/cts/apps/CameraITS/tests/scene3/ |
D | test_3a_consistency.py | 19 import numpy as np namespace 58 assert np.isclose(np.amax(exps), np.amin(exps), EXP_TOL) 59 assert np.isclose(np.amax(senses), np.amin(senses), SENS_TOL) 60 assert np.isclose(np.amax(g_gains), np.amin(g_gains), GGAIN_TOL) 61 assert np.isclose(np.amax(fds), np.amin(fds), FD_TOL) 63 assert not np.isnan(g) 65 assert not np.isnan(x)
|
D | test_flip_mirror.py | 23 import numpy as np namespace 70 patch = its.cv2image.scale_img(patch.astype(np.uint8), chart.scale) 73 assert np.max(patch)-np.min(patch) > 255/8 77 its.image.write_image(template[:, :, np.newaxis]/255.0, 81 its.image.write_image(patch[:, :, np.newaxis]/255.0, 97 comp_chart = np.flipud(patch) 99 comp_chart = np.fliplr(patch) 101 comp_chart = np.flipud(np.fliplr(patch)) 112 CHART_ORIENTATIONS[np.argmax(opts)])
|
D | test_lens_movement_reporting.py | 22 import numpy as np namespace 137 diffs = np.gradient(times) 138 assert np.isclose(np.amax(diffs)-np.amax(diffs), 0, atol=FRAME_TIME_TOL) 158 assert np.isclose(min_loc, max_loc, rtol=POSITION_TOL) 163 assert np.isclose(min_sharp, max_sharp, rtol=SHARPNESS_TOL) 166 assert np.isclose(d_af_fd[0]['loc'], d_af_fd[0]['fd'], 173 assert np.isclose(min_loc, max_loc, rtol=POSITION_TOL) 178 assert np.isclose(min_sharp, max_sharp, rtol=SHARPNESS_TOL) 181 assert np.isclose(d_min_fd[NUM_IMGS*2-1]['loc'],
|
D | test_lens_position.py | 22 import numpy as np namespace 66 fds_f = np.arange(hyperfocal, min_fd, (min_fd-hyperfocal)/(NUM_STEPS-1)) 67 fds_f = np.append(fds_f, min_fd) 169 assert np.isclose(d_stat[i]['loc'], d_stat[i]['fd'], 171 assert np.isclose(d_stat[i]['loc'], d_stat[j]['loc'], 173 assert np.isclose(d_stat[i]['sharpness'], d_stat[j]['sharpness'], 178 diffs = np.gradient(times) 179 assert np.isclose(np.amin(diffs), np.amax(diffs), atol=FRAME_TIME_TOL) 185 assert np.isclose(d_stat[i]['loc'], d_move[i]['loc'], 197 assert np.isclose(
|
/cts/apps/CameraITS/tests/scene0/ |
D | test_test_patterns.py | 21 import numpy as np namespace 49 var_max = max(np.amax(r_tile), np.amax(gr_tile), np.amax(gb_tile), 50 np.amax(b_tile)) 51 var_min = min(np.amin(r_tile), np.amin(gr_tile), np.amin(gb_tile), 52 np.amin(b_tile)) 56 return np.isclose(var_max, var_min, atol=CH_TOL) 78 img = np.fliplr(img) 82 color_match.append(np.allclose(its.image.compute_image_means(tile),
|
/cts/suite/audio_quality/test_description/processing/ |
D | calc_thd.py | 17 import numpy as np namespace 25 fftData = abs(fft.fft(data * np.hanning(len(data)))) 31 np.argmax(fftData[baseI - iMargain /2: baseI + iMargain/2]) 32 peakLoc = np.argmax(fftData[:fftLen]) 53 index = np.linspace(0.0, samples, num=samples, endpoint=False) 55 multiplier = 2.0 * np.pi * signalFrequency / float(samplingRate) 56 data = np.sin(index * multiplier)
|
D | calc_delay.py | 17 import numpy as np namespace 29 return np.dot(data0[n:N+n], data1reversed) 57 return np.argmax(result) 68 index = np.linspace(0.0, samples, num=samples, endpoint=False) 70 multiplier = 2.0 * np.pi * signalFrequency / float(samplingRate) 71 data0 = np.sin(index * multiplier)
|
D | example.py | 18 import numpy as np namespace 45 stereo = stereoInt.astype(np.int16) 48 mono = monoInt.astype(np.int16)
|
D | gen_random.py | 18 import numpy as np namespace 32 result = np.zeros(samples * 2 if stereo else samples, dtype=np.int16) 33 randomSignal = np.random.normal(scale = peakAmpl * 2 / 3, size=samples)
|
D | check_spectrum_playback.py | 18 import numpy as np namespace 54 spectrum = np.sqrt(abs(Phh[iLow:iHigh])) 55 spectrumMean = np.mean(spectrum) 63 spectrumResult = np.zeros(len(spectrum), dtype=np.int16)
|
D | check_spectrum.py | 18 import numpy as np namespace 59 amplitudeRatio = np.sqrt(abs(Pdd[iLow:iHigh]/Phh[iLow:iHigh])) 60 ratioMean = np.mean(amplitudeRatio) 68 RatioResult = np.zeros(len(amplitudeRatio), dtype=np.int16) 76 monoData = np.zeros(n)
