1// polynomial for approximating log2(1+x) 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 7deg = 7; // poly degree 8// interval ~= 1/(2*N), where N is the table entries 9a= -0x1.f45p-8; 10b= 0x1.f45p-8; 11 12ln2 = evaluate(log(2),0); 13invln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits 14invln2lo = double(1/ln2 - invln2hi); 15 16// find log2(1+x) polynomial with minimal absolute error 17f = log(1+x)/ln2; 18 19// return p that minimizes |f(x) - poly(x) - x^d*p(x)| 20approx = proc(poly,d) { 21 return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); 22}; 23 24// first coeff is fixed, iteratively find optimal double prec coeffs 25poly = x*(invln2lo + invln2hi); 26for i from 2 to deg do { 27 p = roundcoefficients(approx(poly,i), [|D ...|]); 28 poly = poly + x^i*coeff(p,0); 29}; 30 31display = hexadecimal; 32print("invln2hi:", invln2hi); 33print("invln2lo:", invln2lo); 34print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30)); 35//// relative error computation fails if f(0)==0 36//// g = f(x)/x = log2(1+x)/x; using taylor series 37//g = 0; 38//for i from 0 to 60 do { g = g + (-x)^i/(i+1)/ln2; }; 39//print("rel error:", accurateinfnorm(1-(poly(x)/x)/g(x), [a;b], 30)); 40print("in [",a,b,"]"); 41print("coeffs:"); 42for i from 0 to deg do coeff(poly,i); 43