1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.hardware;
18 
19 import java.util.Calendar;
20 import java.util.TimeZone;
21 
22 /**
23  * Estimates magnetic field at a given point on
24  * Earth, and in particular, to compute the magnetic declination from true
25  * north.
26  *
27  * <p>This uses the World Magnetic Model produced by the United States National
28  * Geospatial-Intelligence Agency.  More details about the model can be found at
29  * <a href="http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml">http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml</a>.
30  * This class currently uses WMM-2020 which is valid until 2025, but should
31  * produce acceptable results for several years after that. Future versions of
32  * Android may use a newer version of the model.
33  */
34 public class GeomagneticField {
35     // The magnetic field at a given point, in nanoteslas in geodetic
36     // coordinates.
37     private float mX;
38     private float mY;
39     private float mZ;
40 
41     // Geocentric coordinates -- set by computeGeocentricCoordinates.
42     private float mGcLatitudeRad;
43     private float mGcLongitudeRad;
44     private float mGcRadiusKm;
45 
46     // Constants from WGS84 (the coordinate system used by GPS)
47     static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f;
48     static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f;
49     static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f;
50 
51     // These coefficients and the formulae used below are from:
52     // NOAA Technical Report: The US/UK World Magnetic Model for 2020-2025
53     static private final float[][] G_COEFF = new float[][]{
54             {0.0f},
55             {-29404.5f, -1450.7f},
56             {-2500.0f, 2982.0f, 1676.8f},
57             {1363.9f, -2381.0f, 1236.2f, 525.7f},
58             {903.1f, 809.4f, 86.2f, -309.4f, 47.9f},
59             {-234.4f, 363.1f, 187.8f, -140.7f, -151.2f, 13.7f},
60             {65.9f, 65.6f, 73.0f, -121.5f, -36.2f, 13.5f, -64.7f},
61             {80.6f, -76.8f, -8.3f, 56.5f, 15.8f, 6.4f, -7.2f, 9.8f},
62             {23.6f, 9.8f, -17.5f, -0.4f, -21.1f, 15.3f, 13.7f, -16.5f, -0.3f},
63             {5.0f, 8.2f, 2.9f, -1.4f, -1.1f, -13.3f, 1.1f, 8.9f, -9.3f, -11.9f},
64             {-1.9f, -6.2f, -0.1f, 1.7f, -0.9f, 0.6f, -0.9f, 1.9f, 1.4f, -2.4f, -3.9f},
65             {3.0f, -1.4f, -2.5f, 2.4f, -0.9f, 0.3f, -0.7f, -0.1f, 1.4f, -0.6f, 0.2f, 3.1f},
66             {-2.0f, -0.1f, 0.5f, 1.3f, -1.2f, 0.7f, 0.3f, 0.5f, -0.2f, -0.5f, 0.1f, -1.1f, -0.3f}};
67 
68     static private final float[][] H_COEFF = new float[][]{
69             {0.0f},
70             {0.0f, 4652.9f},
71             {0.0f, -2991.6f, -734.8f},
72             {0.0f, -82.2f, 241.8f, -542.9f},
73             {0.0f, 282.0f, -158.4f, 199.8f, -350.1f},
74             {0.0f, 47.7f, 208.4f, -121.3f, 32.2f, 99.1f},
75             {0.0f, -19.1f, 25.0f, 52.7f, -64.4f, 9.0f, 68.1f},
76             {0.0f, -51.4f, -16.8f, 2.3f, 23.5f, -2.2f, -27.2f, -1.9f},
77             {0.0f, 8.4f, -15.3f, 12.8f, -11.8f, 14.9f, 3.6f, -6.9f, 2.8f},
78             {0.0f, -23.3f, 11.1f, 9.8f, -5.1f, -6.2f, 7.8f, 0.4f, -1.5f, 9.7f},
79             {0.0f, 3.4f, -0.2f, 3.5f, 4.8f, -8.6f, -0.1f, -4.2f, -3.4f, -0.1f, -8.8f},
80             {0.0f, 0.0f, 2.6f, -0.5f, -0.4f, 0.6f, -0.2f, -1.7f, -1.6f, -3.0f, -2.0f, -2.6f},
81             {0.0f, -1.2f, 0.5f, 1.3f, -1.8f, 0.1f, 0.7f, -0.1f, 0.6f, 0.2f, -0.9f, 0.0f, 0.5f}};
82 
83     static private final float[][] DELTA_G = new float[][]{
84             {0.0f},
85             {6.7f, 7.7f},
86             {-11.5f, -7.1f, -2.2f},
87             {2.8f, -6.2f, 3.4f, -12.2f},
88             {-1.1f, -1.6f, -6.0f, 5.4f, -5.5f},
89             {-0.3f, 0.6f, -0.7f, 0.1f, 1.2f, 1.0f},
90             {-0.6f, -0.4f, 0.5f, 1.4f, -1.4f, 0.0f, 0.8f},
91             {-0.1f, -0.3f, -0.1f, 0.7f, 0.2f, -0.5f, -0.8f, 1.0f},
92             {-0.1f, 0.1f, -0.1f, 0.5f, -0.1f, 0.4f, 0.5f, 0.0f, 0.4f},
