, but returns 1 for both consoles and character devices like NUL.
1177 #pragma push_macro("isatty")
1178 #undef isatty
1179     if (!isatty(fd)) {
1180         return nullptr;
1181     }
1182 #pragma pop_macro("isatty")
1183 
1184     // To differentiate between character devices and consoles we need to get
1185     // the underlying HANDLE and use GetConsoleMode(), which is what requires
1186     // GENERIC_READ permissions.
1187     const intptr_t intptr_handle = _get_osfhandle(fd);
1188     if (intptr_handle == -1) {
1189         return nullptr;
1190     }
1191     const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1192     DWORD temp_mode = 0;
1193     if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1194         return nullptr;
1195     }
1196 
1197     return handle;
1198 }
1199 
1200 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
_get_console_handle(FILE * const stream)1201 static HANDLE _get_console_handle(FILE* const stream) {
1202     // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1203     android::base::ErrnoRestorer er;
1204     const int fd = fileno(stream);
1205     if (fd < 0) {
1206         return nullptr;
1207     }
1208     return _get_console_handle(fd);
1209 }
1210 
unix_isatty(int fd)1211 int unix_isatty(int fd) {
1212     return _get_console_handle(fd) ? 1 : 0;
1213 }
1214 
1215 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console,INPUT_RECORD * const input_record)1216 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1217     for (;;) {
1218         DWORD read_count = 0;
1219         memset(input_record, 0, sizeof(*input_record));
1220         if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1221             D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1222               android::base::SystemErrorCodeToString(GetLastError()).c_str());
1223             errno = EIO;
1224             return false;
1225         }
1226 
1227         if (read_count == 0) {   // should be impossible
1228             fatal("ReadConsoleInputA returned 0");
1229         }
1230 
1231         if (read_count != 1) {   // should be impossible
1232             fatal("ReadConsoleInputA did not return one input record");
1233         }
1234 
1235         // If the console window is resized, emulate SIGWINCH by breaking out
1236         // of read() with errno == EINTR. Note that there is no event on
1237         // vertical resize because we don't give the console our own custom
1238         // screen buffer (with CreateConsoleScreenBuffer() +
1239         // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1240         // supports scrollback, but doesn't seem to raise an event for vertical
1241         // window resize.
1242         if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1243             errno = EINTR;
1244             return false;
1245         }
1246 
1247         if ((input_record->EventType == KEY_EVENT) &&
1248             (input_record->Event.KeyEvent.bKeyDown)) {
1249             if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1250                 fatal("ReadConsoleInputA returned a key event with zero repeat"
1251                       " count");
1252             }
1253 
1254             // Got an interesting INPUT_RECORD, so return
1255             return true;
1256         }
1257     }
1258 }
1259 
_is_shift_pressed(const DWORD control_key_state)1260 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1261     return (control_key_state & SHIFT_PRESSED) != 0;
1262 }
1263 
_is_ctrl_pressed(const DWORD control_key_state)1264 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1265     return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1266 }
1267 
_is_alt_pressed(const DWORD control_key_state)1268 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1269     return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1270 }
1271 
_is_numlock_on(const DWORD control_key_state)1272 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1273     return (control_key_state & NUMLOCK_ON) != 0;
1274 }
1275 
_is_capslock_on(const DWORD control_key_state)1276 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1277     return (control_key_state & CAPSLOCK_ON) != 0;
1278 }
1279 
_is_enhanced_key(const DWORD control_key_state)1280 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1281     return (control_key_state & ENHANCED_KEY) != 0;
1282 }
1283 
1284 // Constants from MSDN for ToAscii().
1285 static const BYTE TOASCII_KEY_OFF = 0x00;
1286 static const BYTE TOASCII_KEY_DOWN = 0x80;
1287 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock
1288 
1289 // Given a key event, ignore a modifier key and return the character that was
1290 // entered without the modifier. Writes to *ch and returns the number of bytes
1291 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)1292 static size_t _get_char_ignoring_modifier(char* const ch,
1293     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1294     const WORD modifier) {
1295     // If there is no character from Windows, try ignoring the specified
1296     // modifier and look for a character. Note that if AltGr is being used,
1297     // there will be a character from Windows.
1298     if (key_event->uChar.AsciiChar == '\0') {
1299         // Note that we read the control key state from the passed in argument
1300         // instead of from key_event since the argument has been normalized.
1301         if (((modifier == VK_SHIFT)   &&
1302             _is_shift_pressed(control_key_state)) ||
1303             ((modifier == VK_CONTROL) &&
1304             _is_ctrl_pressed(control_key_state)) ||
1305             ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) {
1306 
1307             BYTE key_state[256]   = {0};
1308             key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ?
1309                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1310             key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ?
1311                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1312             key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ?
1313                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1314             key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ?
1315                 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1316 
1317             // cause this modifier to be ignored
1318             key_state[modifier]   = TOASCII_KEY_OFF;
1319 
1320             WORD translated = 0;
1321             if (ToAscii(key_event->wVirtualKeyCode,
1322                 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1323                 // Ignoring the modifier, we found a character.
1324                 *ch = (CHAR)translated;
1325                 return 1;
1326             }
1327         }
1328     }
1329 
1330     // Just use whatever Windows told us originally.
1331     *ch = key_event->uChar.AsciiChar;
1332 
1333     // If the character from Windows is NULL, return a size of zero.
1334     return (*ch == '\0') ? 0 : 1;
1335 }
1336 
1337 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1338 // but taking into account the shift key. This is because for a sequence like
1339 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1340 // we want to find the character ')'.
1341 //
1342 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1343 // because it is the default key-sequence to switch the input language.
