1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <string>
18 #include <inttypes.h>
19
20 #include "codegen_x86.h"
21 #include "dex/compiler_internals.h"
22 #include "dex/quick/mir_to_lir-inl.h"
23 #include "dex/reg_storage_eq.h"
24 #include "mirror/array.h"
25 #include "mirror/string.h"
26 #include "x86_lir.h"
27
28 namespace art {
29
30 static constexpr RegStorage core_regs_arr_32[] = {
31 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32 };
33 static constexpr RegStorage core_regs_arr_64[] = {
34 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36 };
37 static constexpr RegStorage core_regs_arr_64q[] = {
38 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40 };
41 static constexpr RegStorage sp_regs_arr_32[] = {
42 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43 };
44 static constexpr RegStorage sp_regs_arr_64[] = {
45 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47 };
48 static constexpr RegStorage dp_regs_arr_32[] = {
49 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50 };
51 static constexpr RegStorage dp_regs_arr_64[] = {
52 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54 };
55 static constexpr RegStorage xp_regs_arr_32[] = {
56 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
57 };
58 static constexpr RegStorage xp_regs_arr_64[] = {
59 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
60 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
61 };
62 static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63 static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
64 static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65 static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66 static constexpr RegStorage core_temps_arr_64[] = {
67 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68 rs_r8, rs_r9, rs_r10, rs_r11
69 };
70
71 // How to add register to be available for promotion:
72 // 1) Remove register from array defining temp
73 // 2) Update ClobberCallerSave
74 // 3) Update JNI compiler ABI:
75 // 3.1) add reg in JniCallingConvention method
76 // 3.2) update CoreSpillMask/FpSpillMask
77 // 4) Update entrypoints
78 // 4.1) Update constants in asm_support_x86_64.h for new frame size
79 // 4.2) Remove entry in SmashCallerSaves
80 // 4.3) Update jni_entrypoints to spill/unspill new callee save reg
81 // 4.4) Update quick_entrypoints to spill/unspill new callee save reg
82 // 5) Update runtime ABI
83 // 5.1) Update quick_method_frame_info with new required spills
84 // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
85 // Note that you cannot use register corresponding to incoming args
86 // according to ABI and QCG needs one additional XMM temp for
87 // bulk copy in preparation to call.
88 static constexpr RegStorage core_temps_arr_64q[] = {
89 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
90 rs_r8q, rs_r9q, rs_r10q, rs_r11q
91 };
92 static constexpr RegStorage sp_temps_arr_32[] = {
93 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
94 };
95 static constexpr RegStorage sp_temps_arr_64[] = {
96 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
97 rs_fr8, rs_fr9, rs_fr10, rs_fr11
98 };
99 static constexpr RegStorage dp_temps_arr_32[] = {
100 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
101 };
102 static constexpr RegStorage dp_temps_arr_64[] = {
103 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
104 rs_dr8, rs_dr9, rs_dr10, rs_dr11
105 };
106
107 static constexpr RegStorage xp_temps_arr_32[] = {
108 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
109 };
110 static constexpr RegStorage xp_temps_arr_64[] = {
111 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
112 rs_xr8, rs_xr9, rs_xr10, rs_xr11
113 };
114
115 static constexpr ArrayRef<const RegStorage> empty_pool;
116 static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
117 static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
118 static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
119 static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
120 static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
121 static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
122 static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
123 static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
124 static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
125 static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
126 static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
127 static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
128 static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
129 static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
130 static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
131 static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
132 static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
133 static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
134 static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
135
136 static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
137 static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
138
139 RegStorage rs_rX86_SP;
140
141 X86NativeRegisterPool rX86_ARG0;
142 X86NativeRegisterPool rX86_ARG1;
143 X86NativeRegisterPool rX86_ARG2;
144 X86NativeRegisterPool rX86_ARG3;
145 X86NativeRegisterPool rX86_ARG4;
146 X86NativeRegisterPool rX86_ARG5;
147 X86NativeRegisterPool rX86_FARG0;
148 X86NativeRegisterPool rX86_FARG1;
149 X86NativeRegisterPool rX86_FARG2;
150 X86NativeRegisterPool rX86_FARG3;
151 X86NativeRegisterPool rX86_FARG4;
152 X86NativeRegisterPool rX86_FARG5;
153 X86NativeRegisterPool rX86_FARG6;
154 X86NativeRegisterPool rX86_FARG7;
155 X86NativeRegisterPool rX86_RET0;
156 X86NativeRegisterPool rX86_RET1;
157 X86NativeRegisterPool rX86_INVOKE_TGT;
158 X86NativeRegisterPool rX86_COUNT;
159
160 RegStorage rs_rX86_ARG0;
161 RegStorage rs_rX86_ARG1;
162 RegStorage rs_rX86_ARG2;
163 RegStorage rs_rX86_ARG3;
164 RegStorage rs_rX86_ARG4;
165 RegStorage rs_rX86_ARG5;
166 RegStorage rs_rX86_FARG0;
167 RegStorage rs_rX86_FARG1;
168 RegStorage rs_rX86_FARG2;
169 RegStorage rs_rX86_FARG3;
170 RegStorage rs_rX86_FARG4;
171 RegStorage rs_rX86_FARG5;
172 RegStorage rs_rX86_FARG6;
173 RegStorage rs_rX86_FARG7;
174 RegStorage rs_rX86_RET0;
175 RegStorage rs_rX86_RET1;
176 RegStorage rs_rX86_INVOKE_TGT;
177 RegStorage rs_rX86_COUNT;
178
LocCReturn()179 RegLocation X86Mir2Lir::LocCReturn() {
180 return x86_loc_c_return;
181 }
182
LocCReturnRef()183 RegLocation X86Mir2Lir::LocCReturnRef() {
184 return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
185 }
186
LocCReturnWide()187 RegLocation X86Mir2Lir::LocCReturnWide() {
188 return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
189 }
190
LocCReturnFloat()191 RegLocation X86Mir2Lir::LocCReturnFloat() {
192 return x86_loc_c_return_float;
193 }
194
LocCReturnDouble()195 RegLocation X86Mir2Lir::LocCReturnDouble() {
196 return x86_loc_c_return_double;
197 }
198
199 // Return a target-dependent special register for 32-bit.
TargetReg32(SpecialTargetRegister reg)200 RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
201 RegStorage res_reg = RegStorage::InvalidReg();
202 switch (reg) {
203 case kSelf: res_reg = RegStorage::InvalidReg(); break;
204 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
205 case kLr: res_reg = RegStorage::InvalidReg(); break;
206 case kPc: res_reg = RegStorage::InvalidReg(); break;
207 case kSp: res_reg = rs_rX86_SP_32; break; // This must be the concrete one, as _SP is target-
208 // specific size.
209 case kArg0: res_reg = rs_rX86_ARG0; break;
210 case kArg1: res_reg = rs_rX86_ARG1; break;
211 case kArg2: res_reg = rs_rX86_ARG2; break;
212 case kArg3: res_reg = rs_rX86_ARG3; break;
213 case kArg4: res_reg = rs_rX86_ARG4; break;
214 case kArg5: res_reg = rs_rX86_ARG5; break;
215 case kFArg0: res_reg = rs_rX86_FARG0; break;
216 case kFArg1: res_reg = rs_rX86_FARG1; break;
217 case kFArg2: res_reg = rs_rX86_FARG2; break;
218 case kFArg3: res_reg = rs_rX86_FARG3; break;
219 case kFArg4: res_reg = rs_rX86_FARG4; break;
220 case kFArg5: res_reg = rs_rX86_FARG5; break;
221 case kFArg6: res_reg = rs_rX86_FARG6; break;
222 case kFArg7: res_reg = rs_rX86_FARG7; break;
223 case kRet0: res_reg = rs_rX86_RET0; break;
224 case kRet1: res_reg = rs_rX86_RET1; break;
225 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
226 case kHiddenArg: res_reg = rs_rAX; break;
227 case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
228 case kCount: res_reg = rs_rX86_COUNT; break;
229 default: res_reg = RegStorage::InvalidReg();
230 }
231 return res_reg;
232 }
233
TargetReg(SpecialTargetRegister reg)234 RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
235 LOG(FATAL) << "Do not use this function!!!";
236 return RegStorage::InvalidReg();
237 }
238
239 /*
240 * Decode the register id.
241 */
GetRegMaskCommon(const RegStorage & reg) const242 ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
243 /* Double registers in x86 are just a single FP register. This is always just a single bit. */
244 return ResourceMask::Bit(
245 /* FP register starts at bit position 16 */
246 ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
247 }
248
GetPCUseDefEncoding() const249 ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
250 return kEncodeNone;
251 }
252
SetupTargetResourceMasks(LIR * lir,uint64_t flags,ResourceMask * use_mask,ResourceMask * def_mask)253 void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
254 ResourceMask* use_mask, ResourceMask* def_mask) {
255 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
256 DCHECK(!lir->flags.use_def_invalid);
257
258 // X86-specific resource map setup here.
259 if (flags & REG_USE_SP) {
260 use_mask->SetBit(kX86RegSP);
261 }
262
263 if (flags & REG_DEF_SP) {
264 def_mask->SetBit(kX86RegSP);
265 }
266
267 if (flags & REG_DEFA) {
268 SetupRegMask(def_mask, rs_rAX.GetReg());
269 }
270
271 if (flags & REG_DEFD) {
272 SetupRegMask(def_mask, rs_rDX.GetReg());
273 }
274 if (flags & REG_USEA) {
275 SetupRegMask(use_mask, rs_rAX.GetReg());
276 }
277
278 if (flags & REG_USEC) {
279 SetupRegMask(use_mask, rs_rCX.GetReg());
280 }
281
282 if (flags & REG_USED) {
283 SetupRegMask(use_mask, rs_rDX.GetReg());
284 }
285
286 if (flags & REG_USEB) {
287 SetupRegMask(use_mask, rs_rBX.GetReg());
288 }
289
290 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
291 if (lir->opcode == kX86RepneScasw) {
292 SetupRegMask(use_mask, rs_rAX.GetReg());
293 SetupRegMask(use_mask, rs_rCX.GetReg());
294 SetupRegMask(use_mask, rs_rDI.GetReg());
295 SetupRegMask(def_mask, rs_rDI.GetReg());
296 }
297
298 if (flags & USE_FP_STACK) {
299 use_mask->SetBit(kX86FPStack);
300 def_mask->SetBit(kX86FPStack);
301 }
302 }
303
304 /* For dumping instructions */
305 static const char* x86RegName[] = {
306 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
308 };
309
310 static const char* x86CondName[] = {
311 "O",
312 "NO",
313 "B/NAE/C",
314 "NB/AE/NC",
315 "Z/EQ",
316 "NZ/NE",
317 "BE/NA",
318 "NBE/A",
319 "S",
320 "NS",
321 "P/PE",
322 "NP/PO",
323 "L/NGE",
324 "NL/GE",
325 "LE/NG",
326 "NLE/G"
327 };
328
329 /*
330 * Interpret a format string and build a string no longer than size
331 * See format key in Assemble.cc.
