1// Copyright 2019 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert ELEMENTS_TILE % 8 == 0 7$assert ELEMENTS_TILE >= 8 8$SIMD_TILE = ELEMENTS_TILE // 8 9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 10#include <assert.h> 11 12#include <immintrin.h> 13 14#include <xnnpack/common.h> 15#include <xnnpack/vscaleexpminusmax.h> 16 17 18static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; 19 20void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x${ELEMENTS_TILE}( 21 size_t elements, 22 const float* input, 23 float* output, 24 float scale, 25 float max) 26{ 27 assert(elements % sizeof(float) == 0); 28 29 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); 30 // The smallest x for which expf(x) is normalized. 31 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); 32 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); 33 const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); 34 const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); 35 36 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); 37 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); 38 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); 39 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); 40 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); 41 42 const __m256 vscale = _mm256_set1_ps(scale); 43 const __m256 vi_max = _mm256_set1_ps(max); 44 45 for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { 46 // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time. 47 const __m256 vi0 = _mm256_loadu_ps(input); 48 $for N in range(1, SIMD_TILE): 49 const __m256 vi${N} = _mm256_loadu_ps(input + ${N * 8}); 50 input += ${ELEMENTS_TILE}; 51 52 // Subtract maximum input x := i - i_max. This implies x <= 0. 53 $for N in range(SIMD_TILE): 54 const __m256 vx${N} = _mm256_sub_ps(vi${N}, vi_max); 55 56 // Compute reduced argument elements := round(x / log(2)). 57 $for N in range(SIMD_TILE): 58 __m256 vn${N} = _mm256_fmadd_ps(vx${N}, vlog2e, vmagic_bias); 59 60 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. 61 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. 62 $for N in range(SIMD_TILE): 63 const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23)); 64 65 // Subtract the large number back to get final elements := round(x / log(2)). 66 $for N in range(SIMD_TILE): 67 vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias); 68 69 // Compute reduced argument t := x - elements * log(2). 70 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. 71 $for N in range(SIMD_TILE): 72 __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); 73 74 $for N in range(SIMD_TILE): 75 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); 76 77 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. 78 $for N in range(SIMD_TILE): 79 __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4); 80 81 $for N in range(SIMD_TILE): 82 vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3); 83 84 $for N in range(SIMD_TILE): 85 vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); 86 87 $for N in range(SIMD_TILE): 88 vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); 89 90 // Reconstruct the final f value: 91 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) 92 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) 93 // = s + (t * s) * p 94 $for N in range(SIMD_TILE): 95 vt${N} = _mm256_mul_ps(vt${N}, vs${N}); 96 97 $for N in range(SIMD_TILE): 98 __m256 vf${N} = _mm256_fmadd_ps(vt${N}, vp${N}, vs${N}); 99 100 // For inputs below zero cutoff, replace output with +0.0f. 101 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. 102 $for N in range(SIMD_TILE): 103 vf${N} = _mm256_andnot_ps(_mm256_cmp_ps(vx${N}, vdenorm_cutoff, _CMP_LT_OS), vf${N}); 104 105 // Multiply by scale. 106 $for N in range(SIMD_TILE): 107 vf${N} = _mm256_mul_ps(vf${N}, vscale); 108 109 // Store ${ELEMENTS_TILE} (${SIMD_TILE}x8) outputs at a time. 110 _mm256_storeu_ps(output, vf0); 111 $for N in range(1, SIMD_TILE): 112 _mm256_storeu_ps(output + ${N * 8}, vf${N}); 113 output += ${ELEMENTS_TILE}; 114 } 115 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) { 116 // Load 8 inputs at a time. 117 const __m256 vi = _mm256_loadu_ps(input); 118 input += 8; 119 120 // Subtract maximum input x := i - i_max. This implies x <= 0. 121 const __m256 vx = _mm256_sub_ps(vi, vi_max); 122 123 // Compute reduced argument elements := round(x / log(2)). 124 __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); 125 126 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. 127 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. 128 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); 129 130 // Subtract the large number back to get final elements := round(x / log(2)). 131 vn = _mm256_sub_ps(vn, vmagic_bias); 132 133 // Compute reduced argument t := x - elements * log(2). 134 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. 135 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); 136 vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); 137 138 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. 139 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); 140 vp = _mm256_fmadd_ps(vp, vt, vc3); 141 vp = _mm256_fmadd_ps(vp, vt, vc2); 142 vp = _mm256_fmadd_ps(vp, vt, vc1); 143 144 // Reconstruct the final f value: 145 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) 146 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) 147 // = s + (t * s) * p 148 vt = _mm256_mul_ps(vt, vs); 149 __m256 vf = _mm256_fmadd_ps(vt, vp, vs); 150 151 // For inputs below zero cutoff, replace output with +0.0f. 152 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. 153 vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); 154 155 // Multiply by scale. 156 vf = _mm256_mul_ps(vf, vscale); 157 158 // Store 64 (8x8) outputs at a time. 159 _mm256_storeu_ps(output, vf); 160 output += 8; 161 } 162 if (elements != 0) { 163 assert(elements >= 1 * sizeof(float)); 164 assert(elements <= 7 * sizeof(float)); 165 const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements)); 166 167 // Load up to 7 inputs at a time. 168 const __m256 vi = _mm256_maskload_ps(input, vmask); 169 170 // Subtract maximum input x := i - i_max. This implies x <= 0. 171 const __m256 vx = _mm256_sub_ps(vi, vi_max); 172 173 // Compute reduced argument elements := round(x / log(2)). 174 __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); 175 176 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. 177 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. 178 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); 179 180 // Subtract the large number back to get final elements := round(x / log(2)). 181 vn = _mm256_sub_ps(vn, vmagic_bias); 182 183 // Compute reduced argument t := x - elements * log(2). 184 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. 185 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); 186 vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); 187 188 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. 189 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); 190 vp = _mm256_fmadd_ps(vp, vt, vc3); 191 vp = _mm256_fmadd_ps(vp, vt, vc2); 192 vp = _mm256_fmadd_ps(vp, vt, vc1); 193 194 // Reconstruct the final f value: 195 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) 196 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) 197 // = s + (t * s) * p 198 vt = _mm256_mul_ps(vt, vs); 199 __m256 vf = _mm256_fmadd_ps(vt, vp, vs); 200 201 // For inputs below zero cutoff, replace output with +0.0f. 202 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. 203 vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); 204 205 // Multiply by scale. 206 vf = _mm256_mul_ps(vf, vscale); 207 208 // Store up to 7 outputs at a time. 209 _mm256_maskstore_ps(output, vmask, vf); 210 } 211} 212