1344 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1345 static __inline__ size_t _get_non_control_char(char* const ch,
1346     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1347     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1348         VK_CONTROL);
1349 }
1350 
1351 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1352 static __inline__ size_t _get_non_alt_char(char* const ch,
1353     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1354     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1355         VK_MENU);
1356 }
1357 
1358 // Ignore the control key, find the character from Windows, and apply any
1359 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1360 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1361 static size_t _get_control_character(char* const pch,
1362     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1363     const size_t len = _get_non_control_char(pch, key_event,
1364         control_key_state);
1365 
1366     if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1367         char ch = *pch;
1368         switch (ch) {
1369         case '2':
1370         case '@':
1371         case '`':
1372             ch = '\0';
1373             break;
1374         case '3':
1375         case '[':
1376         case '{':
1377             ch = '\x1b';
1378             break;
1379         case '4':
1380         case '\\':
1381         case '|':
1382             ch = '\x1c';
1383             break;
1384         case '5':
1385         case ']':
1386         case '}':
1387             ch = '\x1d';
1388             break;
1389         case '6':
1390         case '^':
1391         case '~':
1392             ch = '\x1e';
1393             break;
1394         case '7':
1395         case '-':
1396         case '_':
1397             ch = '\x1f';
1398             break;
1399         case '8':
1400             ch = '\x7f';
1401             break;
1402         case '/':
1403             if (!_is_alt_pressed(control_key_state)) {
1404                 ch = '\x1f';
1405             }
1406             break;
1407         case '?':
1408             if (!_is_alt_pressed(control_key_state)) {
1409                 ch = '\x7f';
1410             }
1411             break;
1412         }
1413         *pch = ch;
1414     }
1415 
1416     return len;
1417 }
1418 
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)1419 static DWORD _normalize_altgr_control_key_state(
1420     const KEY_EVENT_RECORD* const key_event) {
1421     DWORD control_key_state = key_event->dwControlKeyState;
1422 
1423     // If we're in an AltGr situation where the AltGr key is down (depending on
1424     // the keyboard layout, that might be the physical right alt key which
1425     // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1426     // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1427     // a character (which indicates that there was an AltGr mapping), then act
1428     // as if alt and control are not really down for the purposes of modifiers.
1429     // This makes it so that if the user with, say, a German keyboard layout
1430     // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1431     // output the key and we don't see the Alt and Ctrl keys.
1432     if (_is_ctrl_pressed(control_key_state) &&
1433         _is_alt_pressed(control_key_state)
1434         && (key_event->uChar.AsciiChar != '\0')) {
1435         // Try to remove as few bits as possible to improve our chances of
1436         // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1437         // Left-Alt + Right-Ctrl + AltGr.
1438         if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1439             // Remove Right-Alt.
1440             control_key_state &= ~RIGHT_ALT_PRESSED;
1441             // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1442             // pressed, Left-Ctrl is almost always set, except if the user
1443             // presses Right-Ctrl, then AltGr (in that specific order) for
1444             // whatever reason. At any rate, make sure the bit is not set.
1445             control_key_state &= ~LEFT_CTRL_PRESSED;
1446         } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1447             // Remove Left-Alt.
1448             control_key_state &= ~LEFT_ALT_PRESSED;
1449             // Whichever Ctrl key is down, remove it from the state. We only
1450             // remove one key, to improve our chances of detecting the
1451             // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1452             if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1453                 // Remove Left-Ctrl.
1454                 control_key_state &= ~LEFT_CTRL_PRESSED;
1455             } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1456                 // Remove Right-Ctrl.
1457                 control_key_state &= ~RIGHT_CTRL_PRESSED;
1458             }
1459         }
1460 
1461         // Note that this logic isn't 100% perfect because Windows doesn't
1462         // allow us to detect all combinations because a physical AltGr key
1463         // press shows up as two bits, plus some combinations are ambiguous
1464         // about what is actually physically pressed.
1465     }
1466 
1467     return control_key_state;
1468 }
1469 
1470 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1471 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1472 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1473 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)1474 static DWORD _normalize_keypad_control_key_state(const WORD vk,
1475     const DWORD control_key_state) {
1476     if (!_is_numlock_on(control_key_state)) {
1477         return control_key_state;
1478     }
1479     if (!_is_enhanced_key(control_key_state)) {
1480         switch (vk) {
1481             case VK_INSERT: // 0
1482             case VK_DELETE: // .
1483             case VK_END:    // 1
1484             case VK_DOWN:   // 2
1485             case VK_NEXT:   // 3
1486             case VK_LEFT:   // 4
1487             case VK_CLEAR:  // 5
1488             case VK_RIGHT:  // 6
1489             case VK_HOME:   // 7
1490             case VK_UP:     // 8
1491             case VK_PRIOR:  // 9
1492                 return control_key_state | SHIFT_PRESSED;
1493         }
1494     }
1495 
1496     return control_key_state;
1497 }
1498 
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)1499 static const char* _get_keypad_sequence(const DWORD control_key_state,
1500     const char* const normal, const char* const shifted) {
1501     if (_is_shift_pressed(control_key_state)) {
1502         // Shift is pressed and NumLock is off
1503         return shifted;
1504     } else {
1505         // Shift is not pressed and NumLock is off, or,
1506         // Shift is pressed and NumLock is on, in which case we want the
1507         // NumLock and Shift to neutralize each other, thus, we want the normal
1508         // sequence.
1509         return normal;
1510     }
1511     // If Shift is not pressed and NumLock is on, a different virtual key code
1512     // is returned by Windows, which can be taken care of by a different case
1513     // statement in _console_read().
1514 }
1515 
1516 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)1517 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1518     DWORD control_key_state, const char* const normal) {
1519     // Copy the base sequence into buf.
1520     const size_t len = strlen(normal);
1521     memcpy(buf, normal, len);
1522 
1523     int code = 0;
1524 
1525     control_key_state = _normalize_keypad_control_key_state(vk,
1526         control_key_state);
1527 
1528     if (_is_shift_pressed(control_key_state)) {
1529         code |= 0x1;
1530     }
1531     if (_is_alt_pressed(control_key_state)) {   // any alt key pressed
1532         code |= 0x2;
1533     }
1534     if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed
1535         code |= 0x4;
1536     }
1537     // If some modifier was held down, then we need to insert the modifier code
1538     if (code != 0) {
1539         if (len == 0) {
1540             // Should be impossible because caller should pass a string of
1541             // non-zero length.
1542             return 0;
1543         }
1544         size_t index = len - 1;
1545         const char lastChar = buf[index];
1546         if (lastChar != '~') {
1547             buf[index++] = '1';
1548         }
1549         buf[index++] = ';';         // modifier separator
1550         // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1551         // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1552         buf[index++] = '1' + code;
1553         buf[index++] = lastChar;    // move ~ (or other last char) to the end
1554         return index;
1555     }
1556     return len;
1557 }
1558 
1559 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)1560 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1561     const DWORD control_key_state, const char* const normal,
1562     const char shifted) {
1563     if (_is_shift_pressed(control_key_state)) {
1564         // Shift is pressed and NumLock is off
1565         if (shifted != '\0') {
1566             buf[0] = shifted;
1567             return sizeof(buf[0]);
1568         } else {
1569             return 0;
1570         }
1571     } else {
1572         // Shift is not pressed and NumLock is off, or,
1573         // Shift is pressed and NumLock is on, in which case we want the
1574         // NumLock and Shift to neutralize each other, thus, we want the normal
1575         // sequence.
1576         return _get_modifier_sequence(buf, vk, control_key_state, normal);
1577     }
1578     // If Shift is not pressed and NumLock is on, a different virtual key code
1579     // is returned by Windows, which can be taken care of by a different case
1580     // statement in _console_read().