332 */
BuildInsnString(const char * fmt,LIR * lir,unsigned char * base_addr)333 std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
334 std::string buf;
335 size_t i = 0;
336 size_t fmt_len = strlen(fmt);
337 while (i < fmt_len) {
338 if (fmt[i] != '!') {
339 buf += fmt[i];
340 i++;
341 } else {
342 i++;
343 DCHECK_LT(i, fmt_len);
344 char operand_number_ch = fmt[i];
345 i++;
346 if (operand_number_ch == '!') {
347 buf += "!";
348 } else {
349 int operand_number = operand_number_ch - '0';
350 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
351 DCHECK_LT(i, fmt_len);
352 int operand = lir->operands[operand_number];
353 switch (fmt[i]) {
354 case 'c':
355 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
356 buf += x86CondName[operand];
357 break;
358 case 'd':
359 buf += StringPrintf("%d", operand);
360 break;
361 case 'q': {
362 int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
363 static_cast<uint32_t>(lir->operands[operand_number+1]));
364 buf +=StringPrintf("%" PRId64, value);
365 }
366 case 'p': {
367 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
368 buf += StringPrintf("0x%08x", tab_rec->offset);
369 break;
370 }
371 case 'r':
372 if (RegStorage::IsFloat(operand)) {
373 int fp_reg = RegStorage::RegNum(operand);
374 buf += StringPrintf("xmm%d", fp_reg);
375 } else {
376 int reg_num = RegStorage::RegNum(operand);
377 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
378 buf += x86RegName[reg_num];
379 }
380 break;
381 case 't':
382 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
383 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
384 lir->target);
385 break;
386 default:
387 buf += StringPrintf("DecodeError '%c'", fmt[i]);
388 break;
389 }
390 i++;
391 }
392 }
393 }
394 return buf;
395 }
396
DumpResourceMask(LIR * x86LIR,const ResourceMask & mask,const char * prefix)397 void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
398 char buf[256];
399 buf[0] = 0;
400
401 if (mask.Equals(kEncodeAll)) {
402 strcpy(buf, "all");
403 } else {
404 char num[8];
405 int i;
406
407 for (i = 0; i < kX86RegEnd; i++) {
408 if (mask.HasBit(i)) {
409 snprintf(num, arraysize(num), "%d ", i);
410 strcat(buf, num);
411 }
412 }
413
414 if (mask.HasBit(ResourceMask::kCCode)) {
415 strcat(buf, "cc ");
416 }
417 /* Memory bits */
418 if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
419 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
420 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
421 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
422 }
423 if (mask.HasBit(ResourceMask::kLiteral)) {
424 strcat(buf, "lit ");
425 }
426
427 if (mask.HasBit(ResourceMask::kHeapRef)) {
428 strcat(buf, "heap ");
429 }
430 if (mask.HasBit(ResourceMask::kMustNotAlias)) {
431 strcat(buf, "noalias ");
432 }
433 }
434 if (buf[0]) {
435 LOG(INFO) << prefix << ": " << buf;
436 }
437 }
438
AdjustSpillMask()439 void X86Mir2Lir::AdjustSpillMask() {
440 // Adjustment for LR spilling, x86 has no LR so nothing to do here
441 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
442 num_core_spills_++;
443 }
444
AllocateByteRegister()445 RegStorage X86Mir2Lir::AllocateByteRegister() {
446 RegStorage reg = AllocTypedTemp(false, kCoreReg);
447 if (!cu_->target64) {
448 DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
449 }
450 return reg;
451 }
452
Get128BitRegister(RegStorage reg)453 RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
454 return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg();
455 }
456
IsByteRegister(RegStorage reg)457 bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
458 return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
459 }
460
461 /* Clobber all regs that might be used by an external C call */
ClobberCallerSave()462 void X86Mir2Lir::ClobberCallerSave() {
463 if (cu_->target64) {
464 Clobber(rs_rAX);
465 Clobber(rs_rCX);
466 Clobber(rs_rDX);
467 Clobber(rs_rSI);
468 Clobber(rs_rDI);
469
470 Clobber(rs_r8);
471 Clobber(rs_r9);
472 Clobber(rs_r10);
473 Clobber(rs_r11);
474
475 Clobber(rs_fr8);
476 Clobber(rs_fr9);
477 Clobber(rs_fr10);
478 Clobber(rs_fr11);
479 } else {
480 Clobber(rs_rAX);
481 Clobber(rs_rCX);
482 Clobber(rs_rDX);
483 Clobber(rs_rBX);
484 }
485
486 Clobber(rs_fr0);
487 Clobber(rs_fr1);
488 Clobber(rs_fr2);
489 Clobber(rs_fr3);
490 Clobber(rs_fr4);
491 Clobber(rs_fr5);
492 Clobber(rs_fr6);
493 Clobber(rs_fr7);
494 }
495
GetReturnWideAlt()496 RegLocation X86Mir2Lir::GetReturnWideAlt() {
497 RegLocation res = LocCReturnWide();
498 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
499 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
500 Clobber(rs_rAX);
501 Clobber(rs_rDX);
502 MarkInUse(rs_rAX);
503 MarkInUse(rs_rDX);
504 MarkWide(res.reg);
505 return res;
506 }
507
GetReturnAlt()508 RegLocation X86Mir2Lir::GetReturnAlt() {
509 RegLocation res = LocCReturn();
510 res.reg.SetReg(rs_rDX.GetReg());
511 Clobber(rs_rDX);
512 MarkInUse(rs_rDX);
513 return res;
514 }
515
516 /* To be used when explicitly managing register use */
LockCallTemps()517 void X86Mir2Lir::LockCallTemps() {
518 LockTemp(rs_rX86_ARG0);
519 LockTemp(rs_rX86_ARG1);
520 LockTemp(rs_rX86_ARG2);
521 LockTemp(rs_rX86_ARG3);
522 if (cu_->target64) {
523 LockTemp(rs_rX86_ARG4);
524 LockTemp(rs_rX86_ARG5);
525 LockTemp(rs_rX86_FARG0);
526 LockTemp(rs_rX86_FARG1);
527 LockTemp(rs_rX86_FARG2);
528 LockTemp(rs_rX86_FARG3);
529 LockTemp(rs_rX86_FARG4);
530 LockTemp(rs_rX86_FARG5);
531 LockTemp(rs_rX86_FARG6);
532 LockTemp(rs_rX86_FARG7);
533 }
534 }
535
536 /* To be used when explicitly managing register use */
FreeCallTemps()537 void X86Mir2Lir::FreeCallTemps() {
538 FreeTemp(rs_rX86_ARG0);
539 FreeTemp(rs_rX86_ARG1);
540 FreeTemp(rs_rX86_ARG2);
541 FreeTemp(rs_rX86_ARG3);
542 FreeTemp(TargetReg32(kHiddenArg));
543 if (cu_->target64) {
544 FreeTemp(rs_rX86_ARG4);
545 FreeTemp(rs_rX86_ARG5);
546 FreeTemp(rs_rX86_FARG0);
547 FreeTemp(rs_rX86_FARG1);
548 FreeTemp(rs_rX86_FARG2);
549 FreeTemp(rs_rX86_FARG3);
550 FreeTemp(rs_rX86_FARG4);
551 FreeTemp(rs_rX86_FARG5);
552 FreeTemp(rs_rX86_FARG6);
553 FreeTemp(rs_rX86_FARG7);
554 }
555 }
556
ProvidesFullMemoryBarrier(X86OpCode opcode)557 bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
558 switch (opcode) {
559 case kX86LockCmpxchgMR:
560 case kX86LockCmpxchgAR:
561 case kX86LockCmpxchg64M:
562 case kX86LockCmpxchg64A:
563 case kX86XchgMR:
564 case kX86Mfence:
565 // Atomic memory instructions provide full barrier.
566 return true;
567 default:
568 break;
569 }
570
571 // Conservative if cannot prove it provides full barrier.
572 return false;
573 }
574
GenMemBarrier(MemBarrierKind barrier_kind)575 bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
576 #if ANDROID_SMP != 0
577 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
578 LIR* mem_barrier = last_lir_insn_;
579
580 bool ret = false;
581 /*
582 * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
583 * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
584 * For those cases, all we need to ensure is that there is a scheduling barrier in place.
585 */
586 if (barrier_kind == kAnyAny) {
587 // If no LIR exists already that can be used a barrier, then generate an mfence.
588 if (mem_barrier == nullptr) {
589 mem_barrier = NewLIR0(kX86Mfence);
590 ret = true;
591 }
592
593 // If last instruction does not provide full barrier, then insert an mfence.
594 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
595 mem_barrier = NewLIR0(kX86Mfence);
596 ret = true;
597 }
598 }
599
600 // Now ensure that a scheduling barrier is in place.
601 if (mem_barrier == nullptr) {
602 GenBarrier();
603 } else {
604 // Mark as a scheduling barrier.
605 DCHECK(!mem_barrier->flags.use_def_invalid);
606 mem_barrier->u.m.def_mask = &kEncodeAll;
607 }
608 return ret;
609 #else
610 return false;
611 #endif
612 }
613
CompilerInitializeRegAlloc()614 void X86Mir2Lir::CompilerInitializeRegAlloc() {
615 if (cu_->target64) {
616 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
617 dp_regs_64, reserved_regs_64, reserved_regs_64q,
618 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
619 } else {
620 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
621 dp_regs_32, reserved_regs_32, empty_pool,
622 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
623 }
624
625 // Target-specific adjustments.
626
627 // Add in XMM registers.
628 const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
629 for (RegStorage reg : *xp_regs) {
630 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
631 reginfo_map_.Put(reg.GetReg(), info);
632 }
633 const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
634 for (RegStorage reg : *xp_temps) {
635 RegisterInfo* xp_reg_info = GetRegInfo(reg);
636 xp_reg_info->SetIsTemp(true);
637 }
638
639 // Alias single precision xmm to double xmms.
640 // TODO: as needed, add larger vector sizes - alias all to the largest.
641 GrowableArray<RegisterInfo*>::Iterator it(®_pool_->sp_regs_);
642 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
643 int sp_reg_num = info->GetReg().GetRegNum();
644 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
645 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
646 // 128-bit xmm vector register's master storage should refer to itself.
647 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
648
649 // Redirect 32-bit vector's master storage to 128-bit vector.
650 info->SetMaster(xp_reg_info);
651
652 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
653 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
654 // Redirect 64-bit vector's master storage to 128-bit vector.
655 dp_reg_info->SetMaster(xp_reg_info);
656 // Singles should show a single 32-bit mask bit, at first referring to the low half.
657 DCHECK_EQ(info->StorageMask(), 0x1U);
658 }
659
660 if (cu_->target64) {
661 // Alias 32bit W registers to corresponding 64bit X registers.
662 GrowableArray<RegisterInfo*>::Iterator w_it(®_pool_->core_regs_);
663 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
664 int x_reg_num = info->GetReg().GetRegNum();
665 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
666 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
667 // 64bit X register's master storage should refer to itself.
668 DCHECK_EQ(x_reg_info, x_reg_info->Master());
669 // Redirect 32bit W master storage to 64bit X.
670 info->SetMaster(x_reg_info);
671 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
672 DCHECK_EQ(info->StorageMask(), 0x1U);
673 }
674 }
675
676 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
677 // TODO: adjust for x86/hard float calling convention.
678 reg_pool_->next_core_reg_ = 2;
679 reg_pool_->next_sp_reg_ = 2;
680 reg_pool_->next_dp_reg_ = 1;
681 }
682
VectorRegisterSize()683 int X86Mir2Lir::VectorRegisterSize() {
684 return 128;
685 }
686
NumReservableVectorRegisters(bool fp_used)687 int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) {
688 return fp_used ? 5 : 7;
689 }
690
SpillCoreRegs()691 void X86Mir2Lir::SpillCoreRegs() {
692 if (num_core_spills_ == 0) {
693 return;
694 }
695 // Spill mask not including fake return address register
696 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
697 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
698 OpSize size = cu_->target64 ? k64 : k32;
699 for (int reg = 0; mask; mask >>= 1, reg++) {
700 if (mask & 0x1) {
701 StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg),
702 size, kNotVolatile);
703 offset += GetInstructionSetPointerSize(cu_->instruction_set);
704 }
705 }
706 }
707
UnSpillCoreRegs()708 void X86Mir2Lir::UnSpillCoreRegs() {
709 if (num_core_spills_ == 0) {
710 return;
711 }
712 // Spill mask not including fake return address register
713 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
714 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
715 OpSize size = cu_->target64 ? k64 : k32;
716 for (int reg = 0; mask; mask >>= 1, reg++) {
717 if (mask & 0x1) {
718 LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg),
719 size, kNotVolatile);
720 offset += GetInstructionSetPointerSize(cu_->instruction_set);
721 }
722 }
723 }
724
SpillFPRegs()725 void X86Mir2Lir::SpillFPRegs() {
726 if (num_fp_spills_ == 0) {
727 return;
728 }
729 uint32_t mask = fp_spill_mask_;
730 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
731 for (int reg = 0; mask; mask >>= 1, reg++) {
732 if (mask & 0x1) {
733 StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
734 k64, kNotVolatile);
735 offset += sizeof(double);
736 }
737 }
738 }
UnSpillFPRegs()739 void X86Mir2Lir::UnSpillFPRegs() {
740 if (num_fp_spills_ == 0) {
741 return;
742 }
743 uint32_t mask = fp_spill_mask_;
744 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
745 for (int reg = 0; mask; mask >>= 1, reg++) {
746 if (mask & 0x1) {
747 LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
748 k64, kNotVolatile);
749 offset += sizeof(double);
750 }
751 }
752 }
753
754
IsUnconditionalBranch(LIR * lir)755 bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
756 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
757 }
758
RegClassForFieldLoadStore(OpSize size,bool is_volatile)759 RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
760 // X86_64 can handle any size.