93             {-0.1f, -0.2f, 0.0f, 0.4f, -0.3f, 0.0f, 0.3f, 0.0f, 0.0f, -0.4f},
94             {0.0f, 0.0f, 0.0f, 0.2f, -0.1f, -0.2f, 0.0f, -0.1f, -0.2f, -0.1f, 0.0f},
95             {0.0f, -0.1f, 0.0f, 0.0f, 0.0f, -0.1f, 0.0f, 0.0f, -0.1f, -0.1f, -0.1f, -0.1f},
96             {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f}};
97 
98     static private final float[][] DELTA_H = new float[][]{
99             {0.0f},
100             {0.0f, -25.1f},
101             {0.0f, -30.2f, -23.9f},
102             {0.0f, 5.7f, -1.0f, 1.1f},
103             {0.0f, 0.2f, 6.9f, 3.7f, -5.6f},
104             {0.0f, 0.1f, 2.5f, -0.9f, 3.0f, 0.5f},
105             {0.0f, 0.1f, -1.8f, -1.4f, 0.9f, 0.1f, 1.0f},
106             {0.0f, 0.5f, 0.6f, -0.7f, -0.2f, -1.2f, 0.2f, 0.3f},
107             {0.0f, -0.3f, 0.7f, -0.2f, 0.5f, -0.3f, -0.5f, 0.4f, 0.1f},
108             {0.0f, -0.3f, 0.2f, -0.4f, 0.4f, 0.1f, 0.0f, -0.2f, 0.5f, 0.2f},
109             {0.0f, 0.0f, 0.1f, -0.3f, 0.1f, -0.2f, 0.1f, 0.0f, -0.1f, 0.2f, 0.0f},
110             {0.0f, 0.0f, 0.1f, 0.0f, 0.2f, 0.0f, 0.0f, 0.1f, 0.0f, -0.1f, 0.0f, 0.0f},
111             {0.0f, 0.0f, 0.0f, -0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, -0.1f}};
112 
113     static private final long BASE_TIME = new Calendar.Builder()
114             .setTimeZone(TimeZone.getTimeZone("UTC"))
115             .setDate(2020, Calendar.JANUARY, 1)
116             .build()
117             .getTimeInMillis();
118 
119     // The ratio between the Gauss-normalized associated Legendre functions and
120     // the Schmid quasi-normalized ones. Compute these once staticly since they
121     // don't depend on input variables at all.
122     static private final float[][] SCHMIDT_QUASI_NORM_FACTORS =
123         computeSchmidtQuasiNormFactors(G_COEFF.length);
124 
125     /**
126      * Estimate the magnetic field at a given point and time.
127      *
128      * @param gdLatitudeDeg
129      *            Latitude in WGS84 geodetic coordinates -- positive is east.
130      * @param gdLongitudeDeg
131      *            Longitude in WGS84 geodetic coordinates -- positive is north.
132      * @param altitudeMeters
133      *            Altitude in WGS84 geodetic coordinates, in meters.
134      * @param timeMillis
135      *            Time at which to evaluate the declination, in milliseconds
136      *            since January 1, 1970. (approximate is fine -- the declination
137      *            changes very slowly).
138      */
GeomagneticField(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters, long timeMillis)139     public GeomagneticField(float gdLatitudeDeg,
140                             float gdLongitudeDeg,
141                             float altitudeMeters,
142                             long timeMillis) {
143         final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients.
144 
145         // We don't handle the north and south poles correctly -- pretend that
146         // we're not quite at them to avoid crashing.
147         gdLatitudeDeg = Math.min(90.0f - 1e-5f,
148                                  Math.max(-90.0f + 1e-5f, gdLatitudeDeg));
149         computeGeocentricCoordinates(gdLatitudeDeg,
150                                      gdLongitudeDeg,
151                                      altitudeMeters);
152 
153         assert G_COEFF.length == H_COEFF.length;
154 
155         // Note: LegendreTable computes associated Legendre functions for
156         // cos(theta).  We want the associated Legendre functions for
157         // sin(latitude), which is the same as cos(PI/2 - latitude), except the
158         // derivate will be negated.
159         LegendreTable legendre =
160             new LegendreTable(MAX_N - 1,
161                               (float) (Math.PI / 2.0 - mGcLatitudeRad));
162 
163         // Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in
164         // 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times).