1581 }
1582 
1583 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1584 // Standard German. Figure this out at runtime so we know what to output for
1585 // Shift-VK_DELETE.
_get_decimal_char()1586 static char _get_decimal_char() {
1587     return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1588 }
1589 
1590 // Prefix the len bytes in buf with the escape character, and then return the
1591 // new buffer length.
_escape_prefix(char * const buf,const size_t len)1592 size_t _escape_prefix(char* const buf, const size_t len) {
1593     // If nothing to prefix, don't do anything. We might be called with
1594     // len == 0, if alt was held down with a dead key which produced nothing.
1595     if (len == 0) {
1596         return 0;
1597     }
1598 
1599     memmove(&buf[1], buf, len);
1600     buf[0] = '\x1b';
1601     return len + 1;
1602 }
1603 
1604 // Internal buffer to satisfy future _console_read() calls.
1605 static auto& g_console_input_buffer = *new std::vector<char>();
1606 
1607 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1608 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)1609 static int _console_read(const HANDLE console, void* buf, size_t len) {
1610     for (;;) {
1611         // Read of zero bytes should not block waiting for something from the console.
1612         if (len == 0) {
1613             return 0;
1614         }
1615 
1616         // Flush as much as possible from input buffer.
1617         if (!g_console_input_buffer.empty()) {
1618             const int bytes_read = std::min(len, g_console_input_buffer.size());
1619             memcpy(buf, g_console_input_buffer.data(), bytes_read);
1620             const auto begin = g_console_input_buffer.begin();
1621             g_console_input_buffer.erase(begin, begin + bytes_read);
1622             return bytes_read;
1623         }
1624 
1625         // Read from the actual console. This may block until input.
1626         INPUT_RECORD input_record;
1627         if (!_get_key_event_record(console, &input_record)) {
1628             return -1;
1629         }
1630 
1631         KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1632         const WORD vk = key_event->wVirtualKeyCode;
1633         const CHAR ch = key_event->uChar.AsciiChar;
1634         const DWORD control_key_state = _normalize_altgr_control_key_state(
1635             key_event);
1636 
1637         // The following emulation code should write the output sequence to
1638         // either seqstr or to seqbuf and seqbuflen.
1639         const char* seqstr = NULL;  // NULL terminated C-string
1640         // Enough space for max sequence string below, plus modifiers and/or
1641         // escape prefix.
1642         char seqbuf[16];
1643         size_t seqbuflen = 0;       // Space used in seqbuf.
1644 
1645 #define MATCH(vk, normal) \
1646             case (vk): \
1647             { \
1648                 seqstr = (normal); \
1649             } \
1650             break;
1651 
1652         // Modifier keys should affect the output sequence.
1653 #define MATCH_MODIFIER(vk, normal) \
1654             case (vk): \
1655             { \
1656                 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1657                     control_key_state, (normal)); \
1658             } \
1659             break;
1660 
1661         // The shift key should affect the output sequence.
1662 #define MATCH_KEYPAD(vk, normal, shifted) \
1663             case (vk): \
1664             { \
1665                 seqstr = _get_keypad_sequence(control_key_state, (normal), \
1666                     (shifted)); \
1667             } \
1668             break;
1669 
1670         // The shift key and other modifier keys should affect the output
1671         // sequence.
1672 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1673             case (vk): \
1674             { \
1675                 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1676                     control_key_state, (normal), (shifted)); \
1677             } \
1678             break;
1679 
1680 #define ESC "\x1b"
1681 #define CSI ESC "["
1682 #define SS3 ESC "O"
1683 
1684         // Only support normal mode, not application mode.
1685 
1686         // Enhanced keys:
1687         // * 6-pack: insert, delete, home, end, page up, page down
1688         // * cursor keys: up, down, right, left
1689         // * keypad: divide, enter
1690         // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1691         //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
1692         if (_is_enhanced_key(control_key_state)) {
1693             switch (vk) {
1694                 case VK_RETURN: // Enter key on keypad
1695                     if (_is_ctrl_pressed(control_key_state)) {
1696                         seqstr = "\n";
1697                     } else {
1698                         seqstr = "\r";
1699                     }
1700                     break;
1701 
1702                 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
1703                 MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down
1704 
1705                 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
1706                 // will be fixed soon to match xterm which sends CSI "F" and
1707                 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
1708                 MATCH(VK_END,  CSI "F");
1709                 MATCH(VK_HOME, CSI "H");
1710 
1711                 MATCH_MODIFIER(VK_LEFT,  CSI "D");
1712                 MATCH_MODIFIER(VK_UP,    CSI "A");
1713                 MATCH_MODIFIER(VK_RIGHT, CSI "C");
1714                 MATCH_MODIFIER(VK_DOWN,  CSI "B");
1715 
1716                 MATCH_MODIFIER(VK_INSERT, CSI "2~");
1717                 MATCH_MODIFIER(VK_DELETE, CSI "3~");
1718 
1719                 MATCH(VK_DIVIDE, "/");
1720             }
1721         } else {    // Non-enhanced keys:
1722             switch (vk) {
1723                 case VK_BACK:   // backspace
1724                     if (_is_alt_pressed(control_key_state)) {
1725                         seqstr = ESC "\x7f";
1726                     } else {
1727                         seqstr = "\x7f";
1728                     }
1729                     break;
1730 
1731                 case VK_TAB:
1732                     if (_is_shift_pressed(control_key_state)) {
1733                         seqstr = CSI "Z";
1734                     } else {
1735                         seqstr = "\t";
1736                     }
1737                     break;
1738 
1739                 // Number 5 key in keypad when NumLock is off, or if NumLock is
1740                 // on and Shift is down.
1741                 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
1742 
1743                 case VK_RETURN:     // Enter key on main keyboard
1744                     if (_is_alt_pressed(control_key_state)) {
1745                         seqstr = ESC "\n";
1746                     } else if (_is_ctrl_pressed(control_key_state)) {
1747                         seqstr = "\n";
1748                     } else {
1749                         seqstr = "\r";
1750                     }
1751                     break;
1752 
1753                 // VK_ESCAPE: Don't do any special handling. The OS uses many
1754                 // of the sequences with Escape and many of the remaining
1755                 // sequences don't produce bKeyDown messages, only !bKeyDown
1756                 // for whatever reason.