761 if (cu_->target64) {
762 if (size == kReference) {
763 return kRefReg;
764 }
765 return kCoreReg;
766 }
767
768 if (UNLIKELY(is_volatile)) {
769 // On x86, atomic 64-bit load/store requires an fp register.
770 // Smaller aligned load/store is atomic for both core and fp registers.
771 if (size == k64 || size == kDouble) {
772 return kFPReg;
773 }
774 }
775 return RegClassBySize(size);
776 }
777
X86Mir2Lir(CompilationUnit * cu,MIRGraph * mir_graph,ArenaAllocator * arena)778 X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
779 : Mir2Lir(cu, mir_graph, arena),
780 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
781 method_address_insns_(arena, 100, kGrowableArrayMisc),
782 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
783 call_method_insns_(arena, 100, kGrowableArrayMisc),
784 stack_decrement_(nullptr), stack_increment_(nullptr),
785 const_vectors_(nullptr) {
786 store_method_addr_used_ = false;
787 if (kIsDebugBuild) {
788 for (int i = 0; i < kX86Last; i++) {
789 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
790 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
791 << " is wrong: expecting " << i << ", seeing "
792 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
793 }
794 }
795 }
796 if (cu_->target64) {
797 rs_rX86_SP = rs_rX86_SP_64;
798
799 rs_rX86_ARG0 = rs_rDI;
800 rs_rX86_ARG1 = rs_rSI;
801 rs_rX86_ARG2 = rs_rDX;
802 rs_rX86_ARG3 = rs_rCX;
803 rs_rX86_ARG4 = rs_r8;
804 rs_rX86_ARG5 = rs_r9;
805 rs_rX86_FARG0 = rs_fr0;
806 rs_rX86_FARG1 = rs_fr1;
807 rs_rX86_FARG2 = rs_fr2;
808 rs_rX86_FARG3 = rs_fr3;
809 rs_rX86_FARG4 = rs_fr4;
810 rs_rX86_FARG5 = rs_fr5;
811 rs_rX86_FARG6 = rs_fr6;
812 rs_rX86_FARG7 = rs_fr7;
813 rX86_ARG0 = rDI;
814 rX86_ARG1 = rSI;
815 rX86_ARG2 = rDX;
816 rX86_ARG3 = rCX;
817 rX86_ARG4 = r8;
818 rX86_ARG5 = r9;
819 rX86_FARG0 = fr0;
820 rX86_FARG1 = fr1;
821 rX86_FARG2 = fr2;
822 rX86_FARG3 = fr3;
823 rX86_FARG4 = fr4;
824 rX86_FARG5 = fr5;
825 rX86_FARG6 = fr6;
826 rX86_FARG7 = fr7;
827 rs_rX86_INVOKE_TGT = rs_rDI;
828 } else {
829 rs_rX86_SP = rs_rX86_SP_32;
830
831 rs_rX86_ARG0 = rs_rAX;
832 rs_rX86_ARG1 = rs_rCX;
833 rs_rX86_ARG2 = rs_rDX;
834 rs_rX86_ARG3 = rs_rBX;
835 rs_rX86_ARG4 = RegStorage::InvalidReg();
836 rs_rX86_ARG5 = RegStorage::InvalidReg();
837 rs_rX86_FARG0 = rs_rAX;
838 rs_rX86_FARG1 = rs_rCX;
839 rs_rX86_FARG2 = rs_rDX;
840 rs_rX86_FARG3 = rs_rBX;
841 rs_rX86_FARG4 = RegStorage::InvalidReg();
842 rs_rX86_FARG5 = RegStorage::InvalidReg();
843 rs_rX86_FARG6 = RegStorage::InvalidReg();
844 rs_rX86_FARG7 = RegStorage::InvalidReg();
845 rX86_ARG0 = rAX;
846 rX86_ARG1 = rCX;
847 rX86_ARG2 = rDX;
848 rX86_ARG3 = rBX;
849 rX86_FARG0 = rAX;
850 rX86_FARG1 = rCX;
851 rX86_FARG2 = rDX;
852 rX86_FARG3 = rBX;
853 rs_rX86_INVOKE_TGT = rs_rAX;
854 // TODO(64): Initialize with invalid reg
855 // rX86_ARG4 = RegStorage::InvalidReg();
856 // rX86_ARG5 = RegStorage::InvalidReg();
857 }
858 rs_rX86_RET0 = rs_rAX;
859 rs_rX86_RET1 = rs_rDX;
860 rs_rX86_COUNT = rs_rCX;
861 rX86_RET0 = rAX;
862 rX86_RET1 = rDX;
863 rX86_INVOKE_TGT = rAX;
864 rX86_COUNT = rCX;
865
866 // Initialize the number of reserved vector registers
867 num_reserved_vector_regs_ = -1;
868 }
869
X86CodeGenerator(CompilationUnit * const cu,MIRGraph * const mir_graph,ArenaAllocator * const arena)870 Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
871 ArenaAllocator* const arena) {
872 return new X86Mir2Lir(cu, mir_graph, arena);
873 }
874
875 // Not used in x86(-64)
LoadHelper(QuickEntrypointEnum trampoline)876 RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
877 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
878 return RegStorage::InvalidReg();
879 }
880
CheckSuspendUsingLoad()881 LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
882 // First load the pointer in fs:[suspend-trigger] into eax
883 // Then use a test instruction to indirect via that address.
884 if (cu_->target64) {
885 NewLIR2(kX86Mov64RT, rs_rAX.GetReg(),
886 Thread::ThreadSuspendTriggerOffset<8>().Int32Value());
887 } else {
888 NewLIR2(kX86Mov32RT, rs_rAX.GetReg(),
889 Thread::ThreadSuspendTriggerOffset<4>().Int32Value());
890 }
891 return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0);
892 }
893
GetTargetInstFlags(int opcode)894 uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
895 DCHECK(!IsPseudoLirOp(opcode));
896 return X86Mir2Lir::EncodingMap[opcode].flags;
897 }
898
GetTargetInstName(int opcode)899 const char* X86Mir2Lir::GetTargetInstName(int opcode) {
900 DCHECK(!IsPseudoLirOp(opcode));
901 return X86Mir2Lir::EncodingMap[opcode].name;
902 }
903
GetTargetInstFmt(int opcode)904 const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
905 DCHECK(!IsPseudoLirOp(opcode));
906 return X86Mir2Lir::EncodingMap[opcode].fmt;
907 }
908
GenConstWide(RegLocation rl_dest,int64_t value)909 void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
910 // Can we do this directly to memory?
911 rl_dest = UpdateLocWide(rl_dest);
912 if ((rl_dest.location == kLocDalvikFrame) ||
913 (rl_dest.location == kLocCompilerTemp)) {
914 int32_t val_lo = Low32Bits(value);
915 int32_t val_hi = High32Bits(value);
916 int r_base = rs_rX86_SP.GetReg();
917 int displacement = SRegOffset(rl_dest.s_reg_low);
918
919 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
920 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
921 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
922 false /* is_load */, true /* is64bit */);
923 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
924 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
925 false /* is_load */, true /* is64bit */);
926 return;
927 }
928
929 // Just use the standard code to do the generation.
930 Mir2Lir::GenConstWide(rl_dest, value);
931 }
932
933 // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
DumpRegLocation(RegLocation loc)934 void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
935 LOG(INFO) << "location: " << loc.location << ','
936 << (loc.wide ? " w" : " ")
937 << (loc.defined ? " D" : " ")
938 << (loc.is_const ? " c" : " ")
939 << (loc.fp ? " F" : " ")
940 << (loc.core ? " C" : " ")
941 << (loc.ref ? " r" : " ")
942 << (loc.high_word ? " h" : " ")
943 << (loc.home ? " H" : " ")
944 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
945 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
946 << ", s_reg: " << loc.s_reg_low
947 << ", orig: " << loc.orig_sreg;
948 }
949
Materialize()950 void X86Mir2Lir::Materialize() {
951 // A good place to put the analysis before starting.
952 AnalyzeMIR();
953
954 // Now continue with regular code generation.
955 Mir2Lir::Materialize();
956 }
957
LoadMethodAddress(const MethodReference & target_method,InvokeType type,SpecialTargetRegister symbolic_reg)958 void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
959 SpecialTargetRegister symbolic_reg) {
960 /*
961 * For x86, just generate a 32 bit move immediate instruction, that will be filled
962 * in at 'link time'. For now, put a unique value based on target to ensure that
963 * code deduplication works.
964 */
965 int target_method_idx = target_method.dex_method_index;
966 const DexFile* target_dex_file = target_method.dex_file;
967 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
968 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
969
970 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
971 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
972 TargetReg(symbolic_reg, kNotWide).GetReg(),
973 static_cast<int>(target_method_id_ptr), target_method_idx,
974 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
975 AppendLIR(move);
976 method_address_insns_.Insert(move);
977 }
978
LoadClassType(uint32_t type_idx,SpecialTargetRegister symbolic_reg)979 void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
980 /*
981 * For x86, just generate a 32 bit move immediate instruction, that will be filled
982 * in at 'link time'. For now, put a unique value based on target to ensure that
983 * code deduplication works.
984 */
985 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
986 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
987
988 // Generate the move instruction with the unique pointer and save index and type.
989 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
990 TargetReg(symbolic_reg, kNotWide).GetReg(),
991 static_cast<int>(ptr), type_idx);
992 AppendLIR(move);
993 class_type_address_insns_.Insert(move);
994 }
995
CallWithLinkerFixup(const MethodReference & target_method,InvokeType type)996 LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
997 /*
998 * For x86, just generate a 32 bit call relative instruction, that will be filled
999 * in at 'link time'. For now, put a unique value based on target to ensure that
1000 * code deduplication works.
1001 */
1002 int target_method_idx = target_method.dex_method_index;
1003 const DexFile* target_dex_file = target_method.dex_file;
1004 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
1005 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
1006
1007 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
1008 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
1009 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
1010 AppendLIR(call);
1011 call_method_insns_.Insert(call);
1012 return call;
1013 }
1014
1015 /*
1016 * @brief Enter a 32 bit quantity into a buffer
1017 * @param buf buffer.
1018 * @param data Data value.
1019 */
1020
PushWord(std::vector<uint8_t> & buf,int32_t data)1021 static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
1022 buf.push_back(data & 0xff);
1023 buf.push_back((data >> 8) & 0xff);
1024 buf.push_back((data >> 16) & 0xff);
1025 buf.push_back((data >> 24) & 0xff);
1026 }
1027
InstallLiteralPools()1028 void X86Mir2Lir::InstallLiteralPools() {
1029 // These are handled differently for x86.
1030 DCHECK(code_literal_list_ == nullptr);
1031 DCHECK(method_literal_list_ == nullptr);
1032 DCHECK(class_literal_list_ == nullptr);
1033
1034 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
1035 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
1036 // will fail at runtime)?
1037 if (const_vectors_ != nullptr) {
1038 int align_size = (16-4) - (code_buffer_.size() & 0xF);
1039 if (align_size < 0) {
1040 align_size += 16;
1041 }
1042
1043 while (align_size > 0) {
1044 code_buffer_.push_back(0);
1045 align_size--;
1046 }
1047 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1048 PushWord(code_buffer_, p->operands[0]);
1049 PushWord(code_buffer_, p->operands[1]);
1050 PushWord(code_buffer_, p->operands[2]);
1051 PushWord(code_buffer_, p->operands[3]);
1052 }
1053 }
1054
1055 // Handle the fixups for methods.
1056 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
1057 LIR* p = method_address_insns_.Get(i);
1058 DCHECK_EQ(p->opcode, kX86Mov32RI);
1059 uint32_t target_method_idx = p->operands[2];
1060 const DexFile* target_dex_file =
1061 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
1062
1063 // The offset to patch is the last 4 bytes of the instruction.