165         float[] relativeRadiusPower = new float[MAX_N + 2];
166         relativeRadiusPower[0] = 1.0f;
167         relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm;
168         for (int i = 2; i < relativeRadiusPower.length; ++i) {
169             relativeRadiusPower[i] = relativeRadiusPower[i - 1] *
170                 relativeRadiusPower[1];
171         }
172 
173         // Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N --
174         // this is much faster than calling Math.sin and Math.com MAX_N+1 times.
175         float[] sinMLon = new float[MAX_N];
176         float[] cosMLon = new float[MAX_N];
177         sinMLon[0] = 0.0f;
178         cosMLon[0] = 1.0f;
179         sinMLon[1] = (float) Math.sin(mGcLongitudeRad);
180         cosMLon[1] = (float) Math.cos(mGcLongitudeRad);
181 
182         for (int m = 2; m < MAX_N; ++m) {
183             // Standard expansions for sin((m-x)*theta + x*theta) and
184             // cos((m-x)*theta + x*theta).
185             int x = m >> 1;
186             sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x];
187             cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x];
188         }
189 
190         float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad);
191         float yearsSinceBase =
192             (timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f);
193 
194         // We now compute the magnetic field strength given the geocentric
195         // location. The magnetic field is the derivative of the potential
196         // function defined by the model. See NOAA Technical Report: The US/UK
197         // World Magnetic Model for 2020-2025 for the derivation.
198         float gcX = 0.0f;  // Geocentric northwards component.
199         float gcY = 0.0f;  // Geocentric eastwards component.
200         float gcZ = 0.0f;  // Geocentric downwards component.
201 
202         for (int n = 1; n < MAX_N; n++) {
203             for (int m = 0; m <= n; m++) {
204                 // Adjust the coefficients for the current date.
205                 float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m];
206                 float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m];
207 
208                 // Negative derivative with respect to latitude, divided by
209                 // radius.  This looks like the negation of the version in the
210                 // NOAA Technical report because that report used
211                 // P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the
212                 // derivative with respect to theta is negated.
213                 gcX += relativeRadiusPower[n+2]
214                     * (g * cosMLon[m] + h * sinMLon[m])
215                     * legendre.mPDeriv[n][m]
216                     * SCHMIDT_QUASI_NORM_FACTORS[n][m];
217 
218                 // Negative derivative with respect to longitude, divided by
219                 // radius.
220                 gcY += relativeRadiusPower[n+2] * m
221                     * (g * sinMLon[m] - h * cosMLon[m])
222                     * legendre.mP[n][m]
223                     * SCHMIDT_QUASI_NORM_FACTORS[n][m]
224                     * inverseCosLatitude;
225 
226                 // Negative derivative with respect to radius.
227                 gcZ -= (n + 1) * relativeRadiusPower[n+2]
228                     * (g * cosMLon[m] + h * sinMLon[m])
229                     * legendre.mP[n][m]
230                     * SCHMIDT_QUASI_NORM_FACTORS[n][m];
231             }
232         }
233 
234         // Convert back to geodetic coordinates.  This is basically just a
235         // rotation around the Y-axis by the difference in latitudes between the
236         // geocentric frame and the geodetic frame.
237         double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad;
238         mX = (float) (gcX * Math.cos(latDiffRad)
239                       + gcZ * Math.sin(latDiffRad));
240         mY = gcY;
241         mZ = (float) (- gcX * Math.sin(latDiffRad)
242                       + gcZ * Math.cos(latDiffRad));
243     }
244 
245     /**
246      * @return The X (northward) component of the magnetic field in nanoteslas.
247      */
getX()248     public float getX() {
249         return mX;
250     }
251 
252     /**
253      * @return The Y (eastward) component of the magnetic field in nanoteslas.
254      */
getY()255     public float getY() {
256         return mY;
257     }
258 
259     /**
260      * @return The Z (downward) component of the magnetic field in nanoteslas.
261      */
getZ()262     public float getZ() {
263         return mZ;
264     }
265 
266     /**
267      * @return The declination of the horizontal component of the magnetic
268      *         field from true north, in degrees (i.e. positive means the
269      *         magnetic field is rotated east that much from true north).
270      */
getDeclination()271     public float getDeclination() {
272         return (float) Math.toDegrees(Math.atan2(mY, mX));
273     }
274 
275     /**
276      * @return The inclination of the magnetic field in degrees -- positive
277      *         means the magnetic field is rotated downwards.
278      */
getInclination()279     public float getInclination() {
280         return (float) Math.toDegrees(Math.atan2(mZ,
281                                                  getHorizontalStrength()));
282     }
283 
284     /**
285      * @return  Horizontal component of the field strength in nanoteslas.
286      */
getHorizontalStrength()287     public float getHorizontalStrength() {
288         return (float) Math.hypot(mX, mY);
289     }
290 
291     /**
292      * @return  Total field strength in nanoteslas.