1757 
1758                 case VK_SPACE:
1759                     if (_is_alt_pressed(control_key_state)) {
1760                         seqstr = ESC " ";
1761                     } else if (_is_ctrl_pressed(control_key_state)) {
1762                         seqbuf[0] = '\0';   // NULL char
1763                         seqbuflen = 1;
1764                     } else {
1765                         seqstr = " ";
1766                     }
1767                     break;
1768 
1769                 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
1770                 MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down
1771 
1772                 MATCH_KEYPAD(VK_END,  CSI "4~", "1");
1773                 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
1774 
1775                 MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4');
1776                 MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8');
1777                 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
1778                 MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2');
1779 
1780                 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
1781                 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
1782                     _get_decimal_char());
1783 
1784                 case 0x30:          // 0
1785                 case 0x31:          // 1
1786                 case 0x39:          // 9
1787                 case VK_OEM_1:      // ;:
1788                 case VK_OEM_PLUS:   // =+
1789                 case VK_OEM_COMMA:  // ,<
1790                 case VK_OEM_PERIOD: // .>
1791                 case VK_OEM_7:      // '"
1792                 case VK_OEM_102:    // depends on keyboard, could be <> or \|
1793                 case VK_OEM_2:      // /?
1794                 case VK_OEM_3:      // `~
1795                 case VK_OEM_4:      // [{
1796                 case VK_OEM_5:      // \|
1797                 case VK_OEM_6:      // ]}
1798                 {
1799                     seqbuflen = _get_control_character(seqbuf, key_event,
1800                         control_key_state);
1801 
1802                     if (_is_alt_pressed(control_key_state)) {
1803                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1804                     }
1805                 }
1806                 break;
1807 
1808                 case 0x32:          // 2
1809                 case 0x33:          // 3
1810                 case 0x34:          // 4
1811                 case 0x35:          // 5
1812                 case 0x36:          // 6
1813                 case 0x37:          // 7
1814                 case 0x38:          // 8
1815                 case VK_OEM_MINUS:  // -_
1816                 {
1817                     seqbuflen = _get_control_character(seqbuf, key_event,
1818                         control_key_state);
1819 
1820                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
1821                     // prefix with escape.
1822                     if (_is_alt_pressed(control_key_state) &&
1823                         !(_is_ctrl_pressed(control_key_state) &&
1824                         !_is_shift_pressed(control_key_state))) {
1825                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1826                     }
1827                 }
1828                 break;
1829 
1830                 case 0x41:  // a
1831                 case 0x42:  // b
1832                 case 0x43:  // c
1833                 case 0x44:  // d
1834                 case 0x45:  // e
1835                 case 0x46:  // f
1836                 case 0x47:  // g
1837                 case 0x48:  // h
1838                 case 0x49:  // i
1839                 case 0x4a:  // j
1840                 case 0x4b:  // k
1841                 case 0x4c:  // l
1842                 case 0x4d:  // m
1843                 case 0x4e:  // n
1844                 case 0x4f:  // o
1845                 case 0x50:  // p
1846                 case 0x51:  // q
1847                 case 0x52:  // r
1848                 case 0x53:  // s
1849                 case 0x54:  // t
1850                 case 0x55:  // u
1851                 case 0x56:  // v
1852                 case 0x57:  // w
1853                 case 0x58:  // x
1854                 case 0x59:  // y
1855                 case 0x5a:  // z
1856                 {
1857                     seqbuflen = _get_non_alt_char(seqbuf, key_event,
1858                         control_key_state);
1859 
1860                     // If Alt is pressed, then prefix with escape.
1861                     if (_is_alt_pressed(control_key_state)) {
1862                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1863                     }
1864                 }
1865                 break;
1866 
1867                 // These virtual key codes are generated by the keys on the
1868                 // keypad *when NumLock is on* and *Shift is up*.
1869                 MATCH(VK_NUMPAD0, "0");
1870                 MATCH(VK_NUMPAD1, "1");
1871                 MATCH(VK_NUMPAD2, "2");
1872                 MATCH(VK_NUMPAD3, "3");
1873                 MATCH(VK_NUMPAD4, "4");
1874                 MATCH(VK_NUMPAD5, "5");
1875                 MATCH(VK_NUMPAD6, "6");
1876                 MATCH(VK_NUMPAD7, "7");
1877                 MATCH(VK_NUMPAD8, "8");
1878                 MATCH(VK_NUMPAD9, "9");
1879 
1880                 MATCH(VK_MULTIPLY, "*");
1881                 MATCH(VK_ADD,      "+");
1882                 MATCH(VK_SUBTRACT, "-");
1883                 // VK_DECIMAL is generated by the . key on the keypad *when
1884                 // NumLock is on* and *Shift is up* and the sequence is not
1885                 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
1886                 // Windows Security screen to come up).
1887                 case VK_DECIMAL:
1888                     // U.S. English uses '.', Germany German uses ','.
1889                     seqbuflen = _get_non_control_char(seqbuf, key_event,
1890                         control_key_state);
1891                     break;
1892 
1893                 MATCH_MODIFIER(VK_F1,  SS3 "P");
1894                 MATCH_MODIFIER(VK_F2,  SS3 "Q");
1895                 MATCH_MODIFIER(VK_F3,  SS3 "R");
1896                 MATCH_MODIFIER(VK_F4,  SS3 "S");
1897                 MATCH_MODIFIER(VK_F5,  CSI "15~");
1898                 MATCH_MODIFIER(VK_F6,  CSI "17~");
1899                 MATCH_MODIFIER(VK_F7,  CSI "18~");
1900                 MATCH_MODIFIER(VK_F8,  CSI "19~");
1901                 MATCH_MODIFIER(VK_F9,  CSI "20~");
1902                 MATCH_MODIFIER(VK_F10, CSI "21~");
1903                 MATCH_MODIFIER(VK_F11, CSI "23~");
1904                 MATCH_MODIFIER(VK_F12, CSI "24~");
1905 
1906                 MATCH_MODIFIER(VK_F13, CSI "25~");
1907                 MATCH_MODIFIER(VK_F14, CSI "26~");
1908                 MATCH_MODIFIER(VK_F15, CSI "28~");
1909                 MATCH_MODIFIER(VK_F16, CSI "29~");
1910                 MATCH_MODIFIER(VK_F17, CSI "31~");
1911                 MATCH_MODIFIER(VK_F18, CSI "32~");
1912                 MATCH_MODIFIER(VK_F19, CSI "33~");
1913                 MATCH_MODIFIER(VK_F20, CSI "34~");
1914 
1915                 // MATCH_MODIFIER(VK_F21, ???);
1916                 // MATCH_MODIFIER(VK_F22, ???);
1917                 // MATCH_MODIFIER(VK_F23, ???);
1918                 // MATCH_MODIFIER(VK_F24, ???);
1919             }
1920         }
1921 
1922 #undef MATCH
1923 #undef MATCH_MODIFIER
1924 #undef MATCH_KEYPAD
1925 #undef MATCH_MODIFIER_KEYPAD
1926 #undef ESC
1927 #undef CSI
1928 #undef SS3
1929 
1930         const char* out;
1931         size_t outlen;
1932 
1933         // Check for output in any of:
1934         // * seqstr is set (and strlen can be used to determine the length).