1064 int patch_offset = p->offset + p->flags.size - 4;
1065 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1066 cu_->method_idx, cu_->invoke_type,
1067 target_method_idx, target_dex_file,
1068 static_cast<InvokeType>(p->operands[4]),
1069 patch_offset);
1070 }
1071
1072 // Handle the fixups for class types.
1073 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1074 LIR* p = class_type_address_insns_.Get(i);
1075 DCHECK_EQ(p->opcode, kX86Mov32RI);
1076 uint32_t target_method_idx = p->operands[2];
1077
1078 // The offset to patch is the last 4 bytes of the instruction.
1079 int patch_offset = p->offset + p->flags.size - 4;
1080 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1081 cu_->method_idx, target_method_idx, patch_offset);
1082 }
1083
1084 // And now the PC-relative calls to methods.
1085 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1086 LIR* p = call_method_insns_.Get(i);
1087 DCHECK_EQ(p->opcode, kX86CallI);
1088 uint32_t target_method_idx = p->operands[1];
1089 const DexFile* target_dex_file =
1090 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1091
1092 // The offset to patch is the last 4 bytes of the instruction.
1093 int patch_offset = p->offset + p->flags.size - 4;
1094 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1095 cu_->method_idx, cu_->invoke_type,
1096 target_method_idx, target_dex_file,
1097 static_cast<InvokeType>(p->operands[3]),
1098 patch_offset, -4 /* offset */);
1099 }
1100
1101 // And do the normal processing.
1102 Mir2Lir::InstallLiteralPools();
1103 }
1104
GenInlinedArrayCopyCharArray(CallInfo * info)1105 bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1106 RegLocation rl_src = info->args[0];
1107 RegLocation rl_srcPos = info->args[1];
1108 RegLocation rl_dst = info->args[2];
1109 RegLocation rl_dstPos = info->args[3];
1110 RegLocation rl_length = info->args[4];
1111 if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1112 return false;
1113 }
1114 if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1115 return false;
1116 }
1117 ClobberCallerSave();
1118 LockCallTemps(); // Using fixed registers.
1119 RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX;
1120 LoadValueDirectFixed(rl_src, rs_rAX);
1121 LoadValueDirectFixed(rl_dst, rs_rCX);
1122 LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr);
1123 LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr);
1124 LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1125 LoadValueDirectFixed(rl_length, rs_rDX);
1126 // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path.
1127 LIR* len_too_big = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr);
1128 LoadValueDirectFixed(rl_src, rs_rAX);
1129 LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1130 LIR* src_bad_len = nullptr;
1131 LIR* src_bad_off = nullptr;
1132 LIR* srcPos_negative = nullptr;
1133 if (!rl_srcPos.is_const) {
1134 LoadValueDirectFixed(rl_srcPos, tmp_reg);
1135 srcPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1136 // src_pos < src_len
1137 src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1138 // src_len - src_pos < copy_len
1139 OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1140 src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1141 } else {
1142 int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1143 if (pos_val == 0) {
1144 src_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1145 } else {
1146 // src_pos < src_len
1147 src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1148 // src_len - src_pos < copy_len
1149 OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1150 src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1151 }
1152 }
1153 LIR* dstPos_negative = nullptr;
1154 LIR* dst_bad_len = nullptr;
1155 LIR* dst_bad_off = nullptr;
1156 LoadValueDirectFixed(rl_dst, rs_rAX);
1157 LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1158 if (!rl_dstPos.is_const) {
1159 LoadValueDirectFixed(rl_dstPos, tmp_reg);
1160 dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1161 // dst_pos < dst_len
1162 dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1163 // dst_len - dst_pos < copy_len
1164 OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1165 dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1166 } else {
1167 int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1168 if (pos_val == 0) {
1169 dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1170 } else {
1171 // dst_pos < dst_len
1172 dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1173 // dst_len - dst_pos < copy_len
1174 OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1175 dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1176 }
1177 }
1178 // Everything is checked now.
1179 LoadValueDirectFixed(rl_src, rs_rAX);
1180 LoadValueDirectFixed(rl_dst, tmp_reg);
1181 LoadValueDirectFixed(rl_srcPos, rs_rCX);
1182 NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1183 rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value());
1184 // RAX now holds the address of the first src element to be copied.
1185
1186 LoadValueDirectFixed(rl_dstPos, rs_rCX);
1187 NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(),
1188 rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() );
1189 // RBX now holds the address of the first dst element to be copied.
1190
1191 // Check if the number of elements to be copied is odd or even. If odd
1192 // then copy the first element (so that the remaining number of elements
1193 // is even).
1194 LoadValueDirectFixed(rl_length, rs_rCX);
1195 OpRegImm(kOpAnd, rs_rCX, 1);
1196 LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1197 OpRegImm(kOpSub, rs_rDX, 1);
1198 LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1199 StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1200
1201 // Since the remaining number of elements is even, we will copy by
1202 // two elements at a time.
1203 LIR* beginLoop = NewLIR0(kPseudoTargetLabel);
1204 LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr);
1205 OpRegImm(kOpSub, rs_rDX, 2);
1206 LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1207 StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle);
1208 OpUnconditionalBranch(beginLoop);
1209 LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1210 LIR* launchpad_branch = OpUnconditionalBranch(nullptr);
1211 LIR *return_point = NewLIR0(kPseudoTargetLabel);
1212 jmp_to_ret->target = return_point;
1213 jmp_to_begin_loop->target = beginLoop;
1214 src_dst_same->target = check_failed;
1215 len_too_big->target = check_failed;
1216 src_null_branch->target = check_failed;
1217 if (srcPos_negative != nullptr)
1218 srcPos_negative ->target = check_failed;
1219 if (src_bad_off != nullptr)
1220 src_bad_off->target = check_failed;
1221 if (src_bad_len != nullptr)
1222 src_bad_len->target = check_failed;
1223 dst_null_branch->target = check_failed;
1224 if (dstPos_negative != nullptr)
1225 dstPos_negative->target = check_failed;
1226 if (dst_bad_off != nullptr)
1227 dst_bad_off->target = check_failed;
1228 if (dst_bad_len != nullptr)
1229 dst_bad_len->target = check_failed;
1230 AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1231 ClobberCallerSave(); // We must clobber everything because slow path will return here
1232 return true;
1233 }
1234
1235
1236 /*
1237 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1238 * otherwise bails to standard library code.
1239 */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1240 bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1241 RegLocation rl_obj = info->args[0];
1242 RegLocation rl_char = info->args[1];
1243 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
1244 // RBX is callee-save register in 64-bit mode.
1245 RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX;
1246 int start_value = -1;
1247
1248 uint32_t char_value =
1249 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1250
1251 if (char_value > 0xFFFF) {
1252 // We have to punt to the real String.indexOf.
1253 return false;
1254 }
1255
1256 // Okay, we are commited to inlining this.
1257 // EAX: 16 bit character being searched.
1258 // ECX: count: number of words to be searched.
1259 // EDI: String being searched.
1260 // EDX: temporary during execution.
1261 // EBX or R11: temporary during execution (depending on mode).
1262 // REP SCASW: search instruction.
1263
1264 FlushReg(rs_rAX);
1265 Clobber(rs_rAX);
1266 LockTemp(rs_rAX);
1267 FlushReg(rs_rCX);
1268 Clobber(rs_rCX);
1269 LockTemp(rs_rCX);
1270 FlushReg(rs_rDX);
1271 Clobber(rs_rDX);
1272 LockTemp(rs_rDX);
1273 FlushReg(rs_tmp);
1274 Clobber(rs_tmp);
1275 LockTemp(rs_tmp);
1276 if (cu_->target64) {
1277 FlushReg(rs_rDI);
1278 Clobber(rs_rDI);
1279 LockTemp(rs_rDI);
1280 }
1281
1282 RegLocation rl_return = GetReturn(kCoreReg);
1283 RegLocation rl_dest = InlineTarget(info);
1284
1285 // Is the string non-NULL?
1286 LoadValueDirectFixed(rl_obj, rs_rDX);
1287 GenNullCheck(rs_rDX, info->opt_flags);
1288 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
1289
1290 LIR *slowpath_branch = nullptr, *length_compare = nullptr;
1291
1292 // We need the value in EAX.
1293 if (rl_char.is_const) {
1294 LoadConstantNoClobber(rs_rAX, char_value);
1295 } else {
1296 // Does the character fit in 16 bits? Compare it at runtime.
1297 LoadValueDirectFixed(rl_char, rs_rAX);
1298 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1299 }
1300
1301 // From here down, we know that we are looking for a char that fits in 16 bits.
1302 // Location of reference to data array within the String object.
1303 int value_offset = mirror::String::ValueOffset().Int32Value();
1304 // Location of count within the String object.
1305 int count_offset = mirror::String::CountOffset().Int32Value();
1306 // Starting offset within data array.
1307 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1308 // Start of char data with array_.
1309 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1310
1311 // Compute the number of words to search in to rCX.
1312 Load32Disp(rs_rDX, count_offset, rs_rCX);
1313
1314 // Possible signal here due to null pointer dereference.
1315 // Note that the signal handler will expect the top word of
1316 // the stack to be the ArtMethod*. If the PUSH edi instruction
1317 // below is ahead of the load above then this will not be true
1318 // and the signal handler will not work.
1319 MarkPossibleNullPointerException(0);
1320
1321 if (!cu_->target64) {
1322 // EDI is callee-save register in 32-bit mode.
1323 NewLIR1(kX86Push32R, rs_rDI.GetReg());
1324 }
1325
1326 if (zero_based) {
1327 // Start index is not present.
1328 // We have to handle an empty string. Use special instruction JECXZ.
1329 length_compare = NewLIR0(kX86Jecxz8);
1330
1331 // Copy the number of words to search in a temporary register.
1332 // We will use the register at the end to calculate result.
1333 OpRegReg(kOpMov, rs_tmp, rs_rCX);
1334 } else {
1335 // Start index is present.
1336 rl_start = info->args[2];
1337
1338 // We have to offset by the start index.
1339 if (rl_start.is_const) {
1340 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1341 start_value = std::max(start_value, 0);
1342
1343 // Is the start > count?
1344 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1345 OpRegImm(kOpMov, rs_rDI, start_value);
1346
1347 // Copy the number of words to search in a temporary register.
1348 // We will use the register at the end to calculate result.
1349 OpRegReg(kOpMov, rs_tmp, rs_rCX);
1350
1351 if (start_value != 0) {
1352 // Decrease the number of words to search by the start index.
1353 OpRegImm(kOpSub, rs_rCX, start_value);
1354 }
1355 } else {
1356 // Handle "start index < 0" case.
1357 if (!cu_->target64 && rl_start.location != kLocPhysReg) {
1358 // Load the start index from stack, remembering that we pushed EDI.
1359 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1360 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1361 Load32Disp(rs_rX86_SP, displacement, rs_rDI);
1362 // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
1363 DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
1364 int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1;
1365 AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
1366 } else {
1367 LoadValueDirectFixed(rl_start, rs_rDI);
1368 }
1369 OpRegReg(kOpXor, rs_tmp, rs_tmp);
1370 OpRegReg(kOpCmp, rs_rDI, rs_tmp);
1371 OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp);
1372
1373 // The length of the string should be greater than the start index.
1374 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr);
1375
1376 // Copy the number of words to search in a temporary register.
1377 // We will use the register at the end to calculate result.
1378 OpRegReg(kOpMov, rs_tmp, rs_rCX);
1379
1380 // Decrease the number of words to search by the start index.
1381 OpRegReg(kOpSub, rs_rCX, rs_rDI);
1382 }
1383 }
1384
1385 // Load the address of the string into EDI.
1386 // In case of start index we have to add the address to existing value in EDI.
1387 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1388 if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) {
1389 Load32Disp(rs_rDX, offset_offset, rs_rDI);
1390 } else {
1391 OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset);
1392 }
1393 OpRegImm(kOpLsl, rs_rDI, 1);
1394 OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset);
1395 OpRegImm(kOpAdd, rs_rDI, data_offset);
1396
1397 // EDI now contains the start of the string to be searched.
1398 // We are all prepared to do the search for the character.
1399 NewLIR0(kX86RepneScasw);
1400
1401 // Did we find a match?
1402 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1403
1404 // yes, we matched. Compute the index of the result.
1405 OpRegReg(kOpSub, rs_tmp, rs_rCX);
1406 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1);
1407
1408 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1409
1410 // Failed to match; return -1.
