1; RUN: opt %loadPolly -polly-codegen \
2; RUN:     -S < %s | FileCheck %s
3
4define void @foo(float* %A, i1 %cond0, i1 %cond1) {
5entry:
6  br label %loop
7
8loop:
9  %indvar = phi i64 [0, %entry], [%indvar.next, %backedge]
10  %val0 = fadd float 1.0, 2.0
11  %val1 = fadd float 1.0, 2.0
12  br i1 %cond0, label %branch1, label %backedge
13
14; CHECK-LABEL: polly.stmt.loop:
15; CHECK-NEXT:    %p_val0 = fadd float 1.000000e+00, 2.000000e+00
16; CHECK-NEXT:    %p_val1 = fadd float 1.000000e+00, 2.000000e+00
17; CHECK-NEXT:    br i1
18
19; The interesting instruction here is %val2, which does not dominate the exit of
20; the non-affine region. Care needs to be taken when code-generating this write.
21; Specifically, at some point we modeled this scalar write, which we tried to
22; code generate in the exit block of the non-affine region.
23branch1:
24  %val2 = fadd float 1.0, 2.0
25  br i1 %cond1, label %branch2, label %backedge
26
27; CHECK-LABEL: polly.stmt.branch1:
28; CHECK-NEXT:    %p_val2 = fadd float 1.000000e+00, 2.000000e+00
29; CHECK-NEXT:    br i1
30
31branch2:
32  br label %backedge
33
34; CHECK-LABEL: polly.stmt.branch2:
35; CHECK-NEXT:    br label
36
37; CHECK-LABEL: polly.stmt.backedge.exit:
38; CHECK:         %polly.merge = phi float [ %p_val0, %polly.stmt.loop ], [ %p_val1, %polly.stmt.branch1 ], [ %p_val2, %polly.stmt.branch2 ]
39
40backedge:
41  %merge = phi float [%val0, %loop], [%val1, %branch1], [%val2, %branch2]
42  %indvar.next = add i64 %indvar, 1
43  store float %merge, float* %A
44  %cmp = icmp sle i64 %indvar.next, 100
45  br i1 %cmp, label %loop, label %exit
46
47exit:
48  ret void
49}
50