1935         // * seqbuf and seqbuflen are set
1936         // Fallback to ch from Windows.
1937         if (seqstr != NULL) {
1938             out = seqstr;
1939             outlen = strlen(seqstr);
1940         } else if (seqbuflen > 0) {
1941             out = seqbuf;
1942             outlen = seqbuflen;
1943         } else if (ch != '\0') {
1944             // Use whatever Windows told us it is.
1945             seqbuf[0] = ch;
1946             seqbuflen = 1;
1947             out = seqbuf;
1948             outlen = seqbuflen;
1949         } else {
1950             // No special handling for the virtual key code and Windows isn't
1951             // telling us a character code, then we don't know how to translate
1952             // the key press.
1953             //
1954             // Consume the input and 'continue' to cause us to get a new key
1955             // event.
1956             D("_console_read: unknown virtual key code: %d, enhanced: %s",
1957                 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
1958             continue;
1959         }
1960 
1961         // put output wRepeatCount times into g_console_input_buffer
1962         while (key_event->wRepeatCount-- > 0) {
1963             g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
1964         }
1965 
1966         // Loop around and try to flush g_console_input_buffer
1967     }
1968 }
1969 
1970 static DWORD _old_console_mode; // previous GetConsoleMode() result
1971 static HANDLE _console_handle;  // when set, console mode should be restored
1972 
stdin_raw_init()1973 void stdin_raw_init() {
1974     const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
1975     if (in == nullptr) {
1976         return;
1977     }
1978 
1979     // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
1980     // calling the process Ctrl-C routine (configured by
1981     // SetConsoleCtrlHandler()).
1982     // Disable ENABLE_LINE_INPUT so that input is immediately sent.
1983     // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
1984     // flag also seems necessary to have proper line-ending processing.
1985     DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
1986                                                    ENABLE_LINE_INPUT |
1987                                                    ENABLE_ECHO_INPUT);
1988     // Enable ENABLE_WINDOW_INPUT to get window resizes.
1989     new_console_mode |= ENABLE_WINDOW_INPUT;
1990 
1991     if (!SetConsoleMode(in, new_console_mode)) {
1992         // This really should not fail.
1993         D("stdin_raw_init: SetConsoleMode() failed: %s",
1994           android::base::SystemErrorCodeToString(GetLastError()).c_str());
1995     }
1996 
1997     // Once this is set, it means that stdin has been configured for
1998     // reading from and that the old console mode should be restored later.
1999     _console_handle = in;
2000 
2001     // Note that we don't need to configure C Runtime line-ending
2002     // translation because _console_read() does not call the C Runtime to
2003     // read from the console.
2004 }
2005 
stdin_raw_restore()2006 void stdin_raw_restore() {
2007     if (_console_handle != NULL) {
2008         const HANDLE in = _console_handle;
2009         _console_handle = NULL;  // clear state
2010 
2011         if (!SetConsoleMode(in, _old_console_mode)) {
2012             // This really should not fail.
2013             D("stdin_raw_restore: SetConsoleMode() failed: %s",
2014               android::base::SystemErrorCodeToString(GetLastError()).c_str());
2015         }
2016     }
2017 }
2018 
2019 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
unix_read_interruptible(int fd,void * buf,size_t len)2020 int unix_read_interruptible(int fd, void* buf, size_t len) {
2021     if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
2022         // If it is a request to read from stdin, and stdin_raw_init() has been
2023         // called, and it successfully configured the console, then read from
2024         // the console using Win32 console APIs and partially emulate a unix
2025         // terminal.
2026         return _console_read(_console_handle, buf, len);
2027     } else {
2028         // On older versions of Windows (definitely 7, definitely not 10),
2029         // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2030         // we need to limit the read size.
2031         if (len > 4096 && unix_isatty(fd)) {
2032             len = 4096;
2033         }
2034         // Just call into C Runtime which can read from pipes/files and which
2035         // can do LF/CR translation (which is overridable with _setmode()).
2036         // Undefine the macro that is set in sysdeps.h which bans calls to
2037         // plain read() in favor of unix_read() or adb_read().
2038 #pragma push_macro("read")
2039 #undef read
2040         return read(fd, buf, len);
2041 #pragma pop_macro("read")
2042     }
2043 }
2044 
2045 /**************************************************************************/
2046 /**************************************************************************/
2047 /*****                                                                *****/
2048 /*****      Unicode support                                           *****/
2049 /*****                                                                *****/
2050 /**************************************************************************/
2051 /**************************************************************************/
2052 
2053 // This implements support for using files with Unicode filenames and for
2054 // outputting Unicode text to a Win32 console window. This is inspired from
2055 // http://utf8everywhere.org/.
2056 //
2057 // Background
2058 // ----------
2059 //
2060 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2061 // filenames to APIs such as open(). This works because filenames are largely
2062 // opaque 'cookies' (perhaps excluding path separators).
2063 //
2064 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2065 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2066 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
2067 // CreateFile() API is really just a macro that adds the W/A based on whether
2068 // the UNICODE preprocessor symbol is defined).
2069 //
2070 // Options
2071 // -------
2072 //
2073 // Thus, to write a portable program, there are a few options:
2074 //
2075 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
2076 //    For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2077 //    that takes a wchar_t string, converts it to UTF-8 and then calls the real
2078 //    open() API.
2079 //
2080 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2081 //    1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2082 //    potentially touching a lot of code.
2083 //
2084 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
2085 //    UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2086 //    takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2087 //    or C Runtime API.
2088 //
2089 // The Choice
2090 // ----------
2091 //
2092 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2093 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2094 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
2095 // args that are passed to main() at the beginning of program startup. We also use
2096 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2097 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
2098 //
2099 // Unicode console output
2100 // ----------------------
2101 //
2102 // The way to output Unicode to a Win32 console window is to call
2103 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2104 // such as Lucida Console or Consolas, and in the case of East Asian languages
2105 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2106 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2107 // font to be used in console windows.)
2108 //
2109 // The problem is getting the C Runtime to make fprintf and related APIs call
2110 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2111 // promising, but the various modes have issues:
2112 //
2113 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2114 //    UTF-16 do not display properly.
2115 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2116 //    totally wrong.
2117 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2118 //    handler to be called (upon a later I/O call), aborting the process.
2119 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2120 //    to output nothing.