1411 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1412 length_compare->target = not_found;
1413 failed_branch->target = not_found;
1414 LoadConstantNoClobber(rl_return.reg, -1);
1415
1416 // And join up at the end.
1417 all_done->target = NewLIR0(kPseudoTargetLabel);
1418
1419 if (!cu_->target64)
1420 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1421
1422 // Out of line code returns here.
1423 if (slowpath_branch != nullptr) {
1424 LIR *return_point = NewLIR0(kPseudoTargetLabel);
1425 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1426 ClobberCallerSave(); // We must clobber everything because slow path will return here
1427 }
1428
1429 StoreValue(rl_dest, rl_return);
1430
1431 FreeTemp(rs_rAX);
1432 FreeTemp(rs_rCX);
1433 FreeTemp(rs_rDX);
1434 FreeTemp(rs_tmp);
1435 if (cu_->target64) {
1436 FreeTemp(rs_rDI);
1437 }
1438
1439 return true;
1440 }
1441
1442 /*
1443 * @brief Enter an 'advance LOC' into the FDE buffer
1444 * @param buf FDE buffer.
1445 * @param increment Amount by which to increase the current location.
1446 */
AdvanceLoc(std::vector<uint8_t> & buf,uint32_t increment)1447 static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1448 if (increment < 64) {
1449 // Encoding in opcode.
1450 buf.push_back(0x1 << 6 | increment);
1451 } else if (increment < 256) {
1452 // Single byte delta.
1453 buf.push_back(0x02);
1454 buf.push_back(increment);
1455 } else if (increment < 256 * 256) {
1456 // Two byte delta.
1457 buf.push_back(0x03);
1458 buf.push_back(increment & 0xff);
1459 buf.push_back((increment >> 8) & 0xff);
1460 } else {
1461 // Four byte delta.
1462 buf.push_back(0x04);
1463 PushWord(buf, increment);
1464 }
1465 }
1466
1467
X86CFIInitialization(bool is_x86_64)1468 std::vector<uint8_t>* X86CFIInitialization(bool is_x86_64) {
1469 return X86Mir2Lir::ReturnCommonCallFrameInformation(is_x86_64);
1470 }
1471
EncodeUnsignedLeb128(std::vector<uint8_t> & buf,uint32_t value)1472 static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1473 uint8_t buffer[12];
1474 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1475 for (uint8_t *p = buffer; p < ptr; p++) {
1476 buf.push_back(*p);
1477 }
1478 }
1479
EncodeSignedLeb128(std::vector<uint8_t> & buf,int32_t value)1480 static void EncodeSignedLeb128(std::vector<uint8_t>& buf, int32_t value) {
1481 uint8_t buffer[12];
1482 uint8_t *ptr = EncodeSignedLeb128(buffer, value);
1483 for (uint8_t *p = buffer; p < ptr; p++) {
1484 buf.push_back(*p);
1485 }
1486 }
1487
ReturnCommonCallFrameInformation(bool is_x86_64)1488 std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation(bool is_x86_64) {
1489 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1490
1491 // Length (will be filled in later in this routine).
1492 PushWord(*cfi_info, 0);
1493
1494 // CIE id: always 0.
1495 PushWord(*cfi_info, 0);
1496
1497 // Version: always 1.
1498 cfi_info->push_back(0x01);
1499
1500 // Augmentation: 'zR\0'
1501 cfi_info->push_back(0x7a);
1502 cfi_info->push_back(0x52);
1503 cfi_info->push_back(0x0);
1504
1505 // Code alignment: 1.
1506 EncodeUnsignedLeb128(*cfi_info, 1);
1507
1508 // Data alignment.
1509 if (is_x86_64) {
1510 EncodeSignedLeb128(*cfi_info, -8);
1511 } else {
1512 EncodeSignedLeb128(*cfi_info, -4);
1513 }
1514
1515 // Return address register.
1516 if (is_x86_64) {
1517 // R16(RIP)
1518 cfi_info->push_back(0x10);
1519 } else {
1520 // R8(EIP)
1521 cfi_info->push_back(0x08);
1522 }
1523
1524 // Augmentation length: 1.
1525 cfi_info->push_back(1);
1526
1527 // Augmentation data: 0x03 ((DW_EH_PE_absptr << 4) | DW_EH_PE_udata4).
1528 cfi_info->push_back(0x03);
1529
1530 // Initial instructions.
1531 if (is_x86_64) {
1532 // DW_CFA_def_cfa R7(RSP) 8.
1533 cfi_info->push_back(0x0c);
1534 cfi_info->push_back(0x07);
1535 cfi_info->push_back(0x08);
1536
1537 // DW_CFA_offset R16(RIP) 1 (* -8).
1538 cfi_info->push_back(0x90);
1539 cfi_info->push_back(0x01);
1540 } else {
1541 // DW_CFA_def_cfa R4(ESP) 4.
1542 cfi_info->push_back(0x0c);
1543 cfi_info->push_back(0x04);
1544 cfi_info->push_back(0x04);
1545
1546 // DW_CFA_offset R8(EIP) 1 (* -4).
1547 cfi_info->push_back(0x88);
1548 cfi_info->push_back(0x01);
1549 }
1550
1551 // Padding to a multiple of 4
1552 while ((cfi_info->size() & 3) != 0) {
1553 // DW_CFA_nop is encoded as 0.
1554 cfi_info->push_back(0);
1555 }
1556
1557 // Set the length of the CIE inside the generated bytes.
1558 uint32_t length = cfi_info->size() - 4;
1559 (*cfi_info)[0] = length;
1560 (*cfi_info)[1] = length >> 8;
1561 (*cfi_info)[2] = length >> 16;
1562 (*cfi_info)[3] = length >> 24;
1563 return cfi_info;
1564 }
1565
ARTRegIDToDWARFRegID(bool is_x86_64,int art_reg_id,int * dwarf_reg_id)1566 static bool ARTRegIDToDWARFRegID(bool is_x86_64, int art_reg_id, int* dwarf_reg_id) {
1567 if (is_x86_64) {
1568 switch (art_reg_id) {
1569 case 3 : *dwarf_reg_id = 3; return true; // %rbx
1570 // This is the only discrepancy between ART & DWARF register numbering.
1571 case 5 : *dwarf_reg_id = 6; return true; // %rbp
1572 case 12: *dwarf_reg_id = 12; return true; // %r12
1573 case 13: *dwarf_reg_id = 13; return true; // %r13
1574 case 14: *dwarf_reg_id = 14; return true; // %r14
1575 case 15: *dwarf_reg_id = 15; return true; // %r15
1576 default: return false; // Should not get here
1577 }
1578 } else {
1579 switch (art_reg_id) {
1580 case 5: *dwarf_reg_id = 5; return true; // %ebp
1581 case 6: *dwarf_reg_id = 6; return true; // %esi
1582 case 7: *dwarf_reg_id = 7; return true; // %edi
1583 default: return false; // Should not get here
1584 }
1585 }
1586 }
1587
ReturnCallFrameInformation()1588 std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1589 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1590
1591 // Generate the FDE for the method.
1592 DCHECK_NE(data_offset_, 0U);
1593
1594 // Length (will be filled in later in this routine).
1595 PushWord(*cfi_info, 0);
1596
1597 // 'CIE_pointer' (filled in by linker).
1598 PushWord(*cfi_info, 0);
1599
1600 // 'initial_location' (filled in by linker).
1601 PushWord(*cfi_info, 0);
1602
1603 // 'address_range' (number of bytes in the method).
1604 PushWord(*cfi_info, data_offset_);
1605
1606 // Augmentation length: 0
1607 cfi_info->push_back(0);
1608
1609 // The instructions in the FDE.
1610 if (stack_decrement_ != nullptr) {
1611 // Advance LOC to just past the stack decrement.
1612 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1613 AdvanceLoc(*cfi_info, pc);
1614
1615 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1616 cfi_info->push_back(0x0e);
1617 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1618
1619 // Handle register spills
1620 const uint32_t kSpillInstLen = (cu_->target64) ? 5 : 4;
1621 const int kDataAlignmentFactor = (cu_->target64) ? -8 : -4;
1622 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
1623 int offset = -(GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
1624 for (int reg = 0; mask; mask >>= 1, reg++) {
1625 if (mask & 0x1) {
1626 pc += kSpillInstLen;
1627
1628 // Advance LOC to pass this instruction
1629 AdvanceLoc(*cfi_info, kSpillInstLen);
1630
1631 int dwarf_reg_id;
1632 if (ARTRegIDToDWARFRegID(cu_->target64, reg, &dwarf_reg_id)) {
1633 // DW_CFA_offset_extended_sf reg_no offset
1634 cfi_info->push_back(0x11);
1635 EncodeUnsignedLeb128(*cfi_info, dwarf_reg_id);
1636 EncodeSignedLeb128(*cfi_info, offset / kDataAlignmentFactor);
1637 }
1638
1639 offset += GetInstructionSetPointerSize(cu_->instruction_set);
1640 }
1641 }
1642
1643 // We continue with that stack until the epilogue.
1644 if (stack_increment_ != nullptr) {
1645 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1646 AdvanceLoc(*cfi_info, new_pc - pc);
1647
1648 // We probably have code snippets after the epilogue, so save the
1649 // current state: DW_CFA_remember_state.
1650 cfi_info->push_back(0x0a);
1651
1652 // We have now popped the stack: DW_CFA_def_cfa_offset 4/8.
1653 // There is only the return PC on the stack now.
1654 cfi_info->push_back(0x0e);
1655 EncodeUnsignedLeb128(*cfi_info, GetInstructionSetPointerSize(cu_->instruction_set));
1656
1657 // Everything after that is the same as before the epilogue.
1658 // Stack bump was followed by RET instruction.
1659 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1660 if (post_ret_insn != nullptr) {
1661 pc = new_pc;
1662 new_pc = post_ret_insn->offset;
1663 AdvanceLoc(*cfi_info, new_pc - pc);
1664 // Restore the state: DW_CFA_restore_state.
1665 cfi_info->push_back(0x0b);
1666 }
1667 }
1668 }
1669
1670 // Padding to a multiple of 4
1671 while ((cfi_info->size() & 3) != 0) {
1672 // DW_CFA_nop is encoded as 0.
1673 cfi_info->push_back(0);
1674 }
1675
1676 // Set the length of the FDE inside the generated bytes.
