/external/eigen/test/ |
D | diagonal.cpp | 12 template<typename MatrixType> void diagonal(const MatrixType& m) in diagonal() function 26 VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); in diagonal() 27 m2.diagonal() = 2 * m1.diagonal(); in diagonal() 28 m2.diagonal()[0] *= 3; in diagonal() 40 VERIFY(m1.template diagonal<N1>().RowsAtCompileTime == m1.diagonal(N1).size()); in diagonal() 41 VERIFY(m1.template diagonal<N2>().RowsAtCompileTime == m1.diagonal(N2).size()); in diagonal() 44 m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>(); in diagonal() 45 VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1)); in diagonal() 46 m2.template diagonal<N1>()[0] *= 3; in diagonal() 47 …VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>(… in diagonal() [all …]
|
D | diagonalmatrices.cpp | 47 VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal()); in diagonalmatrices() 49 VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal()); in diagonalmatrices() 59 VERIFY_IS_APPROX( ((ldm1 * m1)(i,j)) , ldm1.diagonal()(i) * m1(i,j) ); in diagonalmatrices() 60 VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j)) , ldm1.diagonal()(i) * (m1+m2)(i,j) ); in diagonalmatrices() 61 VERIFY_IS_APPROX( ((m1 * rdm1)(i,j)) , rdm1.diagonal()(j) * m1(i,j) ); in diagonalmatrices() 90 VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1*s1).diagonal(), ldm1.diagonal() * s1); in diagonalmatrices() 91 VERIFY_IS_APPROX(LeftDiagonalMatrix(s1*ldm1).diagonal(), s1 * ldm1.diagonal()); in diagonalmatrices()
|
D | bandmatrix.cpp | 28 m.diagonal().setConstant(123); in bandmatrix() 29 dm1.diagonal().setConstant(123); in bandmatrix() 32 m.diagonal(i).setConstant(static_cast<RealScalar>(i)); in bandmatrix() 33 dm1.diagonal(i).setConstant(static_cast<RealScalar>(i)); in bandmatrix() 37 m.diagonal(-i).setConstant(-static_cast<RealScalar>(i)); in bandmatrix() 38 dm1.diagonal(-i).setConstant(-static_cast<RealScalar>(i)); in bandmatrix()
|
D | eigensolver_selfadjoint.cpp | 149 VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal()); in selfadjointeigensolver() 150 VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>()); in selfadjointeigensolver() 156 VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal()); in selfadjointeigensolver() 157 VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>()); in selfadjointeigensolver() 165 …eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1),… in selfadjointeigensolver()
|
D | triangular.cpp | 130 VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().diagonal(), m1.diagonal()); in triangular_square() 194 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); in triangular_rect() 197 m2.diagonal().array() -= Scalar(1); in triangular_rect() 198 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); in triangular_rect() 204 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); in triangular_rect() 207 m2.diagonal().array() -= Scalar(1); in triangular_rect() 208 VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); in triangular_rect()
|
D | nesting_ops.cpp | 42 VERIFY_IS_APPROX( (m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum() ); in run_nesting_ops_1() 43 …VERIFY_IS_APPROX( (m.transpose() * m).diagonal().array().abs().sum(), (m.transpose() * m).diagonal… in run_nesting_ops_1()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_MatrixDiag.pbtxt | 4 name: "diagonal" 12 Rank `k+1`, with `output.shape = diagonal.shape + [diagonal.shape[-1]]`. 15 summary: "Returns a batched diagonal tensor with a given batched diagonal values." 17 Given a `diagonal`, this operation returns a tensor with the `diagonal` and 18 everything else padded with zeros. The diagonal is computed as follows: 20 Assume `diagonal` has `k` dimensions `[I, J, K, ..., N]`, then the output is a 23 `output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]`. 28 # 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]] 30 and diagonal.shape = (2, 4) 32 tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
|
D | api_def_Diag.pbtxt | 4 name: "diagonal" 9 summary: "Returns a diagonal tensor with a given diagonal values." 11 Given a `diagonal`, this operation returns a tensor with the `diagonal` and 12 everything else padded with zeros. The diagonal is computed as follows: 14 Assume `diagonal` has dimensions [D1,..., Dk], then the output is a tensor of 17 `output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik]` and 0 everywhere else. 22 # 'diagonal' is [1, 2, 3, 4] 23 tf.diag(diagonal) ==> [[1, 0, 0, 0]
|
D | api_def_MatrixDiagPart.pbtxt | 10 name: "diagonal" 12 The extracted diagonal(s) having shape 13 `diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]`. 16 summary: "Returns the batched diagonal part of a batched tensor." 18 This operation returns a tensor with the `diagonal` part 19 of the batched `input`. The `diagonal` part is computed as follows: 24 `diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]`.