2121 //
2122 // So the only solution is to write our own adb_fprintf() that converts UTF-8
2123 // to UTF-16 and then calls WriteConsoleW().
2124 
2125 
2126 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2127 // be passed to main().
NarrowArgs(const int argc,wchar_t ** const argv)2128 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2129     narrow_args = new char*[argc + 1];
2130 
2131     for (int i = 0; i < argc; ++i) {
2132         std::string arg_narrow;
2133         if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2134             fatal_errno("cannot convert argument from UTF-16 to UTF-8");
2135         }
2136         narrow_args[i] = strdup(arg_narrow.c_str());
2137     }
2138     narrow_args[argc] = nullptr;   // terminate
2139 }
2140 
~NarrowArgs()2141 NarrowArgs::~NarrowArgs() {
2142     if (narrow_args != nullptr) {
2143         for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2144             free(*argp);
2145         }
2146         delete[] narrow_args;
2147         narrow_args = nullptr;
2148     }
2149 }
2150 
unix_open(const char * path,int options,...)2151 int unix_open(const char* path, int options, ...) {
2152     std::wstring path_wide;
2153     if (!android::base::UTF8ToWide(path, &path_wide)) {
2154         return -1;
2155     }
2156     if ((options & O_CREAT) == 0) {
2157         return _wopen(path_wide.c_str(), options);
2158     } else {
2159         int      mode;
2160         va_list  args;
2161         va_start(args, options);
2162         mode = va_arg(args, int);
2163         va_end(args);
2164         return _wopen(path_wide.c_str(), options, mode);
2165     }
2166 }
2167 
2168 // Version of opendir() that takes a UTF-8 path.
adb_opendir(const char * path)2169 DIR* adb_opendir(const char* path) {
2170     std::wstring path_wide;
2171     if (!android::base::UTF8ToWide(path, &path_wide)) {
2172         return nullptr;
2173     }
2174 
2175     // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2176     // the fields, but right now all the callers treat the structure as
2177     // opaque.
2178     return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2179 }
2180 
2181 // Version of readdir() that returns UTF-8 paths.
adb_readdir(DIR * dir)2182 struct dirent* adb_readdir(DIR* dir) {
2183     _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2184     struct _wdirent* const went = _wreaddir(wdir);
2185     if (went == nullptr) {
2186         return nullptr;
2187     }
2188 
2189     // Convert from UTF-16 to UTF-8.
2190     std::string name_utf8;
2191     if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2192         return nullptr;
2193     }
2194 
2195     // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2196     // space for UTF-16 wchar_t's) with UTF-8 char's.
2197     struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2198 
2199     if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2200         // Name too big to fit in existing buffer.
2201         errno = ENOMEM;
2202         return nullptr;
2203     }
2204 
2205     // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2206     // because _wdirent contains wchar_t instead of char. So even if name_utf8
2207     // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2208     // bigger than the caller expects because they expect a dirent structure
2209     // which has a smaller d_name field. Ignore this since the caller should be
2210     // resilient.
2211 
2212     // Rewrite the UTF-16 d_name field to UTF-8.
2213     strcpy(ent->d_name, name_utf8.c_str());
2214 
2215     return ent;
2216 }
2217 
2218 // Version of closedir() to go with our version of adb_opendir().
adb_closedir(DIR * dir)2219 int adb_closedir(DIR* dir) {
2220     return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2221 }
2222 
2223 // Version of unlink() that takes a UTF-8 path.
adb_unlink(const char * path)2224 int adb_unlink(const char* path) {
2225     std::wstring wpath;
2226     if (!android::base::UTF8ToWide(path, &wpath)) {
2227         return -1;
2228     }
2229 
2230     int  rc = _wunlink(wpath.c_str());
2231 
2232     if (rc == -1 && errno == EACCES) {
2233         /* unlink returns EACCES when the file is read-only, so we first */
2234         /* try to make it writable, then unlink again...                 */
2235         rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2236         if (rc == 0)
2237             rc = _wunlink(wpath.c_str());
2238     }
2239     return rc;
2240 }
2241 
2242 // Version of mkdir() that takes a UTF-8 path.
adb_mkdir(const std::string & path,int mode)2243 int adb_mkdir(const std::string& path, int mode) {
2244     std::wstring path_wide;
2245     if (!android::base::UTF8ToWide(path, &path_wide)) {
2246         return -1;
2247     }
2248 
2249     return _wmkdir(path_wide.c_str());
2250 }
2251 
2252 // Version of utime() that takes a UTF-8 path.
adb_utime(const char * path,struct utimbuf * u)2253 int adb_utime(const char* path, struct utimbuf* u) {
2254     std::wstring path_wide;
2255     if (!android::base::UTF8ToWide(path, &path_wide)) {
2256         return -1;
2257     }
2258 
2259     static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2260         "utimbuf and _utimbuf should be the same size because they both "
2261         "contain the same types, namely time_t");
2262     return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2263 }
2264 
2265 // Version of chmod() that takes a UTF-8 path.
adb_chmod(const char * path,int mode)2266 int adb_chmod(const char* path, int mode) {
2267     std::wstring path_wide;
2268     if (!android::base::UTF8ToWide(path, &path_wide)) {
2269         return -1;
2270     }
2271 
2272     return _wchmod(path_wide.c_str(), mode);
2273 }
2274 
2275 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
utf8_codepoint_len(uint8_t ch)2276 static inline size_t utf8_codepoint_len(uint8_t ch) {
2277     return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2278 }
2279 
2280 namespace internal {
2281 
2282 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2283 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2284 // remaining_bytes.
ParseCompleteUTF8(const char * const first,const char * const last,std::vector<char> * const remaining_bytes)2285 size_t ParseCompleteUTF8(const char* const first, const char* const last,
2286                          std::vector<char>* const remaining_bytes) {
2287     // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2288     // Current_after points one byte past the current byte to be examined.
2289     for (const char* current_after = last; current_after != first; --current_after) {
2290         const char* const current = current_after - 1;
2291         const char ch = *current;
2292         const char kHighBit = 0x80u;
2293         const char kTwoHighestBits = 0xC0u;
2294         if ((ch & kHighBit) == 0) { // high bit not set
2295             // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2296             // bytes with no leading byte, so return the entire buffer.
2297             break;
2298         } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2299             // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2300             const size_t bytes_available = last - current;
2301             if (bytes_available < utf8_codepoint_len(ch)) {
2302                 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2303                 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2304                 // to remaining_bytes.
2305                 remaining_bytes->insert(remaining_bytes->end(), current, last);
2306                 return current - first;
2307             } else {
2308                 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2309                 // trailing bytes with no lead byte, so return the entire buffer.