1677 uint32_t length = cfi_info->size() - 4;
1678 (*cfi_info)[0] = length;
1679 (*cfi_info)[1] = length >> 8;
1680 (*cfi_info)[2] = length >> 16;
1681 (*cfi_info)[3] = length >> 24;
1682 return cfi_info;
1683 }
1684
GenMachineSpecificExtendedMethodMIR(BasicBlock * bb,MIR * mir)1685 void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1686 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1687 case kMirOpReserveVectorRegisters:
1688 ReserveVectorRegisters(mir);
1689 break;
1690 case kMirOpReturnVectorRegisters:
1691 ReturnVectorRegisters();
1692 break;
1693 case kMirOpConstVector:
1694 GenConst128(bb, mir);
1695 break;
1696 case kMirOpMoveVector:
1697 GenMoveVector(bb, mir);
1698 break;
1699 case kMirOpPackedMultiply:
1700 GenMultiplyVector(bb, mir);
1701 break;
1702 case kMirOpPackedAddition:
1703 GenAddVector(bb, mir);
1704 break;
1705 case kMirOpPackedSubtract:
1706 GenSubtractVector(bb, mir);
1707 break;
1708 case kMirOpPackedShiftLeft:
1709 GenShiftLeftVector(bb, mir);
1710 break;
1711 case kMirOpPackedSignedShiftRight:
1712 GenSignedShiftRightVector(bb, mir);
1713 break;
1714 case kMirOpPackedUnsignedShiftRight:
1715 GenUnsignedShiftRightVector(bb, mir);
1716 break;
1717 case kMirOpPackedAnd:
1718 GenAndVector(bb, mir);
1719 break;
1720 case kMirOpPackedOr:
1721 GenOrVector(bb, mir);
1722 break;
1723 case kMirOpPackedXor:
1724 GenXorVector(bb, mir);
1725 break;
1726 case kMirOpPackedAddReduce:
1727 GenAddReduceVector(bb, mir);
1728 break;
1729 case kMirOpPackedReduce:
1730 GenReduceVector(bb, mir);
1731 break;
1732 case kMirOpPackedSet:
1733 GenSetVector(bb, mir);
1734 break;
1735 default:
1736 break;
1737 }
1738 }
1739
ReserveVectorRegisters(MIR * mir)1740 void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1741 // We should not try to reserve twice without returning the registers
1742 DCHECK_NE(num_reserved_vector_regs_, -1);
1743
1744 int num_vector_reg = mir->dalvikInsn.vA;
1745 for (int i = 0; i < num_vector_reg; i++) {
1746 RegStorage xp_reg = RegStorage::Solo128(i);
1747 RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1748 Clobber(xp_reg);
1749
1750 for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1751 info != nullptr;
1752 info = info->GetAliasChain()) {
1753 if (info->GetReg().IsSingle()) {
1754 reg_pool_->sp_regs_.Delete(info);
1755 } else {
1756 reg_pool_->dp_regs_.Delete(info);
1757 }
1758 }
1759 }
1760
1761 num_reserved_vector_regs_ = num_vector_reg;
1762 }
1763
ReturnVectorRegisters()1764 void X86Mir2Lir::ReturnVectorRegisters() {
1765 // Return all the reserved registers
1766 for (int i = 0; i < num_reserved_vector_regs_; i++) {
1767 RegStorage xp_reg = RegStorage::Solo128(i);
1768 RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1769
1770 for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1771 info != nullptr;
1772 info = info->GetAliasChain()) {
1773 if (info->GetReg().IsSingle()) {
1774 reg_pool_->sp_regs_.Insert(info);
1775 } else {
1776 reg_pool_->dp_regs_.Insert(info);
1777 }
1778 }
1779 }
1780
1781 // We don't have anymore reserved vector registers
1782 num_reserved_vector_regs_ = -1;
1783 }
1784
GenConst128(BasicBlock * bb,MIR * mir)1785 void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1786 store_method_addr_used_ = true;
1787 int type_size = mir->dalvikInsn.vB;
1788 // We support 128 bit vectors.
1789 DCHECK_EQ(type_size & 0xFFFF, 128);
1790 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1791 uint32_t *args = mir->dalvikInsn.arg;
1792 int reg = rs_dest.GetReg();
1793 // Check for all 0 case.
1794 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1795 NewLIR2(kX86XorpsRR, reg, reg);
1796 return;
1797 }
1798
1799 // Append the mov const vector to reg opcode.
1800 AppendOpcodeWithConst(kX86MovupsRM, reg, mir);
1801 }
1802
AppendOpcodeWithConst(X86OpCode opcode,int reg,MIR * mir)1803 void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1804 // Okay, load it from the constant vector area.
1805 LIR *data_target = ScanVectorLiteral(mir);
1806 if (data_target == nullptr) {
1807 data_target = AddVectorLiteral(mir);
1808 }
1809
1810 // Address the start of the method.
1811 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1812 if (rl_method.wide) {
1813 rl_method = LoadValueWide(rl_method, kCoreReg);
1814 } else {
1815 rl_method = LoadValue(rl_method, kCoreReg);
1816 }
1817
1818 // Load the proper value from the literal area.
1819 // We don't know the proper offset for the value, so pick one that will force
1820 // 4 byte offset. We will fix this up in the assembler later to have the right
1821 // value.
1822 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1823 LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg());
1824 load->flags.fixup = kFixupLoad;
1825 load->target = data_target;
1826 }
1827
GenMoveVector(BasicBlock * bb,MIR * mir)1828 void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1829 // We only support 128 bit registers.
1830 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1831 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1832 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1833 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1834 }
1835
GenMultiplyVectorSignedByte(BasicBlock * bb,MIR * mir)1836 void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) {
1837 const int BYTE_SIZE = 8;
1838 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1839 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1840 RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide());
1841
1842 /*
1843 * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1844 * and multiplying 8 at a time before recombining back into one XMM register.
1845 *
1846 * let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1847 * xmm3 is tmp (operate on high bits of 16bit lanes)
1848 *
1849 * xmm3 = xmm1
1850 * xmm1 = xmm1 .* xmm2
1851 * xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff // xmm1 now has low bits
1852 * xmm3 = xmm3 .>> 8
1853 * xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1854 * xmm2 = xmm2 .* xmm3 // xmm2 now has high bits
1855 * xmm1 = xmm1 | xmm2 // combine results
1856 */
1857
1858 // Copy xmm1.
1859 NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg());
1860
1861 // Multiply low bits.
1862 NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1863
1864 // xmm1 now has low bits.
1865 AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1866
1867 // Prepare high bits for multiplication.
1868 NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE);
1869 AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1870
1871 // Multiply high bits and xmm2 now has high bits.
1872 NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg());
1873
1874 // Combine back into dest XMM register.
1875 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1876 }
1877
GenMultiplyVector(BasicBlock * bb,MIR * mir)1878 void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1879 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1880 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1881 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1882 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1883 int opcode = 0;
1884 switch (opsize) {
1885 case k32:
1886 opcode = kX86PmulldRR;
1887 break;
1888 case kSignedHalf:
1889 opcode = kX86PmullwRR;
1890 break;
1891 case kSingle:
1892 opcode = kX86MulpsRR;
1893 break;
1894 case kDouble:
1895 opcode = kX86MulpdRR;
1896 break;
1897 case kSignedByte:
1898 // HW doesn't support 16x16 byte multiplication so emulate it.
1899 GenMultiplyVectorSignedByte(bb, mir);
1900 return;
1901 default:
1902 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1903 break;
1904 }
1905 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1906 }
1907
GenAddVector(BasicBlock * bb,MIR * mir)1908 void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1909 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1910 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1911 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1912 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1913 int opcode = 0;
1914 switch (opsize) {
1915 case k32:
1916 opcode = kX86PadddRR;
1917 break;
1918 case kSignedHalf:
1919 case kUnsignedHalf:
1920 opcode = kX86PaddwRR;
1921 break;
1922 case kUnsignedByte:
1923 case kSignedByte:
1924 opcode = kX86PaddbRR;
1925 break;
1926 case kSingle:
1927 opcode = kX86AddpsRR;
1928 break;
1929 case kDouble:
1930 opcode = kX86AddpdRR;
1931 break;
1932 default:
1933 LOG(FATAL) << "Unsupported vector addition " << opsize;
1934 break;
1935 }
1936 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1937 }
1938
GenSubtractVector(BasicBlock * bb,MIR * mir)1939 void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1940 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1941 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1942 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1943 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1944 int opcode = 0;
1945 switch (opsize) {
1946 case k32:
1947 opcode = kX86PsubdRR;
1948 break;
1949 case kSignedHalf:
1950 case kUnsignedHalf:
1951 opcode = kX86PsubwRR;
1952 break;
1953 case kUnsignedByte:
1954 case kSignedByte:
1955 opcode = kX86PsubbRR;
1956 break;
1957 case kSingle:
1958 opcode = kX86SubpsRR;
1959 break;
1960 case kDouble:
1961 opcode = kX86SubpdRR;
1962 break;
1963 default:
1964 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1965 break;
1966 }
1967 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1968 }
1969
GenShiftByteVector(BasicBlock * bb,MIR * mir)1970 void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) {
1971 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1972 RegStorage rs_tmp = Get128BitRegister(AllocTempWide());
1973
1974 int opcode = 0;
1975 int imm = mir->dalvikInsn.vB;
1976
1977 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1978 case kMirOpPackedShiftLeft:
1979 opcode = kX86PsllwRI;
1980 break;
1981 case kMirOpPackedSignedShiftRight:
1982 opcode = kX86PsrawRI;
1983 break;
1984 case kMirOpPackedUnsignedShiftRight:
1985 opcode = kX86PsrlwRI;
1986 break;
1987 default:
1988 LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1989 break;
1990 }
1991
1992 /*
1993 * xmm1 will have low bits
1994 * xmm2 will have high bits
1995 *
1996 * xmm2 = xmm1
1997 * xmm1 = xmm1 .<< N
1998 * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00
1999 * xmm2 = xmm2 .<< N
2000 * xmm1 = xmm1 | xmm2
2001 */
2002
2003 // Copy xmm1.
2004 NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg());
2005
2006 // Shift lower values.
2007 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2008
2009 // Mask bottom bits.
2010 AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
2011
2012 // Shift higher values.
2013 NewLIR2(opcode, rs_tmp.GetReg(), imm);
2014
2015 // Combine back into dest XMM register.
2016 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg());
2017 }
2018
GenShiftLeftVector(BasicBlock * bb,MIR * mir)2019 void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
2020 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2021 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2022 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2023 int imm = mir->dalvikInsn.vB;
2024 int opcode = 0;
2025 switch (opsize) {
2026 case k32:
2027 opcode = kX86PslldRI;
2028 break;
2029 case k64:
2030 opcode = kX86PsllqRI;
2031 break;
2032 case kSignedHalf:
2033 case kUnsignedHalf:
2034 opcode = kX86PsllwRI;
2035 break;
2036 case kSignedByte:
2037 case kUnsignedByte:
2038 GenShiftByteVector(bb, mir);
2039 return;
2040 default:
2041 LOG(FATAL) << "Unsupported vector shift left " << opsize;
2042 break;
2043 }
2044 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2045 }
2046
GenSignedShiftRightVector(BasicBlock * bb,MIR * mir)2047 void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2048 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2049 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2050 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2051 int imm = mir->dalvikInsn.vB;
2052 int opcode = 0;
2053 switch (opsize) {
2054 case k32:
2055 opcode = kX86PsradRI;
2056 break;
2057 case kSignedHalf:
2058 case kUnsignedHalf:
2059 opcode = kX86PsrawRI;
2060 break;
2061 case kSignedByte:
2062 case kUnsignedByte:
2063 GenShiftByteVector(bb, mir);
2064 return;
2065 default:
2066 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
2067 break;
2068 }
2069 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2070 }
2071
GenUnsignedShiftRightVector(BasicBlock * bb,MIR * mir)2072 void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2073 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2074 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2075 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2076 int imm = mir->dalvikInsn.vB;
2077 int opcode = 0;
2078 switch (opsize) {
2079 case k32:
2080 opcode = kX86PsrldRI;
2081 break;
2082 case k64:
2083 opcode = kX86PsrlqRI;
2084 break;
2085 case kSignedHalf:
2086 case kUnsignedHalf:
2087 opcode = kX86PsrlwRI;
2088 break;
2089 case kSignedByte:
2090 case kUnsignedByte:
2091 GenShiftByteVector(bb, mir);
2092 return;
2093 default:
2094 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
2095 break;
2096 }
2097 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2098 }
2099
GenAndVector(BasicBlock * bb,MIR * mir)2100 void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
2101 // We only support 128 bit registers.
2102 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2103 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2104 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2105 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2106 }
2107
GenOrVector(BasicBlock * bb,MIR * mir)2108 void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
2109 // We only support 128 bit registers.
2110 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2111 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2112 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2113 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2114 }
2115
GenXorVector(BasicBlock * bb,MIR * mir)2116 void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
2117 // We only support 128 bit registers.
2118 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2119 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2120 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2121 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2122 }
2123
AndMaskVectorRegister(RegStorage rs_src1,uint32_t m1,uint32_t m2,uint32_t m3,uint32_t m4)2124 void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
2125 MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
2126 }
2127
MaskVectorRegister(X86OpCode opcode,RegStorage rs_src1,uint32_t m0,uint32_t m1,uint32_t m2,uint32_t m3)2128 void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
2129 // Create temporary MIR as container for 128-bit binary mask.
2130 MIR const_mir;
2131 MIR* const_mirp = &const_mir;
2132 const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
2133 const_mirp->dalvikInsn.arg[0] = m0;
2134 const_mirp->dalvikInsn.arg[1] = m1;
2135 const_mirp->dalvikInsn.arg[2] = m2;
2136 const_mirp->dalvikInsn.arg[3] = m3;
2137
2138 // Mask vector with const from literal pool.
