1; RUN: opt %loadPolly -polly-codegen \ 2; RUN: -S < %s | FileCheck %s 3 4define void @foo(float* %A, i1 %cond0, i1 %cond1) { 5entry: 6 br label %loop 7 8loop: 9 %indvar = phi i64 [0, %entry], [%indvar.next, %backedge] 10 %val0 = fadd float 1.0, 2.0 11 %val1 = fadd float 1.0, 2.0 12 br i1 %cond0, label %branch1, label %backedge 13 14; CHECK-LABEL: polly.stmt.loop: 15; CHECK-NEXT: %p_val0 = fadd float 1.000000e+00, 2.000000e+00 16; CHECK-NEXT: %p_val1 = fadd float 1.000000e+00, 2.000000e+00 17; CHECK-NEXT: br i1 18 19; The interesting instruction here is %val2, which does not dominate the exit of 20; the non-affine region. Care needs to be taken when code-generating this write. 21; Specifically, at some point we modeled this scalar write, which we tried to 22; code generate in the exit block of the non-affine region. 23branch1: 24 %val2 = fadd float 1.0, 2.0 25 br i1 %cond1, label %branch2, label %backedge 26 27; CHECK-LABEL: polly.stmt.branch1: 28; CHECK-NEXT: %p_val2 = fadd float 1.000000e+00, 2.000000e+00 29; CHECK-NEXT: br i1 30 31branch2: 32 br label %backedge 33 34; CHECK-LABEL: polly.stmt.branch2: 35; CHECK-NEXT: br label 36 37; CHECK-LABEL: polly.stmt.backedge.exit: 38; CHECK: %polly.merge = phi float [ %p_val0, %polly.stmt.loop ], [ %p_val1, %polly.stmt.branch1 ], [ %p_val2, %polly.stmt.branch2 ] 39 40backedge: 41 %merge = phi float [%val0, %loop], [%val1, %branch1], [%val2, %branch2] 42 %indvar.next = add i64 %indvar, 1 43 store float %merge, float* %A 44 %cmp = icmp sle i64 %indvar.next, 100 45 br i1 %cmp, label %loop, label %exit 46 47exit: 48 ret void 49} 50