2310                 break;
2311             }
2312         } else {
2313             // Trailing byte, so keep going backwards looking for the lead byte.
2314         }
2315     }
2316 
2317     // Return the size of the entire buffer. It is possible that we walked backward past invalid
2318     // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2319     // so that they can be processed.
2320     return last - first;
2321 }
2322 
2323 }
2324 
2325 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2326 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
2327 // This matches the behavior of Linux.
2328 
2329 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
_console_write_utf8(const char * const buf,const size_t buf_size,FILE * stream,HANDLE console)2330 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2331                                HANDLE console) {
2332     static std::mutex& console_output_buffer_lock = *new std::mutex();
2333     static auto& console_output_buffer = *new std::vector<char>();
2334 
2335     const int saved_errno = errno;
2336     std::vector<char> combined_buffer;
2337 
2338     // Complete UTF-8 sequences that should be immediately written to the console.
2339     const char* utf8;
2340     size_t utf8_size;
2341 
2342     {
2343         std::lock_guard<std::mutex> lock(console_output_buffer_lock);
2344         if (console_output_buffer.empty()) {
2345             // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2346             // common case with plain ASCII), parse buf directly.
2347             utf8 = buf;
2348             utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer);
2349         } else {
2350             // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2351             // combined_buffer (and effectively clear console_output_buffer) and append buf to
2352             // combined_buffer, then parse it all together.
2353             combined_buffer.swap(console_output_buffer);
2354             combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2355 
2356             utf8 = combined_buffer.data();
2357             utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2358                                                     &console_output_buffer);
2359         }
2360     }
2361 
2362     std::wstring utf16;
2363 
2364     // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2365     // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2366     // random data, runs dmesg (which might have non-UTF-8), etc.
2367     // This could throw std::bad_alloc.
2368     (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2369 
2370     // Note that this does not do \n => \r\n translation because that
2371     // doesn't seem necessary for the Windows console. For the Windows
2372     // console \r moves to the beginning of the line and \n moves to a new
2373     // line.
2374 
2375     // Flush any stream buffering so that our output is afterwards which
2376     // makes sense because our call is afterwards.
2377     (void)fflush(stream);
2378 
2379     // Write UTF-16 to the console.
2380     DWORD written = 0;
2381     if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, NULL)) {
2382         errno = EIO;
2383         return -1;
2384     }
2385 
2386     // Return the size of the original buffer passed in, signifying that we consumed it all, even
2387     // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2388     // matches the Linux behavior.
2389     errno = saved_errno;
2390     return buf_size;
2391 }
2392 
2393 // Function prototype because attributes cannot be placed on func definitions.
2394 static int _console_vfprintf(const HANDLE console, FILE* stream,
2395                              const char *format, va_list ap)
2396     __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0)));
2397 
2398 // Internal function to format a UTF-8 string and write it to a Win32 console.
2399 // Returns -1 on error.
_console_vfprintf(const HANDLE console,FILE * stream,const char * format,va_list ap)2400 static int _console_vfprintf(const HANDLE console, FILE* stream,
2401                              const char *format, va_list ap) {
2402     const int saved_errno = errno;
2403     std::string output_utf8;
2404 
2405     // Format the string.
2406     // This could throw std::bad_alloc.
2407     android::base::StringAppendV(&output_utf8, format, ap);
2408 
2409     const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2410                                            console);
2411     if (result != -1) {
2412         errno = saved_errno;
2413     } else {
2414         // If -1 was returned, errno has been set.
2415     }
2416     return result;
2417 }
2418 
2419 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
2420 // Windows console.
adb_vfprintf(FILE * stream,const char * format,va_list ap)2421 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2422     const HANDLE console = _get_console_handle(stream);
2423 
2424     // If there is an associated Win32 console, write to it specially,
2425     // otherwise defer to the regular C Runtime, passing it UTF-8.
2426     if (console != NULL) {
2427         return _console_vfprintf(console, stream, format, ap);
2428     } else {
2429         // If vfprintf is a macro, undefine it, so we can call the real
2430         // C Runtime API.
2431 #pragma push_macro("vfprintf")
2432 #undef vfprintf
2433         return vfprintf(stream, format, ap);
2434 #pragma pop_macro("vfprintf")
2435     }
2436 }
2437 
2438 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
adb_vprintf(const char * format,va_list ap)2439 int adb_vprintf(const char *format, va_list ap) {
2440     return adb_vfprintf(stdout, format, ap);
2441 }
2442 
2443 // Version of fprintf() that takes UTF-8 and can write Unicode to a
2444 // Windows console.
adb_fprintf(FILE * stream,const char * format,...)2445 int adb_fprintf(FILE *stream, const char *format, ...) {
2446     va_list ap;
2447     va_start(ap, format);
2448     const int result = adb_vfprintf(stream, format, ap);
2449     va_end(ap);
2450 
2451     return result;
2452 }
2453 
2454 // Version of printf() that takes UTF-8 and can write Unicode to a
2455 // Windows console.
adb_printf(const char * format,...)2456 int adb_printf(const char *format, ...) {
2457     va_list ap;
2458     va_start(ap, format);
2459     const int result = adb_vfprintf(stdout, format, ap);
2460     va_end(ap);
2461 
2462     return result;
2463 }
2464 
2465 // Version of fputs() that takes UTF-8 and can write Unicode to a
2466 // Windows console.
adb_fputs(const char * buf,FILE * stream)2467 int adb_fputs(const char* buf, FILE* stream) {
2468     // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2469     // which fputs (and hence adb_fputs) should return on error.
2470     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2471     return adb_fprintf(stream, "%s", buf);
2472 }
2473 
2474 // Version of fputc() that takes UTF-8 and can write Unicode to a
2475 // Windows console.
adb_fputc(int ch,FILE * stream)2476 int adb_fputc(int ch, FILE* stream) {
2477     const int result = adb_fprintf(stream, "%c", ch);
2478     if (result == -1) {
2479         return EOF;
2480     }
2481     // For success, fputc returns the char, cast to unsigned char, then to int.
2482     return static_cast<unsigned char>(ch);
2483 }
2484 
2485 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
adb_putchar(int ch)2486 int adb_putchar(int ch) {
2487     return adb_fputc(ch, stdout);
2488 }
2489 
2490 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
adb_puts(const char * buf)2491 int adb_puts(const char* buf) {
2492     // adb_printf returns -1 on error, which is conveniently the same as EOF
2493     // which puts (and hence adb_puts) should return on error.
2494     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2495     return adb_printf("%s\n", buf);
2496 }
2497 
2498 // Internal function to write UTF-8 to a Win32 console. Returns the number of
2499 // items (of length size) written. On error, returns a short item count or 0.
