1 /*******************************************************************************
2 * Copyright 2016-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this software was obtained under the Intel Simplified Software License,
6 * the following terms apply:
7 *
8 * The source code, information and material ("Material") contained herein is
9 * owned by Intel Corporation or its suppliers or licensors, and title to such
10 * Material remains with Intel Corporation or its suppliers or licensors. The
11 * Material contains proprietary information of Intel or its suppliers and
12 * licensors. The Material is protected by worldwide copyright laws and treaty
13 * provisions. No part of the Material may be used, copied, reproduced,
14 * modified, published, uploaded, posted, transmitted, distributed or disclosed
15 * in any way without Intel's prior express written permission. No license under
16 * any patent, copyright or other intellectual property rights in the Material
17 * is granted to or conferred upon you, either expressly, by implication,
18 * inducement, estoppel or otherwise. Any license under such intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 * notice or any other notice embedded in Materials by Intel or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this software was obtained under the Apache License, Version 2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may not use this file except in compliance with the License. You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless required by applicable law or agreed to in writing, software
34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the License for the specific language governing permissions and
38 * limitations under the License.
39 *******************************************************************************/
40
41 /*
42 // Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 // GF(p^d) methods, if binomial generator
44 //
45 */
46 #include "owncp.h"
47
48 #include "pcpgfpxmethod_binom_mulc.h"
49 #include "pcpgfpxmethod_com.h"
50
51 //tbcd: temporary excluded: #include <assert.h>
52
53 /*
54 // Multiplication in GF(p^2), if field polynomial: g(x) = x^2 + beta => binominal
55 */
cpGFpxMul_p2_binom(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFEx)56 static BNU_CHUNK_T* cpGFpxMul_p2_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx)
57 {
58 gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
59 int groundElemLen = GFP_FELEN(pGroundGFE);
60
61 mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
62 mod_add addF = GFP_METHOD(pGroundGFE)->add;
63 mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
64
65 const BNU_CHUNK_T* pA0 = pA;
66 const BNU_CHUNK_T* pA1 = pA+groundElemLen;
67
68 const BNU_CHUNK_T* pB0 = pB;
69 const BNU_CHUNK_T* pB1 = pB+groundElemLen;
70
71 BNU_CHUNK_T* pR0 = pR;
72 BNU_CHUNK_T* pR1 = pR+groundElemLen;
73
74 BNU_CHUNK_T* t0 = cpGFpGetPool(4, pGroundGFE);
75 BNU_CHUNK_T* t1 = t0+groundElemLen;
76 BNU_CHUNK_T* t2 = t1+groundElemLen;
77 BNU_CHUNK_T* t3 = t2+groundElemLen;
78 //tbcd: temporary excluded: assert(NULL!=t0);
79
80 #if defined GS_DBG
81 BNU_CHUNK_T* arg0 = cpGFpGetPool(1, pGroundGFE);
82 BNU_CHUNK_T* arg1 = cpGFpGetPool(1, pGroundGFE);
83 #endif
84 #if defined GS_DBG
85 cpGFpxGet(arg0, groundElemLen, pA0, pGroundGFE);
86 cpGFpxGet(arg1, groundElemLen, pB0, pGroundGFE);
87 #endif
88
89 mulF(t0, pA0, pB0, pGroundGFE); /* t0 = a[0]*b[0] */
90
91 #if defined GS_DBG