|
D | api_def_DiagPart.pbtxt | 10 name: "diagonal" 12 The extracted diagonal. 15 summary: "Returns the diagonal part of the tensor." 17 This operation returns a tensor with the `diagonal` part 18 of the `input`. The `diagonal` part is computed as follows: 23 `diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]`.
|
D | api_def_MatrixSetDiag.pbtxt | 10 name: "diagonal" 21 summary: "Returns a batched matrix tensor with new batched diagonal values." 23 Given `input` and `diagonal`, this operation returns a tensor with the 24 same shape and values as `input`, except for the main diagonal of the 25 innermost matrices. These will be overwritten by the values in `diagonal`. 29 Assume `input` has `k+1` dimensions `[I, J, K, ..., M, N]` and `diagonal` has 33 * `output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n]` for `m == n`.
|
/external/eigen/Eigen/src/Core/ |
D | DiagonalMatrix.h | 49 inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } in diagonal() function 51 inline DiagonalVectorType& diagonal() { return derived().diagonal(); } in diagonal() function 54 inline Index rows() const { return diagonal().size(); } in rows() 56 inline Index cols() const { return diagonal().size(); } in cols() 71 return InverseReturnType(diagonal().cwiseInverse()); in inverse() 78 …t EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType,Scalar,product) >(diagonal() * scalar); 84 …N_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,DiagonalVectorType,product) >(scalar * other.diagonal()); 136 inline const DiagonalVectorType& diagonal() const { return m_diagonal; } 139 inline DiagonalVectorType& diagonal() { return m_diagonal; } 160 inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {} [all …]
|
D | BandMatrix.h | 84 inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal() in diagonal() function 88 inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const in diagonal() function 109 template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal() in diagonal() function 115 template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const in diagonal() function 121 inline Block<CoefficientsType,1,Dynamic> diagonal(Index i) in diagonal() function 128 inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const in diagonal() function 138 dst.diagonal() = diagonal(); in evalTo() 140 dst.diagonal(i) = diagonal(i); in evalTo() 142 dst.diagonal(-i) = diagonal(-i); in evalTo() 320 { return Base::template diagonal<1>(); } [all …]
|
D | Diagonal.h | 188 MatrixBase<Derived>::diagonal() 196 MatrixBase<Derived>::diagonal() const 214 MatrixBase<Derived>::diagonal(Index index) 222 MatrixBase<Derived>::diagonal(Index index) const 241 MatrixBase<Derived>::diagonal() 250 MatrixBase<Derived>::diagonal() const
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | Tridiagonalization.h | 284 DiagonalReturnType diagonal() const; 307 Tridiagonalization<MatrixType>::diagonal() const 310 return m_matrix.diagonal().real(); 318 return m_matrix.template diagonal<-1>().real(); 446 diag = mat.diagonal().real(); 447 subdiag = mat.template diagonal<-1>().real(); 540 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); 541 result.diagonal() = m_matrix.diagonal(); 542 result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
|
/external/eigen/Eigen/src/SVD/ |