_console_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream,HANDLE console)2500 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2501                               FILE* stream, HANDLE console) {
2502     const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2503                                            console);
2504     if (result == -1) {
2505         return 0;
2506     }
2507     return result / size;
2508 }
2509 
2510 // Version of fwrite() that takes UTF-8 and can write Unicode to a
2511 // Windows console.
adb_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream)2512 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2513     const HANDLE console = _get_console_handle(stream);
2514 
2515     // If there is an associated Win32 console, write to it specially,
2516     // otherwise defer to the regular C Runtime, passing it UTF-8.
2517     if (console != NULL) {
2518         return _console_fwrite(ptr, size, nmemb, stream, console);
2519     } else {
2520         // If fwrite is a macro, undefine it, so we can call the real
2521         // C Runtime API.
2522 #pragma push_macro("fwrite")
2523 #undef fwrite
2524         return fwrite(ptr, size, nmemb, stream);
2525 #pragma pop_macro("fwrite")
2526     }
2527 }
2528 
2529 // Version of fopen() that takes a UTF-8 filename and can access a file with
2530 // a Unicode filename.
adb_fopen(const char * path,const char * mode)2531 FILE* adb_fopen(const char* path, const char* mode) {
2532     std::wstring path_wide;
2533     if (!android::base::UTF8ToWide(path, &path_wide)) {
2534         return nullptr;
2535     }
2536 
2537     std::wstring mode_wide;
2538     if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2539         return nullptr;
2540     }
2541 
2542     return _wfopen(path_wide.c_str(), mode_wide.c_str());
2543 }
2544 
2545 // Return a lowercase version of the argument. Uses C Runtime tolower() on
2546 // each byte which is not UTF-8 aware, and theoretically uses the current C
2547 // Runtime locale (which in practice is not changed, so this becomes a ASCII
2548 // conversion).
ToLower(const std::string & anycase)2549 static std::string ToLower(const std::string& anycase) {
2550     // copy string
2551     std::string str(anycase);
2552     // transform the copy
2553     std::transform(str.begin(), str.end(), str.begin(), tolower);
2554     return str;
2555 }
2556 
2557 extern "C" int main(int argc, char** argv);
2558 
2559 // Link with -municode to cause this wmain() to be used as the program
2560 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2561 // regular main() with UTF-8 args.
wmain(int argc,wchar_t ** argv)2562 extern "C" int wmain(int argc, wchar_t **argv) {
2563     // Convert args from UTF-16 to UTF-8 and pass that to main().
2564     NarrowArgs narrow_args(argc, argv);
2565     return main(argc, narrow_args.data());
2566 }
2567 
2568 // Shadow UTF-8 environment variable name/value pairs that are created from
2569 // _wenviron the first time that adb_getenv() is called. Note that this is not
2570 // currently updated if putenv, setenv, unsetenv are called. Note that no
2571 // thread synchronization is done, but we're called early enough in
2572 // single-threaded startup that things work ok.
2573 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2574 
2575 // Make sure that shadow UTF-8 environment variables are setup.
_ensure_env_setup()2576 static void _ensure_env_setup() {
2577     // If some name/value pairs exist, then we've already done the setup below.
2578     if (g_environ_utf8.size() != 0) {
2579         return;
2580     }
2581 
2582     if (_wenviron == nullptr) {
2583         // If _wenviron is null, then -municode probably wasn't used. That
2584         // linker flag will cause the entry point to setup _wenviron. It will
2585         // also require an implementation of wmain() (which we provide above).
2586         fatal("_wenviron is not set, did you link with -municode?");
2587     }
2588 
2589     // Read name/value pairs from UTF-16 _wenviron and write new name/value
2590     // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2591     // to use the D() macro here because that tracing only works if the
2592     // ADB_TRACE environment variable is setup, but that env var can't be read
2593     // until this code completes.
2594     for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2595         wchar_t* const equal = wcschr(*env, L'=');
2596         if (equal == nullptr) {
2597             // Malformed environment variable with no equal sign. Shouldn't
2598             // really happen, but we should be resilient to this.
2599             continue;
2600         }
2601 
2602         // If we encounter an error converting UTF-16, don't error-out on account of a single env
2603         // var because the program might never even read this particular variable.
2604         std::string name_utf8;
2605         if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2606             continue;
2607         }
2608 
2609         // Store lowercase name so that we can do case-insensitive searches.
2610         name_utf8 = ToLower(name_utf8);
2611 
2612         std::string value_utf8;
2613         if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2614             continue;
2615         }
2616 
2617         char* const value_dup = strdup(value_utf8.c_str());
2618 
2619         // Don't overwrite a previus env var with the same name. In reality,
2620         // the system probably won't let two env vars with the same name exist
2621         // in _wenviron.
2622         g_environ_utf8.insert({name_utf8, value_dup});
2623     }
2624 }
2625 
2626 // Version of getenv() that takes a UTF-8 environment variable name and
2627 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
adb_getenv(const char * name)2628 char* adb_getenv(const char* name) {
2629     _ensure_env_setup();
2630 
2631     // Case-insensitive search by searching for lowercase name in a map of
2632     // lowercase names.
2633     const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2634     if (it == g_environ_utf8.end()) {
2635         return nullptr;
2636     }
2637 
2638     return it->second;
2639 }
2640 
2641 // Version of getcwd() that returns the current working directory in UTF-8.
adb_getcwd(char * buf,int size)2642 char* adb_getcwd(char* buf, int size) {
2643     wchar_t* wbuf = _wgetcwd(nullptr, 0);
2644     if (wbuf == nullptr) {
2645         return nullptr;
2646     }
2647 
2648     std::string buf_utf8;
2649     const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2650     free(wbuf);
2651     wbuf = nullptr;
2652 
2653     if (!narrow_result) {
2654         return nullptr;
2655     }
2656 
2657     // If size was specified, make sure all the chars will fit.
2658     if (size != 0) {
2659         if (size < static_cast<int>(buf_utf8.length() + 1)) {
2660             errno = ERANGE;
2661             return nullptr;
2662         }
2663     }
2664 
2665     // If buf was not specified, allocate storage.
2666     if (buf == nullptr) {
2667         if (size == 0) {
2668             size = buf_utf8.length() + 1;
2669         }
2670         buf = reinterpret_cast<char*>(malloc(size));
2671         if (buf == nullptr) {
2672             return nullptr;
2673         }
2674     }
2675 
2676     // Destination buffer was allocated with enough space, or we've already
2677     // checked an existing buffer size for enough space.
2678     strcpy(buf, buf_utf8.c_str());
2679 
2680     return buf;
2681 }
2682