1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ueventd.h"
18 
19 #include <ctype.h>
20 #include <fcntl.h>
21 #include <signal.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/wait.h>
26 
27 #include <set>
28 #include <thread>
29 
30 #include <android-base/chrono_utils.h>
31 #include <android-base/logging.h>
32 #include <android-base/properties.h>
33 #include <fstab/fstab.h>
34 #include <selinux/android.h>
35 #include <selinux/selinux.h>
36 
37 #include "devices.h"
38 #include "firmware_handler.h"
39 #include "log.h"
40 #include "selinux.h"
41 #include "uevent_listener.h"
42 #include "ueventd_parser.h"
43 #include "util.h"
44 
45 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
46 // socket.  When ueventd receives such a message it handles it by taking appropriate actions,
47 // which can typically be creating a device node in /dev, setting file permissions, setting selinux
48 // labels, etc.
49 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
50 // and character devices.
51 
52 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing
53 // /sys and writing 'add' to each 'uevent' file that it finds.  This causes the kernel to generate
54 // and resend uevent messages for all of the currently registered devices.  This is done, because
55 // ueventd would not have been running when these devices were registered and therefore was unable
56 // to receive their uevent messages and handle them appropriately.  This process is known as
57 // 'cold boot'.
58 
59 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues
60 // its boot process.  For this reason, cold boot should be as quick as possible.  One way to achieve
61 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
62 // time during cold boot.
63 
64 // Handling of uevent messages has two unique properties:
65 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
66 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
67 //    that no file system operations are done while the uevent process has an abnormal egid or
68 //    fscreatecon or this handling must happen in a separate process.
69 // Given the above two properties, it is best to fork() subprocesses to handle the uevents.  This
70 // reduces the overhead and complexity that would be required in a solution with threads and locks.
71 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so
72 // there is no reason to deal with the complexity of the former.
73 
74 // One other important caveat during the boot process is the handling of SELinux restorecon.
75 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each
76 // device when its uevent is handled, results in multiple restorecon operations being done on a
77 // given file.  It is more efficient to simply do restorecon recursively on /sys during cold boot,
78 // than to do restorecon on each device as its uevent is handled.  This only applies to cold boot;
79 // once that has completed, restorecon is done for each device as its uevent is handled.
80 
81 // With all of the above considered, the cold boot process has the below steps:
82 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
83 //    the generated uevents.  It writes these uevents into a queue represented by a vector.
84 //
85 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
86 //    uevents in the queue based on a starting offset (their process number) and a stride (the total
87 //    number of processes).  Note that no IPC happens at this point and only const functions from
88 //    DeviceHandler should be called from this context.
89 //
90 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
91 //    selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
92 //
93 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
94 //    subprocess handlers to complete and exit.  Once this happens, it marks coldboot as having
95 //    completed.
96 //
97 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
98 
99 // Lastly, it should be noted that uevents that occur during the coldboot process are handled
100 // without issue after the coldboot process completes.  This is because the uevent listener is
101 // paused while the uevent handler and restorecon actions take place.  Once coldboot completes,
102 // the uevent listener resumes in polling mode and will handle the uevents that occurred during
103 // coldboot.
104 
105 namespace android {
106 namespace init {
107 
108 class ColdBoot {
109   public:
110     ColdBoot(UeventListener& uevent_listener, DeviceHandler& device_handler)
111         : uevent_listener_(uevent_listener),
112           device_handler_(device_handler),
113           num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4) {}
114 
115     void Run();
116 
117   private:
118     void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
119     void RegenerateUevents();
120     void ForkSubProcesses();
121     void DoRestoreCon();
122     void WaitForSubProcesses();
123 
124     UeventListener& uevent_listener_;
125     DeviceHandler& device_handler_;
126 
127     unsigned int num_handler_subprocesses_;
128     std::vector<Uevent> uevent_queue_;
129 
130     std::set<pid_t> subprocess_pids_;
131 };
132 
133 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
134     for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
135         auto& uevent = uevent_queue_[i];
136         device_handler_.HandleDeviceEvent(uevent);
137     }
138     _exit(EXIT_SUCCESS);
139 }
140 
141 void ColdBoot::RegenerateUevents() {
142     uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
143         HandleFirmwareEvent(uevent);
144 
145         uevent_queue_.emplace_back(std::move(uevent));
146         return ListenerAction::kContinue;
147     });
148 }
149 
150 void ColdBoot::ForkSubProcesses() {
151     for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
152         auto pid = fork();
153         if (pid < 0) {
154             PLOG(FATAL) << "fork() failed!";
155         }
156 
157         if (pid == 0) {
158             UeventHandlerMain(i, num_handler_subprocesses_);
159         }
160 
161         subprocess_pids_.emplace(pid);
162     }
163 }
164 
165 void ColdBoot::DoRestoreCon() {
166     selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
167     device_handler_.set_skip_restorecon(false);
168 }
169 
170 void ColdBoot::WaitForSubProcesses() {
171     // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
172     // stuck.