92 cpGFpxGet(arg0, groundElemLen, pA1, pGroundGFE);
93 cpGFpxGet(arg1, groundElemLen, pB1, pGroundGFE);
94 #endif
95
96 mulF(t1, pA1, pB1, pGroundGFE); /* t1 = a[1]*b[1] */
97 addF(t2, pA0, pA1, pGroundGFE); /* t2 = a[0]+a[1] */
98 addF(t3, pB0, pB1, pGroundGFE); /* t3 = b[0]+b[1] */
99
100 #if defined GS_DBG
101 cpGFpxGet(arg0, groundElemLen, t2, pGroundGFE);
102 cpGFpxGet(arg1, groundElemLen, t3, pGroundGFE);
103 #endif
104
105 mulF(pR1, t2, t3, pGroundGFE); /* r[1] = (a[0]+a[1]) * (b[0]+b[1]) */
106 subF(pR1, pR1, t0, pGroundGFE); /* r[1] -= a[0]*b[0]) + a[1]*b[1] */
107 subF(pR1, pR1, t1, pGroundGFE);
108
109 cpGFpxMul_G0(t1, t1, pGFEx);
110 subF(pR0, t0, t1, pGroundGFE);
111
112 #if defined GS_DBG
113 cpGFpReleasePool(2, pGroundGFE);
114 #endif
115
116 cpGFpReleasePool(4, pGroundGFE);
117 return pR;
118 }
119
120 /*
121 // Squaring in GF(p^2), if field polynomial: g(x) = x^2 + beta => binominal
122 */
cpGFpxSqr_p2_binom(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFEx)123 static BNU_CHUNK_T* cpGFpxSqr_p2_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx)
124 {
125 gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
126 int groundElemLen = GFP_FELEN(pGroundGFE);
127
128 mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
129 mod_sqr sqrF = GFP_METHOD(pGroundGFE)->sqr;
130 mod_add addF = GFP_METHOD(pGroundGFE)->add;
131 mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
132
133 const BNU_CHUNK_T* pA0 = pA;
134 const BNU_CHUNK_T* pA1 = pA+groundElemLen;
135
136 BNU_CHUNK_T* pR0 = pR;
137 BNU_CHUNK_T* pR1 = pR+groundElemLen;
138
139 BNU_CHUNK_T* t0 = cpGFpGetPool(3, pGroundGFE);
140 BNU_CHUNK_T* t1 = t0+groundElemLen;
141 BNU_CHUNK_T* u0 = t1+groundElemLen;
142 //tbcd: temporary excluded: assert(NULL!=t0);
143
144 #if defined GS_DBG
145 BNU_CHUNK_T* arg0 = cpGFpGetPool(1, pGroundGFE);
146 BNU_CHUNK_T* arg1 = cpGFpGetPool(1, pGroundGFE);
147 #endif
148 #if defined GS_DBG
149 cpGFpxGet(arg0, groundElemLen, pA0, pGroundGFE);
150 cpGFpxGet(arg1, groundElemLen, pA1, pGroundGFE);
151 #endif
152
153 mulF(u0, pA0, pA1, pGroundGFE); /* u0 = a[0]*a[1] */
154 sqrF(t0, pA0, pGroundGFE); /* t0 = a[0]*a[0] */
155 sqrF(t1, pA1, pGroundGFE); /* t1 = a[1]*a[1] */
156 cpGFpxMul_G0(t1, t1, pGFEx);
157 subF(pR0, t0, t1, pGroundGFE);
158 addF(pR1, u0, u0, pGroundGFE); /* r[1] = 2*a[0]*a[1] */
159
160 #if defined GS_DBG
161 cpGFpReleasePool(2, pGroundGFE);
162 #endif
163
164 cpGFpReleasePool(3, pGroundGFE);
165 return pR;
166 }
167
168 /*
169 // return specific polynomi alarith methods
170 // polynomial - deg 2 binomial
171 */
gsPolyArith_binom2(void)172 static gsModMethod* gsPolyArith_binom2(void)
173 {
174 static gsModMethod m = {
175 cpGFpxEncode_com,
176 cpGFpxDecode_com,
177 cpGFpxMul_p2_binom,
178 cpGFpxSqr_p2_binom,
179 NULL,
180 cpGFpxAdd_com,
181 cpGFpxSub_com,
182 cpGFpxNeg_com,
183 cpGFpxDiv2_com,
184 cpGFpxMul2_com,
185 cpGFpxMul3_com,
186 //cpGFpxInv
187 };
188 return &m;
189 }
190
191 /*F*
192 // Name: ippsGFpxMethod_binom2
193 //
194 // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd).
195 //
196 // Returns: pointer to a structure containing
197 // an implementation of arithmetic operations over GF(pd)
198 // g(x) = x^2 - a0, a0 from GF(p)
199 //
200 //
201 *F*/
202
203 IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom2, (void) )
204 {
205 static IppsGFpMethod method = {
206 cpID_Binom,
207 2,
208 NULL,
209 NULL
210 };
211 method.arith = gsPolyArith_binom2();
212 return &method;
213 }
214