2139 AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
2140 }
2141
GenAddReduceVector(BasicBlock * bb,MIR * mir)2142 void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
2143 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2144 RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2145 RegLocation rl_dest = mir_graph_->GetDest(mir);
2146 RegStorage rs_tmp;
2147
2148 int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
2149 int vec_unit_size = 0;
2150 int opcode = 0;
2151 int extr_opcode = 0;
2152 RegLocation rl_result;
2153
2154 switch (opsize) {
2155 case k32:
2156 extr_opcode = kX86PextrdRRI;
2157 opcode = kX86PhadddRR;
2158 vec_unit_size = 4;
2159 break;
2160 case kSignedByte:
2161 case kUnsignedByte:
2162 extr_opcode = kX86PextrbRRI;
2163 opcode = kX86PhaddwRR;
2164 vec_unit_size = 2;
2165 break;
2166 case kSignedHalf:
2167 case kUnsignedHalf:
2168 extr_opcode = kX86PextrwRRI;
2169 opcode = kX86PhaddwRR;
2170 vec_unit_size = 2;
2171 break;
2172 case kSingle:
2173 rl_result = EvalLoc(rl_dest, kFPReg, true);
2174 vec_unit_size = 4;
2175 for (int i = 0; i < 3; i++) {
2176 NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2177 NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39);
2178 }
2179 NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2180 StoreValue(rl_dest, rl_result);
2181
2182 // For single-precision floats, we are done here
2183 return;
2184 default:
2185 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2186 break;
2187 }
2188
2189 int elems = vec_bytes / vec_unit_size;
2190
2191 // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again
2192 // TODO is overflow handled correctly?
2193 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2194 rs_tmp = Get128BitRegister(AllocTempWide());
2195
2196 // tmp = xmm1 .>> 8.
2197 NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg());
2198 NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8);
2199
2200 // Zero extend low bits in xmm1.
2201 AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
2202 }
2203
2204 while (elems > 1) {
2205 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2206 NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg());
2207 }
2208 NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg());
2209 elems >>= 1;
2210 }
2211
2212 // Combine the results if we separated them.
2213 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2214 NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg());
2215 }
2216
2217 // We need to extract to a GPR.
2218 RegStorage temp = AllocTemp();
2219 NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0);
2220
2221 // Can we do this directly into memory?
2222 rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2223 if (rl_result.location == kLocPhysReg) {
2224 // Ensure res is in a core reg
2225 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2226 OpRegReg(kOpAdd, rl_result.reg, temp);
2227 StoreFinalValue(rl_dest, rl_result);
2228 } else {
2229 OpMemReg(kOpAdd, rl_result, temp.GetReg());
2230 }
2231
2232 FreeTemp(temp);
2233 }
2234
GenReduceVector(BasicBlock * bb,MIR * mir)2235 void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
2236 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2237 RegLocation rl_dest = mir_graph_->GetDest(mir);
2238 RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2239 int extract_index = mir->dalvikInsn.arg[0];
2240 int extr_opcode = 0;
2241 RegLocation rl_result;
2242 bool is_wide = false;
2243
2244 switch (opsize) {
2245 case k32:
2246 rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2247 extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI;
2248 break;
2249 case kSignedHalf:
2250 case kUnsignedHalf:
2251 rl_result= UpdateLocTyped(rl_dest, kCoreReg);
2252 extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI;
2253 break;
2254 default:
2255 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2256 return;
2257 break;
2258 }
2259
2260 if (rl_result.location == kLocPhysReg) {
2261 NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index);
2262 if (is_wide == true) {
2263 StoreFinalValue(rl_dest, rl_result);
2264 } else {
2265 StoreFinalValueWide(rl_dest, rl_result);
2266 }
2267 } else {
2268 int displacement = SRegOffset(rl_result.s_reg_low);
2269 LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg());
2270 AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */);
2271 AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
2272 }
2273 }
2274
GenSetVector(BasicBlock * bb,MIR * mir)2275 void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
2276 DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2277 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2278 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
2279 int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR;
2280 RegisterClass reg_type = kCoreReg;
2281
2282 switch (opsize) {
2283 case k32:
2284 op_low = kX86PshufdRRI;
2285 break;
2286 case kSingle:
2287 op_low = kX86PshufdRRI;
2288 op_mov = kX86Mova128RR;
2289 reg_type = kFPReg;
2290 break;
2291 case k64:
2292 op_low = kX86PshufdRRI;
2293 imm = 0x44;
2294 break;
2295 case kDouble:
2296 op_low = kX86PshufdRRI;
2297 op_mov = kX86Mova128RR;
2298 reg_type = kFPReg;
2299 imm = 0x44;
2300 break;
2301 case kSignedByte:
2302 case kUnsignedByte:
2303 // Shuffle 8 bit value into 16 bit word.
2304 // We set val = val + (val << 8) below and use 16 bit shuffle.
2305 case kSignedHalf:
2306 case kUnsignedHalf:
2307 // Handles low quadword.
2308 op_low = kX86PshuflwRRI;
2309 // Handles upper quadword.
2310 op_high = kX86PshufdRRI;
2311 break;
2312 default:
2313 LOG(FATAL) << "Unsupported vector set " << opsize;
2314 break;
2315 }
2316
2317 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
2318
2319 // Load the value from the VR into the reg.
2320 if (rl_src.wide == 0) {
2321 rl_src = LoadValue(rl_src, reg_type);
2322 } else {
2323 rl_src = LoadValueWide(rl_src, reg_type);
2324 }
2325
2326 // If opsize is 8 bits wide then double value and use 16 bit shuffle instead.
2327 if (opsize == kSignedByte || opsize == kUnsignedByte) {
2328 RegStorage temp = AllocTemp();
2329 // val = val + (val << 8).
2330 NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg());
2331 NewLIR2(kX86Sal32RI, temp.GetReg(), 8);
2332 NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg());
2333 FreeTemp(temp);
2334 }
2335
2336 // Load the value into the XMM register.
2337 NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg());
2338
2339 // Now shuffle the value across the destination.
2340 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2341
2342 // And then repeat as needed.
2343 if (op_high != 0) {
2344 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2345 }
2346 }
2347
ScanVectorLiteral(MIR * mir)2348 LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
2349 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2350 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2351 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
2352 args[2] == p->operands[2] && args[3] == p->operands[3]) {
2353 return p;
2354 }
2355 }
2356 return nullptr;
2357 }
2358
AddVectorLiteral(MIR * mir)2359 LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
2360 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2361 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2362 new_value->operands[0] = args[0];
2363 new_value->operands[1] = args[1];
2364 new_value->operands[2] = args[2];
2365 new_value->operands[3] = args[3];
2366 new_value->next = const_vectors_;
2367 if (const_vectors_ == nullptr) {
2368 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
2369 }
2370 estimated_native_code_size_ += 16; // Space for one vector.
2371 const_vectors_ = new_value;
2372 return new_value;
2373 }
2374
2375 // ------------ ABI support: mapping of args to physical registers -------------
GetNextReg(bool is_double_or_float,bool is_wide,bool is_ref)2376 RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide,
2377 bool is_ref) {
2378 const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2379 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) /
2380 sizeof(SpecialTargetRegister);
2381 const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2382 kFArg4, kFArg5, kFArg6, kFArg7};
2383 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) /
2384 sizeof(SpecialTargetRegister);
2385
2386 if (is_double_or_float) {
2387 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2388 return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide ? kWide : kNotWide);
2389 }
2390 } else {
2391 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2392 return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
2393 is_ref ? kRef : (is_wide ? kWide : kNotWide));
2394 }
2395 }
2396 return RegStorage::InvalidReg();
2397 }
2398
Get(int in_position)2399 RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
2400 DCHECK(IsInitialized());
2401 auto res = mapping_.find(in_position);
2402 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
2403 }
2404
Initialize(RegLocation * arg_locs,int count,InToRegStorageMapper * mapper)2405 void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
2406 InToRegStorageMapper* mapper) {
2407 DCHECK(mapper != nullptr);
2408 max_mapped_in_ = -1;
2409 is_there_stack_mapped_ = false;
2410 for (int in_position = 0; in_position < count; in_position++) {
2411 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
2412 arg_locs[in_position].wide, arg_locs[in_position].ref);
2413 if (reg.Valid()) {
2414 mapping_[in_position] = reg;
2415 max_mapped_in_ = std::max(max_mapped_in_, in_position);
2416 if (arg_locs[in_position].wide) {
2417 // We covered 2 args, so skip the next one
2418 in_position++;
2419 }
2420 } else {
2421 is_there_stack_mapped_ = true;
2422 }
2423 }
2424 initialized_ = true;
2425 }
2426
GetArgMappingToPhysicalReg(int arg_num)2427 RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
2428 if (!cu_->target64) {
2429 return GetCoreArgMappingToPhysicalReg(arg_num);
2430 }
2431
2432 if (!in_to_reg_storage_mapping_.IsInitialized()) {
2433 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2434 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
2435
2436 InToRegStorageX86_64Mapper mapper(this);
2437 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
2438 }
2439 return in_to_reg_storage_mapping_.Get(arg_num);
2440 }
2441
GetCoreArgMappingToPhysicalReg(int core_arg_num)2442 RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
2443 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
2444 // Not used for 64-bit, TODO: Move X86_32 to the same framework
2445 switch (core_arg_num) {
2446 case 0:
2447 return rs_rX86_ARG1;
2448 case 1:
2449 return rs_rX86_ARG2;
2450 case 2:
2451 return rs_rX86_ARG3;
2452 default:
2453 return RegStorage::InvalidReg();
2454 }
2455 }
2456
2457 // ---------End of ABI support: mapping of args to physical registers -------------
2458
2459 /*
2460 * If there are any ins passed in registers that have not been promoted
2461 * to a callee-save register, flush them to the frame. Perform initial
2462 * assignment of promoted arguments.
2463 *
2464 * ArgLocs is an array of location records describing the incoming arguments
2465 * with one location record per word of argument.
2466 */
FlushIns(RegLocation * ArgLocs,RegLocation rl_method)2467 void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
2468 if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
2469 /*
2470 * Dummy up a RegLocation for the incoming Method*
2471 * It will attempt to keep kArg0 live (or copy it to home location
2472 * if promoted).
2473 */
2474
2475 RegLocation rl_src = rl_method;
2476 rl_src.location = kLocPhysReg;
2477 rl_src.reg = TargetReg(kArg0, kRef);
2478 rl_src.home = false;
2479 MarkLive(rl_src);
2480 StoreValue(rl_method, rl_src);
2481 // If Method* has been promoted, explicitly flush
2482 if (rl_method.location == kLocPhysReg) {
2483 StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetReg(kArg0, kRef)), kNotVolatile);
2484 }
2485
2486 if (cu_->num_ins == 0) {
2487 return;
2488 }
2489
2490 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2491 /*
2492 * Copy incoming arguments to their proper home locations.
2493 * NOTE: an older version of dx had an issue in which
2494 * it would reuse static method argument registers.
2495 * This could result in the same Dalvik virtual register
2496 * being promoted to both core and fp regs. To account for this,
2497 * we only copy to the corresponding promoted physical register
2498 * if it matches the type of the SSA name for the incoming
2499 * argument. It is also possible that long and double arguments
2500 * end up half-promoted. In those cases, we must flush the promoted
2501 * half to memory as well.
2502 */
2503 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2504 for (int i = 0; i < cu_->num_ins; i++) {
2505 // get reg corresponding to input
2506 RegStorage reg = GetArgMappingToPhysicalReg(i);
2507
2508 RegLocation* t_loc = &ArgLocs[i];
2509 if (reg.Valid()) {
2510 // If arriving in register.
2511
2512 // We have already updated the arg location with promoted info
2513 // so we can be based on it.
2514 if (t_loc->location == kLocPhysReg) {
2515 // Just copy it.
2516 OpRegCopy(t_loc->reg, reg);
2517 } else {
2518 // Needs flush.
2519 if (t_loc->ref) {
2520 StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2521 } else {
2522 StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2523 kNotVolatile);
2524 }
2525 }
2526 } else {
2527 // If arriving in frame & promoted.
2528 if (t_loc->location == kLocPhysReg) {
2529 if (t_loc->ref) {
2530 LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2531 } else {
2532 LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2533 t_loc->wide ? k64 : k32, kNotVolatile);
2534 }
2535 }
2536 }
2537 if (t_loc->wide) {
2538 // Increment i to skip the next one.