293      */
getFieldStrength()294     public float getFieldStrength() {
295         return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ);
296     }
297 
298     /**
299      * @param gdLatitudeDeg
300      *            Latitude in WGS84 geodetic coordinates.
301      * @param gdLongitudeDeg
302      *            Longitude in WGS84 geodetic coordinates.
303      * @param altitudeMeters
304      *            Altitude above sea level in WGS84 geodetic coordinates.
305      * @return Geocentric latitude (i.e. angle between closest point on the
306      *         equator and this point, at the center of the earth.
307      */
computeGeocentricCoordinates(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters)308     private void computeGeocentricCoordinates(float gdLatitudeDeg,
309                                               float gdLongitudeDeg,
310                                               float altitudeMeters) {
311         float altitudeKm = altitudeMeters / 1000.0f;
312         float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM;
313         float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM;
314         double gdLatRad = Math.toRadians(gdLatitudeDeg);
315         float clat = (float) Math.cos(gdLatRad);
316         float slat = (float) Math.sin(gdLatRad);
317         float tlat = slat / clat;
318         float latRad =
319             (float) Math.sqrt(a2 * clat * clat + b2 * slat * slat);
320 
321         mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2)
322                                            / (latRad * altitudeKm + a2));
323 
324         mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg);
325 
326         float radSq = altitudeKm * altitudeKm
327             + 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat +
328                                                  b2 * slat * slat)
329             + (a2 * a2 * clat * clat + b2 * b2 * slat * slat)
330             / (a2 * clat * clat + b2 * slat * slat);
331         mGcRadiusKm = (float) Math.sqrt(radSq);
332     }
333 
334 
335     /**
336      * Utility class to compute a table of Gauss-normalized associated Legendre
337      * functions P_n^m(cos(theta))
338      */
339     static private class LegendreTable {
340         // These are the Gauss-normalized associated Legendre functions -- that
341         // is, they are normal Legendre functions multiplied by
342         // (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1)
343         public final float[][] mP;
344 
345         // Derivative of mP, with respect to theta.
346         public final float[][] mPDeriv;
347 
348         /**
349          * @param maxN
350          *            The maximum n- and m-values to support
351          * @param thetaRad
352          *            Returned functions will be Gauss-normalized
353          *            P_n^m(cos(thetaRad)), with thetaRad in radians.
354          */
LegendreTable(int maxN, float thetaRad)355         public LegendreTable(int maxN, float thetaRad) {
356             // Compute the table of Gauss-normalized associated Legendre
357             // functions using standard recursion relations. Also compute the
358             // table of derivatives using the derivative of the recursion
359             // relations.
360             float cos = (float) Math.cos(thetaRad);
361             float sin = (float) Math.sin(thetaRad);
362 
363             mP = new float[maxN + 1][];
364             mPDeriv = new float[maxN + 1][];
365             mP[0] = new float[] { 1.0f };
366             mPDeriv[0] = new float[] { 0.0f };
367             for (int n = 1; n <= maxN; n++) {
368                 mP[n] = new float[n + 1];
369                 mPDeriv[n] = new float[n + 1];
370                 for (int m = 0; m <= n; m++) {
371                     if (n == m) {
372                         mP[n][m] = sin * mP[n - 1][m - 1];
373                         mPDeriv[n][m] = cos * mP[n - 1][m - 1]
374                             + sin * mPDeriv[n - 1][m - 1];
375                     } else if (n == 1 || m == n - 1) {
376                         mP[n][m] = cos * mP[n - 1][m];
377                         mPDeriv[n][m] = -sin * mP[n - 1][m]
378                             + cos * mPDeriv[n - 1][m];
379                     } else {
380                         assert n > 1 && m < n - 1;
381                         float k = ((n - 1) * (n - 1) - m * m)
382                             / (float) ((2 * n - 1) * (2 * n - 3));
383                         mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m];
384                         mPDeriv[n][m] = -sin * mP[n - 1][m]
385                             + cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m];
386                     }
387                 }
388             }
389         }
390     }
391 
392     /**
393      * Compute the ration between the Gauss-normalized associated Legendre
394      * functions and the Schmidt quasi-normalized version. This is equivalent to
395      * sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)!
396      */
397     private static float[][] computeSchmidtQuasiNormFactors(int maxN) {
398         float[][] schmidtQuasiNorm = new float[maxN + 1][];
399         schmidtQuasiNorm[0] = new float[] { 1.0f };
400         for (int n = 1; n <= maxN; n++) {
401             schmidtQuasiNorm[n] = new float[n + 1];
402             schmidtQuasiNorm[n][0] =
403                 schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n;
404             for (int m = 1; m <= n; m++) {
405                 schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1]
406                     * (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1)
407                                 / (float) (n + m));
408             }
409         }
410         return schmidtQuasiNorm;
411     }
412 }
413