|
D | playback_thd.py | 18 import numpy as np namespace
|
D | recording_thd.py | 18 import numpy as np namespace
|
/cts/apps/CameraITS/tests/scene4/ |
D | test_multi_camera_alignment.py | 26 import numpy as np namespace 32 ROTATE_REF_MATRIX = np.array([0, 0, 0, 1]) 33 TRANS_REF_MATRIX = np.array([0, 0, 0]) 48 return np.array([[1-2*y**2-2*z**2, 2*x*y-2*z*w, 2*x*z+2*y*w], 73 its.image.write_image(gray[..., np.newaxis]/255.0, name) 142 img = cv2.resize(img_raw.astype(np.uint8), None, fx=2, fy=2) 147 k[i] = np.array([[ical[0], ical[4], ical[2]], 152 rotation[i] = np.array(props_physical[i]['android.lens.poseRotation']) 155 trans[i] = np.array( 167 distort = np.array(props_physical[i]['android.lens.distortion']) [all …]
|
D | test_aspect_ratio_and_crop.py | 22 import numpy as np namespace 63 if np.isclose(sensor_ar, convert_ar_to_float(ar_string), atol=FMT_ATOL): 128 circle_area = math.pi * math.pow(np.mean([circle_w, circle_h])/2.0, 2) 213 ical = np.array(props["android.lens.intrinsicCalibration"]) 227 k = np.array([[ical[0], ical[4], ical[2]], 233 assert np.isclose(fd_w_pix, ical[0], rtol=0.20), e_msg 236 assert np.isclose(fd_h_pix, ical[1], rtol=0.20), e_msg 244 opencv_dist = np.array([rad_dist[0], rad_dist[1], 317 k_scale = np.array([[ical[0]*w_scale, ical[4], 334 if np.isclose(float(w_iter)/h_iter, match_ar, [all …]
|
/cts/apps/CameraITS/tests/dng_noise_model/ |
D | dng_noise_model.py | 26 import numpy as np namespace 59 f = np.array([-1, 1]).astype('float32') 62 f = np.convolve(f, f) 63 f = np.convolve(f, f) 81 f /= math.sqrt(np.dot(f, f)) 157 np.mean(tile(p, tile_size), axis=(0, 1)).flatten() 159 np.var(tile(hp, tile_size), axis=(0, 1)).flatten() 212 sens = np.asarray([e[0] for e in measured_models[pidx]]) 213 sens_sq = np.square(sens) 216 gains = np.asarray([s[0] for s in samples[pidx]]) [all …]
|
/cts/apps/CameraITS/tests/scene1/ |
D | test_ae_af.py | 19 import numpy as np namespace 59 assert not np.isnan(g) 62 assert not np.isnan(x) 64 assert np.isclose(gains[2], GREEN_GAIN, GREEN_GAIN_TOL)
|
D | test_3a.py | 18 import numpy as np namespace 41 assert not np.isnan(g) 44 assert not np.isnan(x)
|
D | test_ev_compensation_basic.py | 23 import numpy as np namespace 89 assert np.isclose(min(luma_locked), max(luma_locked), 100 if (np.isclose(reds[-1], greens[-1], 102 np.isclose(blues[-1], greens[-1], 113 luma_diffs = np.diff(lumas)
|
D | test_raw_exposure.py | 20 import numpy as np namespace 140 if np.isclose(max(mean), white_level, rtol=SATURATION_TOL): 144 if allow_under_saturated and np.allclose(mean, black_levels, rtol=BLK_LVL_TOL):
|
D | test_multi_camera_match.py | 23 import numpy as np namespace 106 assert np.isclose(y1_mean, y2_mean, rtol=THRESH_DIFF), msg
|
/cts/suite/audio_quality/test_description/conf/ |
D | check_conf.py | 18 import numpy as np namespace 25 a = np.array([1,2,3])
|
/cts/apps/CameraITS/tests/rolling_shutter_skew/ |
D | test_rolling_shutter_skew.py | 20 import numpy as np namespace 319 np_cluster = np.array([[c.x, c.y] for c in largest_cluster]) 369 img = img.astype(np.uint8) 382 kernel = np.ones((3, 3), np.uint8) 412 self.x = int(np.mean(contour[:, 0, 0])) 413 self.y = int(np.mean(contour[:, 0, 1])) 415 x_r = (np.max(contour[:, 0, 0]) - np.min(contour[:, 0, 0])) / 2.0 416 y_r = (np.max(contour[:, 0, 1]) - np.min(contour[:, 0, 1])) / 2.0 566 points = np.array([[x, y], [x + w, y], [x + w, y + h], [x, y + h]], 567 np.int32)
|
/cts/apps/CameraITS/tools/ |
D | load_scene.py | 21 import numpy as np namespace 52 if np.isclose(chart_distance, 20, rtol=0.1) and camera_fov < 90:
|
/cts/suite/audio_quality/test_description/ |
D | processing_main.py | 18 import numpy as np namespace 174 data = np.fromstring(raw, dtype=np.int16)
|