173     //
174     // When a subprocess crashes, we fatally abort from ueventd.  init will restart ueventd when
175     // init reaps it, and the cold boot process will start again.  If this continues to fail, then
176     // since ueventd is marked as a critical service, init will reboot to recovery.
177     //
178     // When a subprocess gets stuck, keep ueventd spinning waiting for it.  init has a timeout for
179     // cold boot and will reboot to the bootloader if ueventd does not complete in time.
180     while (!subprocess_pids_.empty()) {
181         int status;
182         pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
183         if (pid == -1) {
184             PLOG(ERROR) << "waitpid() failed";
185             continue;
186         }
187 
188         auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
189         if (it == subprocess_pids_.end()) continue;
190 
191         if (WIFEXITED(status)) {
192             if (WEXITSTATUS(status) == EXIT_SUCCESS) {
193                 subprocess_pids_.erase(it);
194             } else {
195                 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
196             }
197         } else if (WIFSIGNALED(status)) {
198             LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
199         }
200     }
201 }
202 
203 void ColdBoot::Run() {
204     android::base::Timer cold_boot_timer;
205 
206     RegenerateUevents();
207 
208     ForkSubProcesses();
209 
210     DoRestoreCon();
211 
212     WaitForSubProcesses();
213 
214     close(open(COLDBOOT_DONE, O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
215     LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds";
216 }
217 
218 DeviceHandler CreateDeviceHandler() {
219     Parser parser;
220 
221     std::vector<Subsystem> subsystems;
222     parser.AddSectionParser("subsystem", std::make_unique<SubsystemParser>(&subsystems));
223 
224     using namespace std::placeholders;
225     std::vector<SysfsPermissions> sysfs_permissions;
226     std::vector<Permissions> dev_permissions;
227     parser.AddSingleLineParser("/sys/",
228                                std::bind(ParsePermissionsLine, _1, &sysfs_permissions, nullptr));
229     parser.AddSingleLineParser("/dev/",
230                                std::bind(ParsePermissionsLine, _1, nullptr, &dev_permissions));
231 
232     parser.ParseConfig("/ueventd.rc");
233     parser.ParseConfig("/vendor/ueventd.rc");
234     parser.ParseConfig("/odm/ueventd.rc");
235 
236     /*
237      * keep the current product name base configuration so
238      * we remain backwards compatible and allow it to override
239      * everything
240      * TODO: cleanup platform ueventd.rc to remove vendor specific
241      * device node entries (b/34968103)
242      */
243     std::string hardware = android::base::GetProperty("ro.hardware", "");
244     parser.ParseConfig("/ueventd." + hardware + ".rc");
245 
246     auto boot_devices = fs_mgr_get_boot_devices();
247     return DeviceHandler(std::move(dev_permissions), std::move(sysfs_permissions),
248                          std::move(subsystems), std::move(boot_devices), true);
249 }
250 
251 int ueventd_main(int argc, char** argv) {
252     /*
253      * init sets the umask to 077 for forked processes. We need to
254      * create files with exact permissions, without modification by
255      * the umask.
256      */
257     umask(000);
258 
259     InitKernelLogging(argv);
260 
261     LOG(INFO) << "ueventd started!";
262 
263     SelinuxSetupKernelLogging();
264     SelabelInitialize();
265 
266     DeviceHandler device_handler = CreateDeviceHandler();
267     UeventListener uevent_listener;
268 
269     if (access(COLDBOOT_DONE, F_OK) != 0) {
270         ColdBoot cold_boot(uevent_listener, device_handler);
271         cold_boot.Run();
272     }
273 
274     // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now.
275     signal(SIGCHLD, SIG_IGN);
276     // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN
277     // for SIGCHLD above.
278     while (waitpid(-1, nullptr, WNOHANG) > 0) {
279     }
280 
281     uevent_listener.Poll([&device_handler](const Uevent& uevent) {
282         HandleFirmwareEvent(uevent);
283         device_handler.HandleDeviceEvent(uevent);
284         return ListenerAction::kContinue;
285     });
286 
287     return 0;
288 }
289 
290 }  // namespace init
291 }  // namespace android
292