D | UpperBidiagonalization.h | 73 return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); in householderU() 79 …olderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>()) in householderV() 94 typename MatrixType::RealScalar *diagonal, 118 .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]); 153 typename MatrixType::RealScalar *diagonal, in upperbidiagonalization_blocked_helper() argument 190 v_k.makeHouseholderInPlace(tau_v, diagonal[k]); in upperbidiagonalization_blocked_helper() 339 &(bidiagonal.template diagonal<0>().coeffRef(k)), 340 &(bidiagonal.template diagonal<1>().coeffRef(k)), 348 … &(bidiagonal.template diagonal<0>().coeffRef(k)), 349 … &(bidiagonal.template diagonal<1>().coeffRef(k)), [all …]
|
/external/eigen/doc/ |
D | QuickReference.dox | 604 view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code 608 Declare a diagonal matrix</td><td>\code 610 diag1.diagonal() = vector;\endcode 612 <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(In… 614 vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal 615 vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal 616 vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal 617 vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal 618 vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal 644 unit or null diagonal (read/write): [all …]
|
D | tutorial.cpp | 15 m3.diagonal().setOnes(); in main() 33 m4.diagonal().block(1,2).setOnes(); in main() 34 std::cout << "*** Step 5 ***\nm4.diagonal():\n" << m4.diagonal() << std::endl; in main() 35 std::cout << "m4.diagonal().start(3)\n" << m4.diagonal().start(3) << std::endl; in main()
|
/external/eigen/Eigen/src/SparseCore/ |
D | SparseAssign.h | 192 Index size = src.diagonal().size(); 197 Map<ArrayXS>(dst.valuePtr(), size) = src.diagonal(); 203 dst.diagonal() = src.diagonal(); 207 { dst.diagonal() += src.diagonal(); } 210 { dst.diagonal() -= src.diagonal(); }
|
/external/tensorflow/tensorflow/core/kernels/ |
D | diag_op.cc | 48 const Tensor& diagonal = context->input(0); in Compute() local 49 const int num_dims = diagonal.dims(); in Compute() 55 out_shape.AddDim(diagonal.dim_size(i)); in Compute() 58 out_shape.AddDim(diagonal.dim_size(i)); in Compute() 65 diagFunc(context, diagonal.NumElements(), diagonal.flat<T>().data(), in Compute()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
D | MatrixUtils.java | 202 public static RealMatrix createRealDiagonalMatrix(final double[] diagonal) { in createRealDiagonalMatrix() argument 203 final RealMatrix m = createRealMatrix(diagonal.length, diagonal.length); in createRealDiagonalMatrix() 204 for (int i = 0; i < diagonal.length; ++i) { in createRealDiagonalMatrix() 205 m.setEntry(i, i, diagonal[i]); in createRealDiagonalMatrix() 220 createFieldDiagonalMatrix(final T[] diagonal) { in createFieldDiagonalMatrix() argument 222 createFieldMatrix(diagonal[0].getField(), diagonal.length, diagonal.length); in createFieldDiagonalMatrix() 223 for (int i = 0; i < diagonal.length; ++i) { in createFieldDiagonalMatrix() 224 m.setEntry(i, i, diagonal[i]); in createFieldDiagonalMatrix()
|
/external/eigen/doc/snippets/ |
D | MatrixBase_diagonal_int.cpp | 4 << m.diagonal(1).transpose() << endl 5 << m.diagonal(-2).transpose() << endl;
|
D | MatrixBase_diagonal_template_int.cpp | 4 << m.diagonal<1>().transpose() << endl 5 << m.diagonal<-2>().transpose() << endl;
|
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
D | qrsolv.h | 32 x = s.diagonal(); in qrsolv() 82 sdiag = s.diagonal(); in qrsolv() 83 s.diagonal() = x; in qrsolv()
|
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
D | LMqrsolv.h | 44 x = s.diagonal(); in lmqrsolv() 94 sdiag = s.diagonal(); in lmqrsolv() 95 s.diagonal() = x; in lmqrsolv() 180 sdiag = R.diagonal(); in lmqrsolv()
|