2539 i++;
2540 }
2541 }
2542 }
2543
2544 /*
2545 * Load up to 5 arguments, the first three of which will be in
2546 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
2547 * and as part of the load sequence, it must be replaced with
2548 * the target method pointer. Note, this may also be called
2549 * for "range" variants if the number of arguments is 5 or fewer.
2550 */
GenDalvikArgsNoRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)2551 int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2552 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2553 const MethodReference& target_method,
2554 uint32_t vtable_idx, uintptr_t direct_code,
2555 uintptr_t direct_method, InvokeType type, bool skip_this) {
2556 if (!cu_->target64) {
2557 return Mir2Lir::GenDalvikArgsNoRange(info,
2558 call_state, pcrLabel, next_call_insn,
2559 target_method,
2560 vtable_idx, direct_code,
2561 direct_method, type, skip_this);
2562 }
2563 return GenDalvikArgsRange(info,
2564 call_state, pcrLabel, next_call_insn,
2565 target_method,
2566 vtable_idx, direct_code,
2567 direct_method, type, skip_this);
2568 }
2569
2570 /*
2571 * May have 0+ arguments (also used for jumbo). Note that
2572 * source virtual registers may be in physical registers, so may
2573 * need to be flushed to home location before copying. This
2574 * applies to arg3 and above (see below).
2575 *
2576 * Two general strategies:
2577 * If < 20 arguments
2578 * Pass args 3-18 using vldm/vstm block copy
2579 * Pass arg0, arg1 & arg2 in kArg1-kArg3
2580 * If 20+ arguments
2581 * Pass args arg19+ using memcpy block copy
2582 * Pass arg0, arg1 & arg2 in kArg1-kArg3
2583 *
2584 */
GenDalvikArgsRange(CallInfo * info,int call_state,LIR ** pcrLabel,NextCallInsn next_call_insn,const MethodReference & target_method,uint32_t vtable_idx,uintptr_t direct_code,uintptr_t direct_method,InvokeType type,bool skip_this)2585 int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2586 LIR** pcrLabel, NextCallInsn next_call_insn,
2587 const MethodReference& target_method,
2588 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2589 InvokeType type, bool skip_this) {
2590 if (!cu_->target64) {
2591 return Mir2Lir::GenDalvikArgsRange(info, call_state,
2592 pcrLabel, next_call_insn,
2593 target_method,
2594 vtable_idx, direct_code, direct_method,
2595 type, skip_this);
2596 }
2597
2598 /* If no arguments, just return */
2599 if (info->num_arg_words == 0)
2600 return call_state;
2601
2602 const int start_index = skip_this ? 1 : 0;
2603
2604 InToRegStorageX86_64Mapper mapper(this);
2605 InToRegStorageMapping in_to_reg_storage_mapping;
2606 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2607 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2608 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2609 info->args[last_mapped_in].wide ? 2 : 1;
2610 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2611
2612 // Fisrt of all, check whether it make sense to use bulk copying
2613 // Optimization is aplicable only for range case
2614 // TODO: make a constant instead of 2
2615 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2616 // Scan the rest of the args - if in phys_reg flush to memory
2617 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2618 RegLocation loc = info->args[next_arg];
2619 if (loc.wide) {
2620 loc = UpdateLocWide(loc);
2621 if (loc.location == kLocPhysReg) {
2622 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2623 StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2624 }
2625 next_arg += 2;
2626 } else {
2627 loc = UpdateLoc(loc);
2628 if (loc.location == kLocPhysReg) {
2629 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2630 StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2631 }
2632 next_arg++;
2633 }
2634 }
2635
2636 // Logic below assumes that Method pointer is at offset zero from SP.
2637 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2638
2639 // The rest can be copied together
2640 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2641 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped,
2642 cu_->instruction_set);
2643
2644 int current_src_offset = start_offset;
2645 int current_dest_offset = outs_offset;
2646
2647 // Only davik regs are accessed in this loop; no next_call_insn() calls.
2648 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2649 while (regs_left_to_pass_via_stack > 0) {
2650 // This is based on the knowledge that the stack itself is 16-byte aligned.
2651 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2652 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2653 size_t bytes_to_move;
2654
2655 /*
2656 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2657 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2658 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2659 * We do this because we could potentially do a smaller move to align.
2660 */
2661 if (regs_left_to_pass_via_stack == 4 ||
2662 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2663 // Moving 128-bits via xmm register.
2664 bytes_to_move = sizeof(uint32_t) * 4;
2665
2666 // Allocate a free xmm temp. Since we are working through the calling sequence,
2667 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2668 // there are no free registers.
2669 RegStorage temp = AllocTempDouble();
2670
2671 LIR* ld1 = nullptr;
2672 LIR* ld2 = nullptr;
2673 LIR* st1 = nullptr;
2674 LIR* st2 = nullptr;
2675
2676 /*
2677 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2678 * do an aligned move. If we have 8-byte alignment, then do the move in two
2679 * parts. This approach prevents possible cache line splits. Finally, fall back
2680 * to doing an unaligned move. In most cases we likely won't split the cache
2681 * line but we cannot prove it and thus take a conservative approach.
2682 */
2683 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2684 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2685
2686 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2687 if (src_is_16b_aligned) {
2688 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2689 } else if (src_is_8b_aligned) {
2690 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2691 ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2692 kMovHi128FP);
2693 } else {
2694 ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2695 }
2696
2697 if (dest_is_16b_aligned) {
2698 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2699 } else if (dest_is_8b_aligned) {
2700 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2701 st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2702 temp, kMovHi128FP);
2703 } else {
2704 st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2705 }
2706
2707 // TODO If we could keep track of aliasing information for memory accesses that are wider
2708 // than 64-bit, we wouldn't need to set up a barrier.
2709 if (ld1 != nullptr) {
2710 if (ld2 != nullptr) {
2711 // For 64-bit load we can actually set up the aliasing information.
2712 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2713 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2714 } else {
2715 // Set barrier for 128-bit load.
2716 ld1->u.m.def_mask = &kEncodeAll;
2717 }
2718 }
2719 if (st1 != nullptr) {
2720 if (st2 != nullptr) {
2721 // For 64-bit store we can actually set up the aliasing information.
2722 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2723 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2724 } else {
2725 // Set barrier for 128-bit store.
2726 st1->u.m.def_mask = &kEncodeAll;
2727 }
2728 }
2729
2730 // Free the temporary used for the data movement.
2731 FreeTemp(temp);
2732 } else {
2733 // Moving 32-bits via general purpose register.
2734 bytes_to_move = sizeof(uint32_t);
2735
2736 // Instead of allocating a new temp, simply reuse one of the registers being used
2737 // for argument passing.
2738 RegStorage temp = TargetReg(kArg3, kNotWide);
2739
2740 // Now load the argument VR and store to the outs.
2741 Load32Disp(rs_rX86_SP, current_src_offset, temp);
2742 Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2743 }
2744
2745 current_src_offset += bytes_to_move;
2746 current_dest_offset += bytes_to_move;
2747 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2748 }
2749 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2750 }
2751
2752 // Now handle rest not registers if they are
2753 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2754 RegStorage regSingle = TargetReg(kArg2, kNotWide);
2755 RegStorage regWide = TargetReg(kArg3, kWide);
2756 for (int i = start_index;
2757 i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2758 RegLocation rl_arg = info->args[i];
2759 rl_arg = UpdateRawLoc(rl_arg);
2760 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2761 if (!reg.Valid()) {
2762 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2763
2764 {
2765 ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2766 if (rl_arg.wide) {
2767 if (rl_arg.location == kLocPhysReg) {
2768 StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2769 } else {
2770 LoadValueDirectWideFixed(rl_arg, regWide);
2771 StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2772 }
2773 } else {
2774 if (rl_arg.location == kLocPhysReg) {
2775 StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2776 } else {
2777 LoadValueDirectFixed(rl_arg, regSingle);
2778 StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2779 }
2780 }
2781 }
2782 call_state = next_call_insn(cu_, info, call_state, target_method,
2783 vtable_idx, direct_code, direct_method, type);
2784 }
2785 if (rl_arg.wide) {
2786 i++;
2787 }
2788 }
2789 }
2790
2791 // Finish with mapped registers
2792 for (int i = start_index; i <= last_mapped_in; i++) {
2793 RegLocation rl_arg = info->args[i];
2794 rl_arg = UpdateRawLoc(rl_arg);
2795 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2796 if (reg.Valid()) {
2797 if (rl_arg.wide) {
2798 LoadValueDirectWideFixed(rl_arg, reg);
2799 } else {
2800 LoadValueDirectFixed(rl_arg, reg);
2801 }
2802 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2803 direct_code, direct_method, type);
2804 }
2805 if (rl_arg.wide) {
2806 i++;
2807 }
2808 }
2809
2810 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2811 direct_code, direct_method, type);
2812 if (pcrLabel) {
2813 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
2814 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
2815 } else {
2816 *pcrLabel = nullptr;
2817 // In lieu of generating a check for kArg1 being null, we need to
2818 // perform a load when doing implicit checks.
2819 RegStorage tmp = AllocTemp();
2820 Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
2821 MarkPossibleNullPointerException(info->opt_flags);
2822 FreeTemp(tmp);
2823 }
2824 }
2825 return call_state;
2826 }
2827
GenInlinedCharAt(CallInfo * info)2828 bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) {
2829 // Location of reference to data array
2830 int value_offset = mirror::String::ValueOffset().Int32Value();
2831 // Location of count
2832 int count_offset = mirror::String::CountOffset().Int32Value();
2833 // Starting offset within data array
2834 int offset_offset = mirror::String::OffsetOffset().Int32Value();
2835 // Start of char data with array_
2836 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
2837
2838 RegLocation rl_obj = info->args[0];
2839 RegLocation rl_idx = info->args[1];
2840 rl_obj = LoadValue(rl_obj, kRefReg);
2841 // X86 wants to avoid putting a constant index into a register.
2842 if (!rl_idx.is_const) {
2843 rl_idx = LoadValue(rl_idx, kCoreReg);
2844 }
2845 RegStorage reg_max;
2846 GenNullCheck(rl_obj.reg, info->opt_flags);
2847 bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
2848 LIR* range_check_branch = nullptr;
2849 RegStorage reg_off;
2850 RegStorage reg_ptr;
2851 if (range_check) {
2852 // On x86, we can compare to memory directly
2853 // Set up a launch pad to allow retry in case of bounds violation */
2854 if (rl_idx.is_const) {
2855 LIR* comparison;
2856 range_check_branch = OpCmpMemImmBranch(
2857 kCondLs, RegStorage::InvalidReg(), rl_obj.reg, count_offset,
2858 mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison);
2859 MarkPossibleNullPointerExceptionAfter(0, comparison);
2860 } else {
2861 OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset);
2862 MarkPossibleNullPointerException(0);
2863 range_check_branch = OpCondBranch(kCondUge, nullptr);
2864 }
2865 }
2866 reg_off = AllocTemp();
2867 reg_ptr = AllocTempRef();
2868 Load32Disp(rl_obj.reg, offset_offset, reg_off);
2869 LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
2870 if (rl_idx.is_const) {
2871 OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
2872 } else {
2873 OpRegReg(kOpAdd, reg_off, rl_idx.reg);
2874 }
2875 FreeTemp(rl_obj.reg);
2876 if (rl_idx.location == kLocPhysReg) {
2877 FreeTemp(rl_idx.reg);
2878 }
2879 RegLocation rl_dest = InlineTarget(info);
2880 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2881 LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf);
2882 FreeTemp(reg_off);
2883 FreeTemp(reg_ptr);
2884 StoreValue(rl_dest, rl_result);
2885 if (range_check) {
2886 DCHECK(range_check_branch != nullptr);
2887 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked.
2888 AddIntrinsicSlowPath(info, range_check_branch);
2889 }
2890 return true;
2891 }
2892
GenInlinedCurrentThread(CallInfo * info)2893 bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
2894 RegLocation rl_dest = InlineTarget(info);
2895
2896 // Early exit if the result is unused.
2897 if (rl_dest.orig_sreg < 0) {
2898 return true;
2899 }
2900
2901 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
2902
2903 if (cu_->target64) {
2904 OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>());
2905 } else {
2906 OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>());
2907 }
2908
2909 StoreValue(rl_dest, rl_result);
2910 return true;
2911 }
2912
2913 } // namespace art
2914